F1-25: Device & Architecture Studies for Compute Cache Systems

SHREC Annual Workshop (SAW24-25)

BYU BRIGHAM YOUNG UNIVERSITY

January 14-15, 2025

Dr. Herman Lam

Assoc. Professor of ECE

Y. Gao, P<u>. Gupta</u>

D. Klein, <u>J. Madden</u>

Research Students University of Florida

Number of requested memberships 3 to 4

Device & Architecture Studies for Compute Cache Systems

Motivation *Data bottleneck:* Bring *compute close to data* for *data-intensive*, data-analytics applications

Goal Perform *acceleration* and *scaling* studies on devices, applications, and platforms for compute cache systems

T1: Acceleration & Scaling Studies for Memory Compute (MemCp) Devices & Accelerators T2: Profiling, Verification, and Rapid Prototyping Toolchain for MemCp Studies

T3: Heterogeneous Compute Cache Architecture & Systems

T1: Acceleration & Scaling Studies for MemCP* Devices & Accelerators

Expanding Device Support

Complete adaptation of FireHose and Circus Tent for

Upcoming Collaborations

Begin collaborations with other interested vendors and labs to investigate promising memory compute devices.

Tenstorrent

RISC-V-based accelerators with a fabric of compute tiles. Opensource friendly with large developer community.

Argonne Labs

National lab with ongoing projects regarding accelerating HPC applications on memory compute hardware.

3

T1: Acceleration & Scaling Studies for MemCP* Devices & Accelerators

ML Benchmarking

Introduce ML Benchmarking tools to determine the upstream performance benefits of optimizing HPC applications

If we build a better matrix multiply...

a ₁	a ₂	a ₃	b ₁	b_2	b ₃		с ₁	C ₂	с ₃
a ₄	a ₅	a ₆	b ₄	b_{5}	b ₆	=	с ₄	C ⁵	C ⁶
a ₇	a ₈	a ₉	b ₇	b ₈	b ₉ _		с ₇	с ₈	c,

...can we get more efficient neural networks?

Expanded Scaling Studies

Utilize access to current research clusters to expand current scaling studies. Research obstructions in scaling due to topology.

ALCF AI Testbed

Research cluster with the latest from NextSilicon, Cerebras, and others.

TAMU ACES

NSF ACCESS cluster with several devices from Intel and Graphcore

T2: Profiling, Verification, and Rapid Prototyping Toolchain for MemCp* Studies

Rapid Prototyping Toolchain

Continued development of our rapid prototyping tool. Necessary to profile, verify, and implement workloads in a timely manner on heterogeneous clusters.

Design / Conversion

Write Once, Deploy Multiple

Re-design benchmarks using high level MLIR dialects which can define programs in a hardware agnostic way. Different backend targets can then generate device-specific code.

F1

BYU

BRIGHAM YOUN

FLORIDA

University of Pittsburgh

VIRGINIA TECH

* MemCp: Memory Compute Devices

T3: Heterogenous Compute Cache (HCC) Development

Stack

T3a: Architecture Modelling Studies

Continued verification of the heterogenous compute cache architecture using various performance modelling and emulation methods.

T3b: Expand Interconnect **Studies**

Expand interconnect support for emerging technologies like UCIe for chiplet-based designs and UALink and UEC for scalingup and scale-out the architecture.

cem5

T3: Heterogenous Compute Cache (HCC) Development

T3c: Emulating HCC Architecture on QEMU

QEMU provides robust support for CXL* device emulation and allows custom backends to execute sub-routines.

F1

*(Type 1 and Type 3)

HCC Architecture Emulator Studies

Validate interdevice data sharing model using emulated system

ssion-Critical Computing

2 Implement large workloads on the emulated system to evaluate their performance

Leverage inter-device data transfers to pipeline data across each device as shown on the right

	Time						
		Т0	T1	T2	Т3	Т4	Т5
Data	Chunk 1	PIM	PNM	Accel	CPU		
	Chunk 2		PIM	PNM	Accel	CPU	
	Chunk 3			PIM	PNM	Accel	CPU
•							

Milestones, Deliverables & Budget

Milestones

- SMW25: Showcase midway progress on framework, platform, and interconnect exploration
- SAW25-26: Present completed project results

Deliverables

- Application source code and technology-transfer support
- Progress reports documenting research methods, progress, results, and analysis
- Several conference and/or journal publications

Membership Budget

Requesting 3 to 4 memberships

Conclusions & Member Benefits

Conclusions

- The goal is to perform *acceleration* and *scaling* studies on devices, applications, and platforms for compute cache systems
 - Perform acceleration & scaling studies for MemCp devices & accelerators
 - Develop profiling, verification, & rapid prototyping toolchain for MemCp studies
 - Develop heterogeneous compute cache architecture & systems

Member Benefits

- Direct influence over selected architecture, app, and interconnect studies
- Technology transfer of accelerated archs/apps/techniques of interest to members
- Key insights and lessons learned from design space explorations & tradeoff analyses

