
January 14-15, 2025

SHREC Annual Workshop (SAW24-25)

Faculty: Wu Feng

Students:

Nabayan Chaudhury, Atharva Gondhalekar,

Ritvik Prabhu, Eric Rippey, Paul Sathre, Frank Wanye

V1-25: High-Productivity Computing in

Heterogeneous Systems

Number of requested memberships ≥ 7

V1
Goal

▪ Enable high-productivity computing in heterogeneous computing systems:

CPU + {CPU, GPU, FPGA, TPU, …}

▪ Similar to DARPA High-Productivity Computing Systems program for homogeneous systems

(e.g., Chapel, Fortress, X10) but for heterogeneous systems (e.g., Chapel, SYCL, oneAPI, OpenCL)

▪ Preferred Vehicle: Modern, Open Standard Languages & Runtime Systems

▪ Case Studies: Applications and Benchmarks, e.g., Berkeley Dwarfs → OpenDwarfs (@ VT)

2

Programming Ecosystems

Write ONCE, run ANYWHERE!

Picture 29Picture 30

Picture
216

https://www.vulkan.org/
https://www.khronos.org/spir/
https://github.com/STEllAR-GROUP/hpx

V1
Background & Motivation
▪ Extend our R&D to create and analyze an ecosystem of high-productivity tools,

environments, and benchmarks for heterogeneous computing

▪ Challenges: How to productively …
▪ Program an application so it runs on many platforms?

▪ Evaluate a processor architecture & compare it to others?

▪ Develop back-end optimizations & know that they will work well?

3

Tools & Environments Benchmarks

Devices Programming Ecosystems

OpenDwarfs

Application-dependent

Picture 29

Picture 30

Jaccard

Similarity

Soft Actor

Reinforcement

Learning

https://www.vulkan.org/
https://www.khronos.org/spir/

V1
Background: Performance & Productivity (V1-23)

▪ Sobel Filter on Intel Arria 10, AMD Alveo U250, and NVIDIA RTX 3090

▪ Rigorous Performance & Productivity Evaluation of Representative Apps
(FFT, Jaccard similarity, biconjugate gradient stabilized method – BiCGSTAB, and graph algorithms)

in Different Languages on Different Devices (CPUs, GPUs, and FPGAs)

4

Sobel Filter on

3840 × 2160 Image

Language

Verilog

OpenCL

oneAPI → SYCL

AMD Alveo U250 (FPGA)

fps SLOC
Dev Time

(hrs)

Not implemented in Verilog

6.6* 275 –

No support for oneAPI

Intel Arria 10 (FPGA)

fps SLOC
Dev Time

(hrs)

132.6 429 305

85.6 270 50

21.4 139 20

* Evaluated the same OpenCL kernel written for Arria 10 on U250 without any vendor-specific optimizations

NVIDIA RTX 3090 (GPU)

fps SLOC
Dev Time

(hrs)

Not functional on GPU

141.4 254 –

133.1 135 –

Device

OpenCL & SYCL:

Write once, run
anywhere

fps: frames

per second

V1
Approach

• Realize a diverse set of application benchmarks

▪ Regular vs irregular. Floating point vs integer. CPU- vs memory-intensive.

• Characterize the productivity of a heterogeneous system

▪ Kernel development time (KDT) → wall clock time

▪ Source Lines Of Code (SLOC), compressed code size (CCS),

and Code Convergence (CC)

• Characterize the performance-vs-productivity tradeoff

▪ Performance Portability ()

▪ Performance-Productivity Product ()

• Identify the best platform and associated ecosystem

for productivity, performance, or both (across many apps)

• Enable further high-productivity research: automated co-scheduling at runtime,

performance vs. precision tradeoff Open Source Closed Source
Picture 29

Picture 30

https://www.vulkan.org/
https://www.khronos.org/spir/

V1
Proposed Tasks for V1-25

• Task 1: High-Productivity Computing on GPUs: Irregular Apps (3+4)

▪ Task 1a: Graph Algorithms: Jaccard Similarity, Triangle Counting, ...

