P3-25: Emerging Systems

SHREC Annual Workshop (SAW24-25)

January 14-15, 2025

Dr. Alan George Mickle Chair Professor of ECE University of Pittsburgh Dr. Rajkumar Kubendran Assistant Professor of ECE University of Pittsburgh Linus Silbernagel Jakob Bindas Josh Poravanthattil Diego Wildenstein Research Students

University of Pittsburgh

Number of requested memberships ≥ 4

Goals, Motivations, & Challenges

Goals

Evaluate next-gen processing architectures, sensors and algorithms
Investigate use of neuromorphic systems for space applications
Benchmark PIM architecture and test radiation resiliency

Motivations

- Novel architectures are needed to combat SWaP-C constraints of on-board space processing
- Neuromorphic systems and PIM architectures offer powerand memory-efficient computation

Challenges

Next-generation architecture requires unique design considerations
Lack of software maturity with frameworks for new architectures poses challenges when designing novel solutions

Proposed Tasks for 2025

Neuromorphic Sensors and Applications

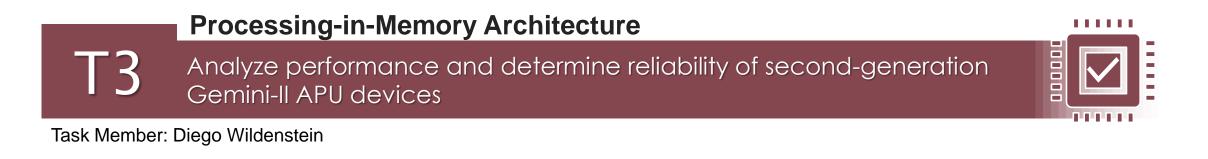
Develop and evaluate algorithms for space-related applications using EBBs

Task Members: Linus Silbernagel, Jakob Bindas

Neuromorphic System Reliability

Investigate reliability and efficiency of neuromorphic algorithms

Task Member: Joshua Poravanthattil



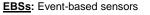
Neuromorphic Applications

Develop and evaluate algorithms for space-related applications using EBBs

4

Task Leader: Linus Silbernagel

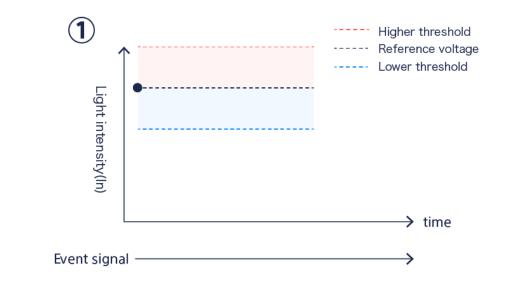
Linus Silbernagel – <u>linussilbernagel@pitt.edu</u> Jakob Bindas – jmb442@pitt.edu

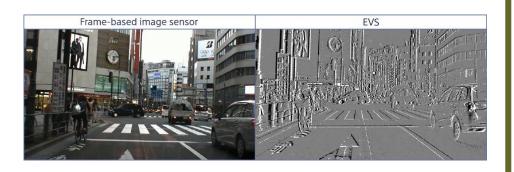


T1: Background

Event-Based Sensors

- Event-based vision sensors produce asynchronous events and offer unique characteristics such as high temporal resolution and high dynamic range
- Uses minimal power during operations due to asynchronous nature of sensor





Applications

- Attractive properties of neuromorphic systems can be leveraged for **on-board space applications**
- Event-based data enables small object tracking with high data efficiency

T1: Neuromorphic Applications

Land Feature Detection

- Develop CNN- and SNN-based algorithms for land feature detection from event-based sensors
- Compare performance with frame-based algorithms to highlight advantage and disadvantages

Plume Surface Interactions

CNN: Convolutional neural network

<u>SNN</u>: Spiking neural network MTT: Multi-target tracking

- Explore event-based MTT algorithms to track lunar regolith to understand plume surface interactions
- Analyze effectiveness of MTT to produce best-fit trajectories for objects of interest

