P4-25: Space Systems

SHREC Annual Workshop (SAW24-25)

January 14-15, 2025

Dr. Alan George

Mickle Chair Professor of ECE University of Pittsburgh

Dr. Sam Dickerson

Associate Professor of ECE University of Pittsburgh

Number of requested memberships ≥ 7

Mike Cannizzaro Cole Bowman Chris Brubaker Dhinar Gayatri Richard Gibbons Mark Hofmeister Kushal Parekh Tom Plunkett

Graduate Students University of Pittsburgh

Goals, Motivations, Challenges

CHALLENGES

- Designing and building complex missions with demanding objectives is both challenging and costly
- Novel processors and architectures require rigorous evaluation and validation to ensure appropriate reliability and performance

SSP

CSP

CASPR

GOALS

- Research and apply novel electrical and mechanical designs and simulations for advanced space missions
- Assess viability and efficacy of novel architectures and technology platforms and investigate solutions based on key criteria: performance, SWaP, affordability, and reliability

WE NEED		
The second second		
and the second second		
DATA	E.	
PERFORMAN	CE	
RELIABILITY		

MOTIVATIONS

- Increased fidelity of modern sensors and high computational demands exceed capabilities of state-of-the-art space processing
- Need for high-performance, energy-efficient, resilient, and affordable onboard systems for critical missions and apps

FLORIDA

VIRGINIA TECH.

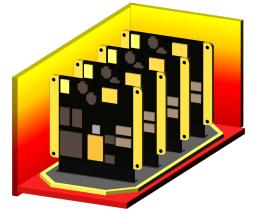
VANTAGE

STP-H6 Photo This payload was integrated and flown under DoD STP - Houston leadership; photo credit NASA

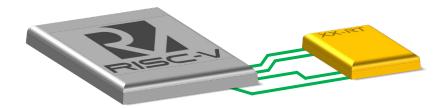
SWaP: Size, Weight, and Power CASPR: Configurable & Autonomous Sensor Processing Research **SSP:** SHREC Space Processor **CSP:** CHREC Space Processor **SoM:** System-on-Module

Tasks for 2025

1) Onboard Flight Hardware


 Leverage hybrid systems, robust peripherals and interconnects, and efficient mechanical design to optimize space payloads


2) Space GPUs


 Investigate massively parallel architectures and apply custom dependability solutions in both hardware and software

3) Space CPUs

- Evaluate fault-tolerant design approaches in silicon and systems to enhance onboard reliability and performance
- 4) Spacecraft and Mission Emulation
 - Research system emulation and hardware-in-the-loop techniques to conduct spacecraft verification and validation

Task 1 Onboard Flight Hardware

Leverage hybrid systems, robust peripherals and interconnects, and efficient mechanical design to optimize space payloads

> Mark Hofmeister, Chris Brubaker, Cole Bowman, and Mike Cannizzaro

mah473@pitt.edu cdb92@pitt.edu michael

clb251@pitt.edu michael.cannizzaro@pitt.edu

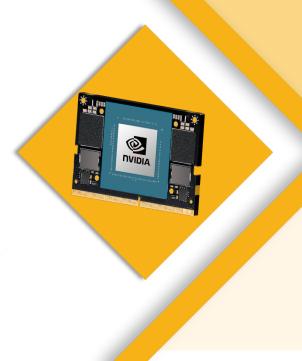
T1: Onboard Flight Hardware

Space Avionics

- Kickoff STP-H12-VANTAGE and complete project PDR and CDR milestones
- Design and evaluate hybrid SoM carrier and optical assembly prototypes
- > Measure TID effects on PDNs and signal interconnects and research mitigation strategies via novel PCB stack-ups and layouts **Ansys**

Robust DDR Memories

- Investigate impacts of DDR lane width on throughput and power
- Evaluate effect of caching FPGA fabric-connected DDR4
- Measure performance of hard DDR controller vs. soft IP


Mechanical and Thermal Systems

- Conduct thermal and structural analyses using simulation tools
- > Evaluate lenses and develop camera mounting hardware
- Leverage Thermal Desktop and ANSYS APIs for conducting expedited calculations

- STP: Space Test Program VANTAGE: **Geosensing Experiment** SoC: System-on-Chip
 - Visual and Neuromorphic Tracking and
- PDR: Preliminary Design Review **CDR:** Critical Design Review SoM: System-on-Module **TID:** Total lonizing Dose
- **PDN:** Power Delivery Network **CDR:** Critical Design Review