▪ Task 1b: Iterative Solvers for Sparse Systems on GPUs

▪ Task 1c: Portable Kernel Pipelines for GPU-based Edge Devices

• Task 2: High-Productivity Computing on FPGAs (1+1)

▪ Deep Learning on Versal ACAP Devices (Regular & Irregular)

• Task 3: High-Productivity Heterogeneous Computing: CPU+GPU+FPGA (3+11)

▪ Task 3a: Simultaneous Co-scheduling of Heterogeneous Devices: CPU+GPU+FPGA

▪ Task 3b: Heterogeneous PGAS vs MPI+X for Large-Scale Computing

▪ Task 3c: Portable Runtimes for Heterogeneous Task Graphs

▪ Task 3d: Modernization of OpenDwarfs

6

Memberships:

(Mandatory+Optional), e.g., (2+1)

V1
Task 1a: Graph Algorithms: Jaccard Similarity, Δ Counting

• Motivation: Graph workloads hard to optimize on GPU
▪ Workload imbalance and irregular memory access patterns

▪ Input graph-dependent and GPU architecture-dependent

• Approach
▪ Target workloads: Jaccard similarity and triangle counting

▪ GPU architecture-specific optimizations

▪ Pattern-matching framework that predicts best set of optimizations

(based on graph characterization)

• Milestones
▪ Multi-dimensional exploration of performance optimization

‣ Memory subsystems of GPU; parallel algorithm type (edge vs vertex-

centric); and thread-launch configuration, both static and dynamic

▪ Intelligent GPU kernel selection for a given graph via classification

(i.e., coarse-grained) and/or regression tree (i.e., fine-grained)

▪ Intelligent device (and associated ecosystem) selection for

productivity, performance, or both

7

Coarse-grained kernel selection

High avg.

degree?

Edge-

centric

kernel

Low avg.

degree?

Vertex-

centric

kernel

Fine-grained kernel selection

Denser region:

Edge-centric

kernel

Sparser region:

Vertex-centric

kernel

Sparser region:

Vertex-centric

kernel

Denser region:

Edge-centric

kernel

Denser region

→ Compute

on GPUs

Sparser region

→ Compute on

CPUs/FPGAs

Tasks: Baseline & Optional

(1 + 1)

V1

• Motivation: Δ solving, a bottleneck in preconditioned iterative solvers

• Approach

1. Domain decomposition

• Partition matrix into subdomains & drop connections between subdomains

2. Apply triangular solves in parallel to subdomains

• Milestones
1. Implement optimizations for triangular solves for matrices

with multiple independent subdomains

2. Evaluate impact of domain decomposition on performance

and iteration count of the solver

3. Characterize performance-vs-productivity tradeoff
• Performance Portability ()

• Performance-Productivity Product ()

Task 1b: Accelerating Iterative Solvers for Sparse Systems

8

Domain

decomposition

91% of iterative solver’s runtime spent on Δ

solves when running preconditioned BiCGSTAB

HIP

Tasks: Baseline & Optional

(1 + 1)

Ref. implementation: https://github.com/OPM/opm-

simulators/tree/master/opm/simulators/linalg/gpubridge/rocm

https://github.com/OPM/opm-simulators/tree/master/opm/simulators/linalg/gpubridge/rocm
https://github.com/OPM/opm-simulators/tree/master/opm/simulators/linalg/gpubridge/rocm

V1
Task 1c: Portable Kernel Pipelines for GPU Edge Devices

• Motivation: Edge Computing with GPUs
▪ Bottleneck: Data xfer from edge to datacenter for processing
▪ Productivity: Edge devices w/ varying programming APIs
‣ Route from portable HPC languages to low-power edge devices?

• Approach
▪ Move data processing from datacenter to the edge

▪ Leverage portable & open-source HPC standards and toolchains to compute on edge GPU(s)
▪ Evaluate productivity, performance, perf./prod. (), power, and perf./power

▪ Platforms: Raspberry Pi Compute Module (CM) 5 and Nvidia Jetson Orin Nano
▪ Workloads: Mixed-radix FFT, FFT convolution, or your workload here

• Milestones

1. Raspberry Pi CM5 via OpenCL C → SPIR-V → Vulkan

2. Nvidia Jetson Orin Nano via OpenCL C → SPIR-V → Vulkan

3. SYCL C++ on either device (via Sylkan or similar)

4. Nvidia Jetson Orin Nano via OpenCL C → SnuCL-Tr → CUDA

9
Tasks: Baseline & Optional

(1 + 2)

Picture 6

Picture 8

Picture 20Picture 22

Picture 31

Datacenter Servers

Edge Devices

Picture 6 Picture 8

https://www.raspberrypi.com/products/compute-module-5/?variant=cm5-104032
https://developer.nvidia.com/embedded/jetson-developer-kits
https://www.vulkan.org/
https://www.khronos.org/spir/
http://snucl.snu.ac.kr/snucl-tr.html
https://www.raspberrypi.com/products/compute-module-5/?variant=cm5-104032
https://developer.nvidia.com/embedded/jetson-developer-kits

V1
Task 2: High-Productivity Computing on FPGAs

10

So
u

rce:
D

o
E

 a
n

d
 A

M
D

, In
c

Tasks: Baseline & Optional

(1 + 1)

Deep Learning on Versal ACAP Devices

• Motivation: HPC for Deep Learning (DL)
▪ Need fast training & inference, e.g., large language model (LLM),

deep reinforcem’t learning (DRL), generative adversarial net (GAN)

• Approach
▪ Training: LLMs & DRL (optionally, GANs) on GPU or fused CPU+GPU

▪ Post-Training: VITIS AI & FINN for network optimizat’n (quantizat’n/streaming)

▪ Inference: GPUs → Versal AI SoCs

▪ Metrics: Performance/productivity profiling, i.e., kernel development time,

execution time, source lines of code (SLOC), and inference latency.

