National Science Foundation's

Industry/University Cooperative Research (I/UCRC) Program

B1-25: Fault-Tolerant Techniques for Heterogenous Computing Architectures

-(NSF)

Mission-Critical Computing NSF CENTER FOR SPACE, HIGH-PERFORMANCE, AND RESILIENT COMPUTING (SHREC)

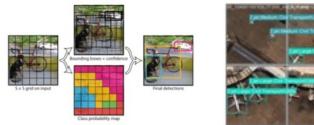
SHREC Annual Workshop (SAW24-25)

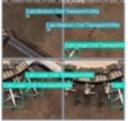
January 14-15, 2025

Dr. Mike Wirthlin & Dr. Jeff Goeders

<u>Garrett Smith, MS</u> <u>Jacob Brown, MS</u> <u>Caleb Price, MS</u> Preston Walker, BS Julia Hansen, BS Caeden Brinkman, BS John Rowberry, BS

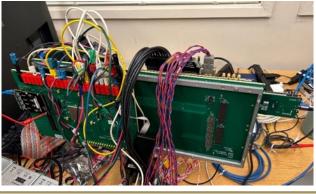
Number of requested memberships ≥ 4


B1


Project Tasks

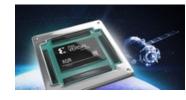
Task 1: Versal ACAP Reliability

Task 3: Reliable Deep Learning

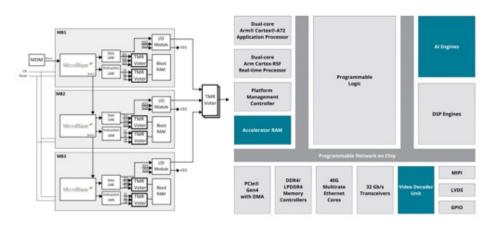


Task 2: Complex SoC Testing Tools

Task 4: Radiation Testing of Heterogenous Devices

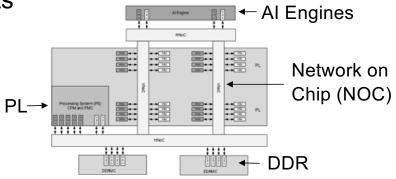


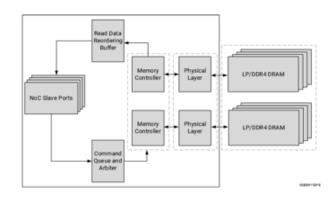
Task 1 – Versal ACAP Reliability


- AMD Space Grade Versal ACAP (XQR)
 - Machine Learning Inference
 - On-board data processing
 - High-speed I/O interfaces
- Reliability Features
 - Triplicated PPU/PMU processors
 - ECC for memories and caches
 - XISEM PL Scrubbing
- Major efforts for 2025
 - Analysis and reporting of 2024 radiation data
 - Reliability of APU/NOC/DDR
 - Linux faut tolerant features/extensions
 - High flux processor testing strategies

	XQRVC1902	XQRVE2302
AI Engines	100	17
DSPs	1,968	464
Logic Cells (K)	1,968	329
DDR Controllers	4	1
PL Memory (Mb)	191	86
Gigabit Tx/Rx	44	8

Dual core A72, Dual core R5F, 256 KB OCM


VT


Task 1: Versal ACAP Reliability

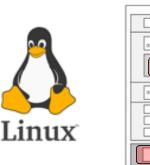
Versal APU, NoC, and DDR Reliability

- Identify causes of APU failure in radiation tests
 - Analyze data from previous year's test
 - Development of specific tests targeting APU
- Investigate reliability of Network on Chip
 - Identify potential NoC failures in previous tests
 - Develop readback and scrubbing mechanisms for NoC configuration data
 - Test response to fault injection
- Test DDR Controller reliability
 - Develop mechanisms to evaluate reliability of DDR Controller
 - Add support for DDR Controller's ECC and other reliability functions

Task 1: Versal ACAP Reliability

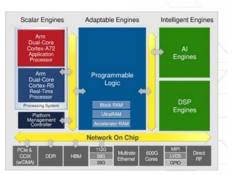
Fault Tolerant Linux for Versal

- Linux build on Versal APU Core
 - Dual core ARM Cortex A72 processor
- Integrate enhanced Versal firmware into Linux image
 - Adds memory scrubbing, ECC, and TMR support to PSM PLM firmware
- Provide Linux hooks to support reliability features
 - PL CRAM scrubbing and logging
 - Interface and reporting of PPU and PSM errors
- Support for error handling and memory scrubbing
 - APU Cache error reporting
 - Periodic cache flushing
 - OCM memory scrubbing
 - Priority scrubbing approaches



APU MPCore

5

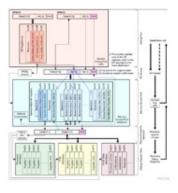

Task 2 - Complex SoC Testing Tools

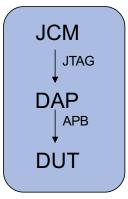
- Challenges with radiation testing of complex SoC devices
 - Large amount of data to extract
 - Difficult to identify fault mode
 - Multiple internal processors
 - Large internal memory requiring scrubbing
- Data extraction tools
 - JCM (SMAP, JTAG)
 - PCIe
- Scrubbing Approaches
 - SMAP and JTAG
 - PCIe
 - XiISEM