Task 2 Space GPUs

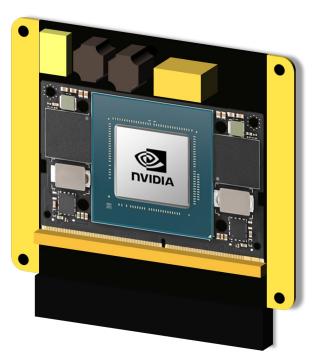
Investigate massively parallel architectures and apply custom dependability solutions in both hardware and software

Tom Plunkett

T2: Space GPUs

Hybrid GPU SoM Carriers

- Complete hardware designs of radiation-tolerant and COTS GPU SoM carriers
- Research and develop fault-mitigation strategies for NVIDIA Jetson Orin NX


Tensor Core Reliability

- Evaluate image classification and segmentation apps
- Characterize Tensor Core faults and investigate fault propagation
- Conduct fault injection on Tensor Core-enabled ML applications

Resilient Tensor Flow Integration

- > Expand **RTF** to include **Tensor Core operation** functionality
- Accelerate matrix-matrix multiply and 2D convolution operations
- Evaluate performance improvements of Tensor Core-accelerated apps

COTS: Commercial-off-the-Shelf SoM: System-on-Module ML: Machine learning RTF: Resilient TensorFlow

Task 3 Space CPUs

Evaluate fault-tolerant design approaches in silicon and systems to enhance onboard reliability and performance

Mike Cannizzaro, Dhinar Gayatri, and Richard Gibbons

michael.cannizzaro@pitt.edu rfg17@pitt.edu

T3: Space CPUs

Onboard Coprocessors for COTS Systems

- Investigate consolidation of fault-tolerant circuitry (current monitoring, watchdog timing, etc.) into single radiation-tolerant chip
- Conduct tradeoff study of low-power, low-complexity microcontrollers and FPGAs for use as coprocessor
- > Evaluate dependability of standalone processor vs. coprocessor pair

- High-Performance IP Extensions
- Leverage RISC-V vector acceleration to optimize performance of RISC-V softcore processors
- Evaluate RISC-V vectors and effects on performance and power consumption in hardcore and softcore processors

Resilient RISC-V Chip Design

- Research impact of dependability techniques (TMR, lock-step, etc.) dynamically implemented in processor pipelines
- > Synthesize processor pipelines for test campaigns using Synopsys Synplify
- Inject faults into pipeline designs using Synopsys VC Z01X and evaluate dependability implementations

0

Task 4 Spacecraft and Mission Emulation

Research system emulation and hardware-in-the-loop techniques to conduct spacecraft verification and validation

Kushal Parekh

T4: Spacecraft and Mission Emulation

Emulation of Spacecraft Systems

- Can model and operate compute hardware entirely in software
- > Allows for **quick**, **easy testing** of spacecraft systems
- > Becoming common, especially with rise of "digital twins"

Current Simulation Tools

Simics

- Cycle-accurate emulator from Intel and Wind River
- > QEMU
 - Open-source functionally-accurate simulator

Renode Emulation

- Open-source emulator with industry support
- We are looking to evaluate Renode and compare it to these existing tools
- > Will use VANTAGE as DUT for Renode evaluation

WNDRVR **Emu**

RENODE

QEMU: VANTAGE:

DUT:

11

Quick Emulator Visual and Neuromorphic Tracking and Geosensing Experiment Device Under Test

Milestones and Deliverables

≻Milestones

- SMW (June 2025): Showcase midterm results on all projects
- SAW (Jan. 2026): Demonstrate completion of all projects

>Deliverables

- Monthly progress reports from all projects
- Midyear and end-of-year full reports from all projects
- 3-4 conference/journal papers (~1 per project)
- Hybrid carrier prototypes for Jetson Orin NX and PolarFire SoC

>Budget (7+ memberships, or 350+ votes)

Conclusions & Member Benefits

Leverage Novel Systems, Peripherals and Interconnects, and Mechanical Designs for Optimized Onboard Payloads

Investigate Massively Parallel Architectures and Implement Custom Dependability Solutions in Hardware and Software

Evaluate Fault-tolerant Designs in Silicon and Systems to Improve Onboard Reliability and Performance

Research Emulation and Hardware-in-the-Loop Techniques for Spacecraft Verification and Validation

Member Benefits

- Direct influence over research direction and projects
- Direct benefit from hardware designs, software applications, and architecture investigations
- Direct benefit from research study insights