▪ Workloads: Regular (synthetic generation) & irregular (stochastic sampling)

• Milestones
1. Training & post-training: DRL network (SAC, DDPG), LLM (Llama), GAN

2. Inference: Vivado+VITIS hardware optimization on GPU & Versal AI SoC

3. Performance/productivity profiling: KDT, execution time, SLOC, etc.

V1

• Motivation: < 10% use of peak compute capability
▪ Today: Inefficient use of silicon computing, i.e., either CPU or GPU

‣ Physiologically, left & right brain used simultaneously

‣ Silicon-wise, should use CPU & GPU brain simultaneously (even FPGA)

▪ Past Work? Our CoreTSAR: Core Task-Size Adapting Runtime, which

co-schedules regular apps on CPU+GPU simultaneously via Accel. OpenMP

• Approach
▪ CoreTSAR++: Generalize co-scheduling for multi-heterogeneity (CPU+GPU+FPGA)

and across regular & irregular workloads via

▪ Metrics: productivity, performance, perf./prod. () vs. single device

• Milestones: CoreTSAR++ Exploration
1. Identify & implement appropriate irregular apps to co-schedule

2. Manually implement & evaluate co-scheduled irregular apps

3. Automate co-scheduling on heterogeneous system (CPU+GPU+ …)

4. Investigate simultaneous co-scheduling using via partitioning & multi-device cobegin {...}

Task 3a: Simultaneous Co-scheduling of Heterogeneity
(CPU+GPU+FPGA) – Details in Appendix

11

time

time

Sparse linear solver → Biconjugate gradient stabilized

CPU GPU

CPU

GPU

Tasks: Baseline & Optional

(1 + 1)

Traditional

scheduling
CPU kernel,
then GPU one

Simultaneous

co-scheduling
on CPU & GPU

V1
Task 3b: Heterogeneous PGAS vs MPI+X

• Motivation
▪ MPI+X dominates distributed heterogeneous computing,
where X ∈ {CUDA, HIP, SYCL, OpenCL, OpenMP, …}

‣ Issue: Domain scientists must know low-level communication (MPI),

low-level device programming (X), and interoperability between the two!

▪ Alternative? Partitioned Global Address Spaces (PGAS): CPU → GPU
‣ Node/device address spaces are logically joined and implicitly communicate

• Approach
▪ Transform CPU-based PGAS to heterogeneous PGAS, i.e.,

▪ Analyze MPI+X vs PGAS on distributed multi-GPUs w/ real-world data
‣ Metrics: productivity (SLOC, CCS) vs. performance (runtime) vs. perf./prod. ()

▪ Port Chapel app(s) to other PGAS
→ one of {OpenSHMEM, HPX, …}

▪ Identify limitations to existing

heterogeneous PGAS approaches

▪ Propose and develop workarounds

at scale, i.e., hybrid PGAS+X

12

MPI+X

Explicit communication & language interoperability

vs. PGAS

Single language and implicit communication

Milestones
1. Chapel vs MPI+CUDA+OpenMP via partitioned Jaccard similarity

2. Partitioned Jaccard similarity in OpenSHMEM or HPX

3. Interoperating accelerator-aware comms: {NVSHMEM, GPUDirect, etc.}

4. Δ solvers / other linear algebra in any PGAS model vs MPI+X

5. Your workload here in PGAS-of-choice vs MPI+X

Tasks: Baseline & Optional

(2 + 4)

vs.
Picture 216

Other PGAS

https://github.com/STEllAR-GROUP/hpx

V1
Task 3c: Portable Runtimes for Heterogeneous Task Graphs

• Motivation
▪ Performance: HPC needs device- & system-aware mapping

of kernels, communication, and I/O to hardware

▪ Infrastructure: Hardware migration (translate, remap, retune)

is a significant cost, which slows mission progress

• Approach
▪ Portability: Leverage portable languages to lower translation cost

▪ Performance: Remap and retune for new hardware.