Neuromorphic System Reliability

Investigate reliability and efficiency of neuromorphic hardware

Task Leader: Joshua Poravanthattil

T2

Joshua Poravanthattil – jbp51@pitt.edu

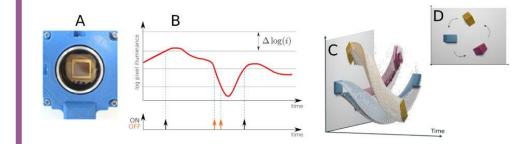
T2: Background

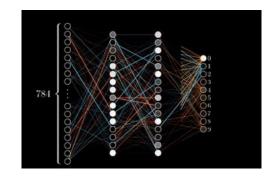
Event-Based Sensors and Algorithms

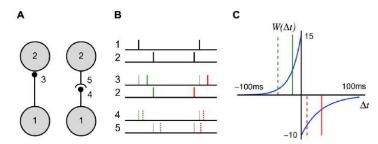
- SNNs are **powerful** and **efficient**, especially when paired with event-based sensor data
- Our prior simulation strongly suggests that backprop SNNs exhibit intrinsic reliability to radiation-induced noise

Resiliency Exploration with SOTA

- SNNs differ from CNNs by addition of temporal features and discrete data
- How do **resiliency** of these algorithms compare under radiation-induced noise







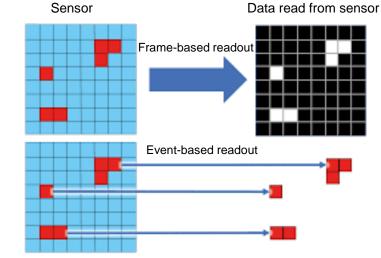
SNN: Spiking Neural Network SOTA: State-of-the-Art CNN: Convolutional Neural Network

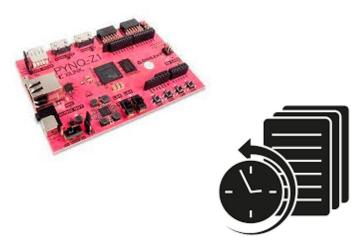
8

T2: Neuromorphic Algorithm Studies

Compare CNN- and SNN-Algorithms

- Algorithms tasked with object classification using event-based sensor data
- Inject noise as previously tested with SHREC's RINSE fault injector and parameter variation





What Will We Measure?

- Classification accuracy across varying NR and AOI parameters with both algorithms
- Runtime and power utilization statistics for hardware implementations

CNN: Convolutional Neural Network NR: Noise Rate SNN: Spiking Neural Network AOI: Angle of Incidence **RINSE:** Radiation-Induced Noise Simulation Environment

9

Processing-in-Memory Architecture

Analyze performance and determine reliability of second-generation Gemini-II APU devices

Task Leader: Diego Wildenstein

Diego Wildenstein – <u>diw29@pitt.edu</u>

T3: Background

Cache

Controller

In-Memory Processing

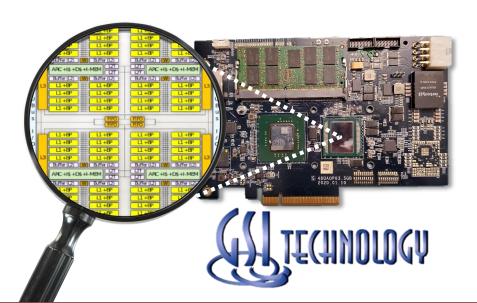
- Architectures with processing logic directly integrated into top-level cache memory cells
- Improves runtime latency by reducing need for frequent memory transfers

