P5-25: Networked and Secure Systems

Mission-Critical Computing

NSF CENTER FOR SPACE, HIGH-PERFORMANCE, AND RESILIENT COMPUTING (SHREC)

SHREC Annual Workshop (SAW24-25)

January 14-15, 2025

Dr. Mai Abdelhakim

Assistant Professor of ECE University of Pittsburgh

Dr. Robert Cunningham

Vice Chancellor of Research Infrastructure University of Pittsburgh

Robert Esswein

Quincy Bayer Graduate Students University of Pittsburgh

Number of requested memberships ≥ 2

Goals, Motivations, & Challenges

Goals

- Develop trust assessment framework for constellations
- Leverage predictable topology for **routing** packets through network
- Create secure routing algorithm for constellations by integrating trust into routing

Motivations

- Dependence on space-based systems for critical applications
- Constellations are growing in size and complexity
- Increasing connectivity leads to increasing attack surface
- Lower computational overhead and latency for satellite networks

Challenges

- Computational complexity of simulating large-scale satellite constellations
- Satellites must be resilient to many different types of attacks
- **Distributed** trust systems have access to limited amounts of information

Proposed Tasks for 2025

Trust Assessment

- Enhance our trust algorithm to accurately detect complex attack patterns
- Extend our trust algorithm to consider other factors in trust

Constellation Routing

- Improve network modelling fidelity for analyzing network performance
- Develop trust-based routing algorithms for satellite networks

Task 1: Trust Assessment

Task leader: Quincy Bayer

BYU

FLORID

University of BYU Pittsburgh BRIGHAM YOUNG

VIRGINIA TECH

T1: Trust Assessment

Trust Assessment

• **Direct** trust, **Indirect** trust, **Aggregate** trust

TAU Trust Algorithm

- Novel decentralized trust algorithm based on FSMs
- **Asynchronous communication** lacksquarereduces resource overhead

5

TAU: Trust via Asynchronous Updates FSM:: Finite State Machine

T1: Next Steps

Modeling Attacks

- Account for more complex attacks such as bad mouthing and the Byzantine problem
- Improve our algorithm's precision by **reducing false positive** rate

Extending Our Algorithm

- Extend our algorithm to consider more aspects of node behavior
- Incorporate impacts of extreme radiation environments

6

Task 2: Constellation Routing

Task leader: Robert Esswein

T2: Satellite Constellation Routing

Routing Algorithms

- Utilize **predictable** topology to improve routing
- Measure effects of constellation configuration on routing

Trust-Based Routing

- Utilize trust assessment as input to routing algorithm
- Route through trusted links

T2: Next Steps – Routing Algorithms

Offline Algorithm

- Develop offline shortest path routing algorithm
- Minimized online computations with low latency

Trust Based Routing

- Continue development of satellite network simulator
- Add support for trust

T2: Next Steps – Constellation Simulation

Network Simulation

- Collaborate with UF (Dr. McNair), develop comprehensive satellite network simulator
- Add support for cyber-attacks and trust assessment

Simulator Scalability

- Support large constellations
- Assess queuing delay and link contention in satellite networks

UF: University of Florida

10

P5

Milestones, Deliverables, Budget

Conclusions & Member Benefits

Conclusions

- Extend the TAU algorithm to account for additional behavioral and environmental indicators to perform trust assessment
- Further optimize the parameters of the TAU algorithm in order to reduce the false alarms and respond to more complex attacks
- Create trust-based routing algorithm utilizing stored routing tables
- Continue to develop network simulator for varying traffic conditions and constellation parameters and configurations

Member Benefits

- Direct influence over processors and frameworks studied
- Direct influence over apps and datasets studied
- Direct benefit from new methods, data, code, models, and insights from metrics, benchmarks, and emulations