Alas, $$$.
‣ Solution: Intelligent heterogeneous tasking system

‣ Given a portable representation, model & predict tradeoffs

in mapping kernels to different hardware in the system

▪ Case Study
‣ Implement SHREC-related app(s) in OpenMP, OpenARC,

‣ or emerging UniSYCL compiler

‣ Leverage and evaluate the IRIS portable heterogeneous

‣ tasking system’s ability to achieve high performance

13

V1

Picture 6

Milestones
1. Migrate a SHREC workload to IRIS runtime &

analyze perf./prod. () (0.5)

2. Evaluate perf./prod. () on typical hetero HPC
(CPU+GPU, homogeneous across nodes) (1)

3. Evaluate perf./prod. () on multi-hetero HPC
(CPU+X, where X differs between nodes) (1)

4. Evaluate perf./prod. () with edge+centralized
hybrid workloads w/ hetero platforms (1.5)

Tasks: Baseline & Optional

(0 + 4)

https://iris-programming.github.io/

V1
Task 3d: Modernization of OpenDwarfs

• Motivation: Write Once, Run Anywhere Benchmark Suite

▪ OpenDwarfs: NSF CHREC project to create a portable suite of

13 parallel computational idioms (Berkeley Dwarfs) via OpenCL

‣ Portable to CPUs, GPUs, APUs, and eventually Intel/Altera FPGAs

‣ Now many more paths to portable, heterogeneous computing

▪ To bridge programming gap between portable languages and high-level

library-driven heterogeneity, need examples of how to write novel kernels

• Approach
▪ Showcase idiomatic parallel codes using modern portable languages

▪ Modernize for new classes of devices and compute modalities

‣ Unified memory, PGAS, tensor cores, HBM, hybrid co-scheduling, DSPs, edge GPUs, …

• Milestones
1. Update OpenCL OpenDwarfs for modern devices → characterize performance shifts (0.25)

2. Implement OpenDwarfs in new languages & analyze perf./prod. (Π) vs. OpenCL (0.50 per lang.)

3. Design partitionable/distributable variants of existing dwarfs (1+)

14

OpenCL

OpenMP 4+

SYCL

Chapel

HIP

Vulkan Compute

std::parallel

Goal: “Write once, run anywhere”

Picture 35

?

Tasks: Baseline & Optional
(0 + 2+)

https://www.raspberrypi.com/products/compute-module-5/?variant=cm5-104032

V1
Milestones, Deliverables, and Budget

▪ Major Milestones (Tasks: T1-T3)

▪ T1: High-Productivity Computing on GPUs: Irregular Apps

▪ T2: High-Productivity Computing on FPGAs

▪ T3: High-Productivity Heterogeneous Computing: CPU+GPU+FPGA

▪ Deliverables

▪ Software prototypes and artifacts (typically delivered via github)

▪ Mid-year and end-of-year reports at SHREC workshops. Optionally, more frequently.

▪ 2-3 publications at top-tier conference venues or journals

▪ Recommended Budget

▪ Minimum: 7 memberships (350 votes)

▪ Maximum: 23 memberships (1150 votes)

15

V1

▪ Enable high-productivity computing in heterogeneous computing systems:

CPU + {CPU, GPU, FPGA, TPU, …} via open standards: OpenCL, SYCL, Chapel,

and emerging programming models

▪ Evaluate performance & productivity of representative apps (OpenDwarfs,

FFT, Jaccard similarity, biconjugate gradient stabilized method – BiCGSTAB, and

graph algorithms) on different devices (CPUs, GPUs, and FPGAs)

▪ Direct influence over processors & frameworks studied and apps & datasets used

▪ Direct benefit from new methods, tools, datasets, codes, models, and insights

created as well as new metrics of evaluation

▪ Direct insights from R&D and analysis

Member Benefits

Conclusion

16

Picture 6

Picture 8

https://www.raspberrypi.com/products/compute-module-5/?variant=cm5-104032
https://developer.nvidia.com/embedded/jetson-developer-kits

	Slide 1: V1-25: High-Productivity Computing in Heterogeneous Systems
	Slide 2: Goal
	Slide 3: Background & Motivation
	Slide 4: Background: Performance & Productivity (V1-23)
	Slide 5: Approach
	Slide 6: Proposed Tasks for V1-25
	Slide 7: Task 1a: Graph Algorithms: Jaccard Similarity, Δ Counting
	Slide 8: Task 1b: Accelerating Iterative Solvers for Sparse Systems
	Slide 9: Task 1c: Portable Kernel Pipelines for GPU Edge Devices
	Slide 10: Task 2: High-Productivity Computing on FPGAs
	Slide 11: Task 3a: Simultaneous Co-scheduling of Heterogeneity (CPU+GPU+FPGA) – Details in Appendix
	Slide 12: Task 3b: Heterogeneous PGAS vs MPI+X
	Slide 13: Task 3c: Portable Runtimes for Heterogeneous Task Graphs
	Slide 14: Task 3d: Modernization of OpenDwarfs
	Slide 15: Milestones, Deliverables, and Budget
	Slide 16: Conclusion