Computational

Memory

L1 Cache

L2 Cache



Gemini-II APU

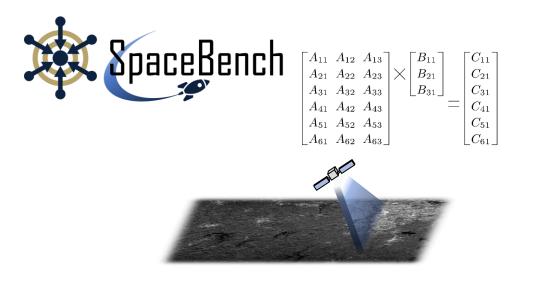
- New generation of state-of-the-art PIM devices with over 2 million bit-processor memory cells
- Device exhibits low power usage profile and consistent, fast performance for memory-bound apps

Registers

Registers

APU: Associative Processing Unit PIM: Processing-in-memory

T3: Processing-in-Memory Studies

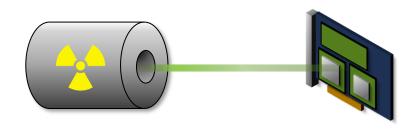


APU Performance

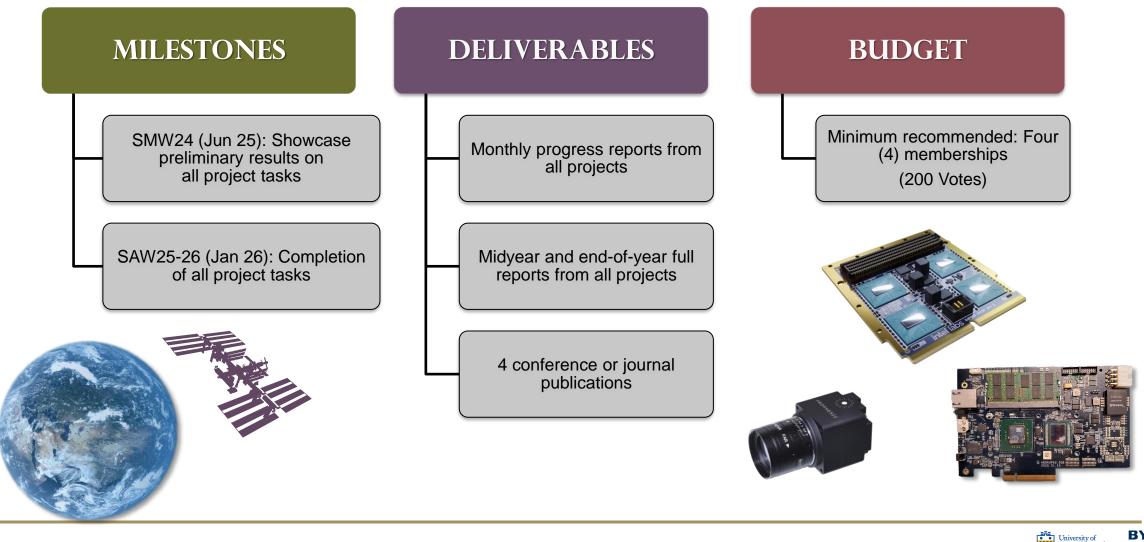
- Benchmark G2 APU device with compute kernels commonly used in machine-learning apps
- Compare performance of G2 APU with other upcoming spaceflight CPU and GPU devices

Device Reliability

- Test G2 APU devices under ionizing radiation to determine single-event upset rates and failure modes
- Explore potential **fault-mitigation strategies** for nextgen APU architecture



Milestones, Deliverables, & Budget



Conclusions & Member Benefits

Conclusions

- Analyze performance of CNN- and SNN-based algorithms for land feature detection using event-based sensors
- Evaluate event-based MTT algorithms for plume-surface interactions
- Compare state-of-the-art CNN algorithms against SNN-based algorithms for classifying event-based data
- Characterize performance and reliability of second-generation inmemory processing devices



Member Benefits

- Direct influence over processors and frameworks studied
- Direct influence over apps and datasets studied
- Direct benefit from new methods, data, code, models, and insights from metrics, benchmarks, and emulations

CNN: Convolutional neural network

SNN: Spiking neural network

MTT: Multi-target Tracking

University of Pittsburgh