V2-25: High-Productivity Analytics

SHREC Annual Workshop (SAW24-25)

January 14-15, 2025

Faculty: <u>Chris North</u>, Doug Bowman (Professors of Computer Science at Virginia Tech)

Students: Sungwon In, Eric Rippey, Ibrahim Tahmid, Xuxin Tang, Frank Wanye

Number of requested memberships ≥ 5

V2-25 Tasks

- High-Performance Analytics = Immersive Analytics + Human-AI Interaction + Parallel Computation
- Task 1: Immersive Data Science (Sungwon In) [presented by Chris]
- Task 2: Immersive Semantic Interaction (Ibrahim Tahmid)
- Task 3: Interactive LLM for High-Performance Sensemaking (Xuxin Tang)
- Task 4: Parallel Computational Analytics (Frank Wanye)

Industry/University Cooperative Research (I/UCRC) Program

Task 1: Immersive Data Science

SHREC Annual Workshop (SAW24-25)

L. UNIVERSITY OF

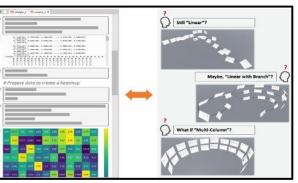
January 14-15, 2025

Sungwon In

ICoN: Immersive Computational Notebook for Data Science

General Limitations

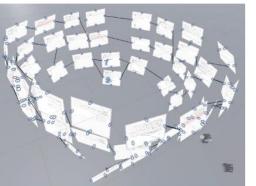
- Scalability
- Optimizing Interaction
- Target Users
- Broader Applicability


Initial Exploration of ICoN

Evaluation of ICoN

Immersive Data Transformation

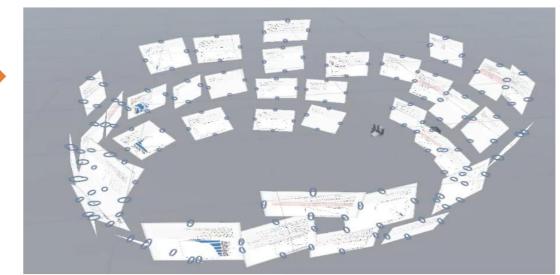
Organizations in ICoN



ICoN: Immersive Computational Notebook for Data Science

• What Specifically?

- Scalability


- Why does it matter?
 - If we are working on huge projects, More:
 - 1. Codes (cells/notebooks)
 - 2. Data Artifacts
 - 3. Line Indicators

50 notebooks

100 notebooks

100 notebooks From inside

V2

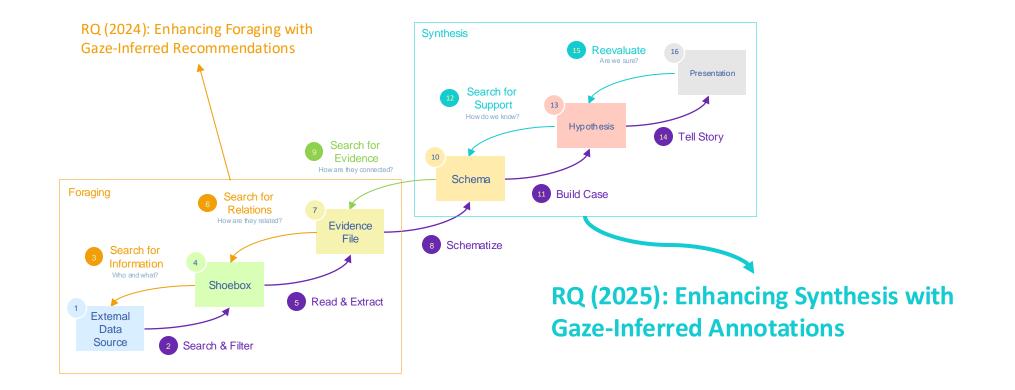
ICoN: Immersive Computational Notebook for Data Science

How can we improve manageability for large-scale data science tasks?

Task 2: Immersive Semantic Interaction

Mission-Critical Computing **NSF CENTER FOR SPACE, HIGH-PERFORMANCE,**

SHREC Annual Workshop (SAW24-25)



FLORIDA

January 14-15, 2025

Ibrahim Tahmid

Goal: Enhancing Synthesis with Gaze-Derived Annotations

V2

Study Plan

Study 1: Gaze Data Collection

- Professional analysts complete sensemaking while their gaze is tracked
- Help us isolate the foraging steps and ensure gaze data is a decent representation of the ground truth

Data Preparation Use gaze data to infer information relevance Annotate documents based on their relevance

Study 2: Annotation Evaluation

- Condition 1: Novice analysts synthesize information from the annotated documents
- Condition 2: Novice analysts synthesize information without any annotation

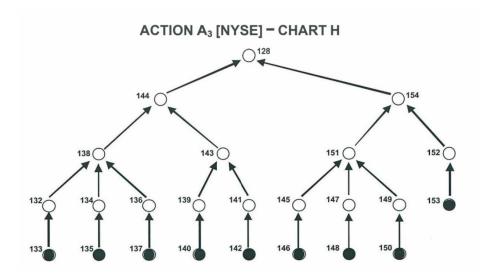
Expected Outcome

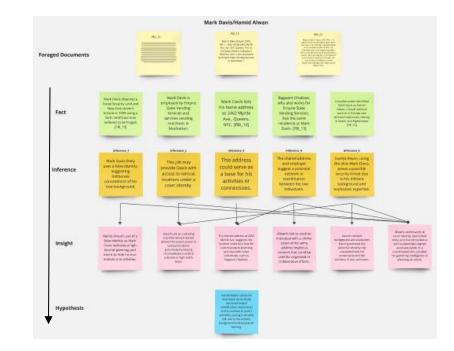
• Understand the benefits and challenges of gaze-derived annotations in synthesis

Task 3: Interactive LLM for High-Performance Sensemaking

NSF CENTER FOR SPACE, HIGH-PERFORMANCE, AND RESILIENT COMPUTING (SHREC)

SHREC Annual Workshop (SAW24-25)


FLORIDA


January 14-15, 2025

Xuxin Tang

In-Context Human-LLM Visual Conversation in Workspace

How to save users from intensive document reading for higher-performance sensemaking?

Plan

- Preliminary Study:

 $\circ~$ Is it possible to use LLMs and workspace to solve a sensemaking task without document reading?

 $\circ~$ What will users' interactions and solving processes be?

- Interface Design:

 $\circ~$ How can we design effective visualizations for graphical conversations by incorporating external data sources?

Task 4: Parallel Computational Analytics

Mission-Critical Computing NSF CENTER FOR SPACE, HIGH-PERFORMANCE, AND RESILIENT COMPUTING (SHREC)

SHREC Annual Workshop (SAW24-25)

BYU BRIGHAM YOUNG UNIVERSITY

FLORIDA

UF

January 14-15, 2025

Eric Rippey, Frank Wanye

Parallel Computational Analytics: *Parallel Graph Clustering*

Motivation

• Graph clustering \rightarrow use cases across many domains \checkmark

Networking

Intrusion detection

Finance

Fraud detection

Epidemiology &

Drug discovery

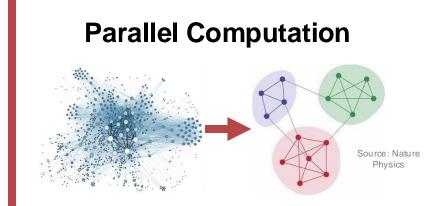
Bioinformatics

Social media

Recommendation systems

- Accurate graph clustering → computationally expensive ×
- Impractical runtime (order of hours) for large graphs with millions of vertices/edges
 Approach

Focus on statistically robust stochastic block partitioning (SBP) algorithm


- Accelerate and democratize access to accelerated SBP
- Perform visualization and analysis tasks using accelerated SBP

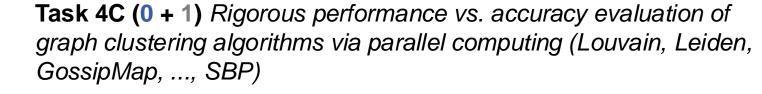
Source: Nature Physics

Milestones

Task 4A (1 + 0) Graph Clustering on heterogenous platforms

Memberships:

 Leverage GPUs and/or FPGAs to accelerate and/or optimize graph clustering via SyCL/OpenCL/Chapel


(Mandatory+Optional), e.g., (2+3)

Task 4B (1 + 0) Democratizing access to cutting-edge graph clustering research

Incorporate prior years' research artifacts into graph-tool library

Visualization & Analysis

Task 4D (0 + 1) Effective visualization of graph clustering output for large graphs (2D or 3D via AR/VR)

Task 4E (0 + 1) Explore challenges in applying graph clustering to real-world applications (anomaly detection, bioinformatics, etc...)