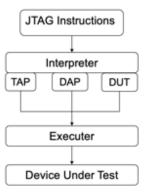
PCIe Data Extraction (PolarFire and Versal)

JCM DAP Controller

JCM SMAP Controller



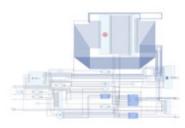

JCM DAP Interface Support


- ARM Debug Access Port
 - Debug Port -> external access (JTAG)
 - Access Port -> access on chip resources
 - Memory Mapped Access (AXI), CoreSight Debug tools (CoreSight APB Bus), Daisy Chained Devices (JTAG)
- Versal Applications
 - Debug access to APU, RPU, PPU and PSM registers
 - Access to virtual UART's of processors
 - Access to global address space, ability to read and write control registers
- JCM DAP Support
 - JTAG instruction interpreter
 - Firmware updates
 - New linux driver

Task 3 - Reliable Real-Time Machine Learning

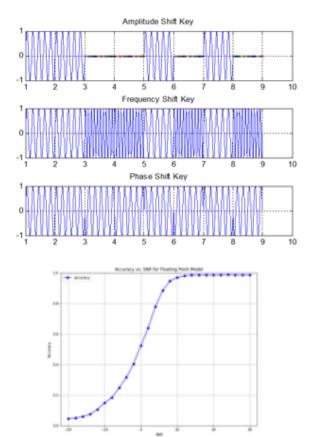
- Goal: Demonstrated improved reliability on real-time ML applications
 - Exploit advancements from Tasks 1 & 2
 - Demonstrate real-world, real-time applications
- Application examples for Versal ACAP
 - YOLO "Rare Plane" Image Classification
 - RF Modulation Recognition
- Apply Fault Tolerant Techniques
 - PL and Memory Scrubbing, TMR
 - Linux FT approaches
- Validate with fault injection and radiation testing

Task 3: Reliable Real-Time Machine Learning



Yolo "Rare Planes" Image Classification

- Custom PL/AIE implementation of YOLO
 - Implementation from 2024 based on AMD "DPU"
 - AMD DPU IP is encrypted, cannot apply fault tolerance strategies
 - Limited visibility
 - New implementation based on PL (HLS) / AIE (custom kernels)
- Reliability Extensions
 - Integrate FT Versal Linux from Task 1
 - Apply TMR to PL (from previous years efforts)
 - Fault detection code for AIE
- Reliability Validation
 - Extensive fault injection with Versal FI kernel
 - Heavy Ion radiation test

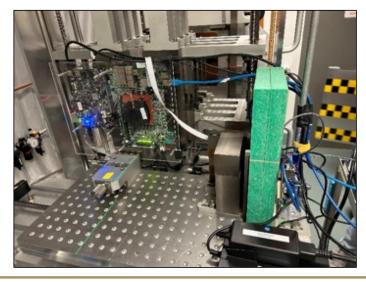


RF Modulation Recognition

- Use DNNs to perform automatic modulation recognition
- Goal: receiver can detect and demodulate the signal without this explicit knowledge of the modulation type and encoding method
 - Exploit existing AMD Vitis RF Modulation demonstrations
 - Integrate with reliability enhancements from Task 1
- Collect additional data sets from member partners
- Demonstrate reliability improvements
 - Fault injection
 - Radiation testing

See: https://github.com/Xilinx/Vitis-Al-Tutorials/tree/2.5/Tutorials/RFModulation_Recognition/

Task 3: Reliable Real-Time Machine Learning

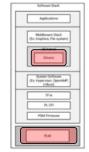


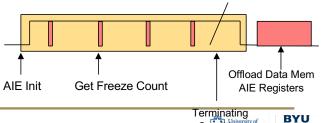
Task 4 – Radiation Testing

- Radiation testing necessary for understanding complex device failures
 - Identify failure mechanisms and single-event functional interrupts
 - Measure improvement of fault tolerant techniques
- Novel radiation testing methodologies needed for complex devices
 - High-flux testing approaches
 - Simultaneous device testing strategies
 - Low cross-section technologies
- Radiation Testing efforts for 2025
 - Analyze data from 2024
 - FT Yolo Rare Planes AI application
 - FT Linux/APU testing
 - Validate PCIe Scrubbing
 - XRTC DDR Interface Testing

Task 4: Radiation Testing

Application Testing

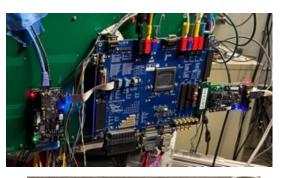

- Fault Tolerant Versal Linux
 - Measure improvements in Linux FT approaches
 - More detailed fault analysis of Linux failure modes
 - Experiment interactively with mitigation approaches
- Reliable Yolo Rare Planes Classifier
 - Custom HLS based implementation
 - Incorporate FT Linux/APU efforts
 - Measure sensitive cross-section
 - Identify failure modes
- Versal AI Engine Testing
 - Continuous beam testing approach
 - Test other AIE features (Vector engine/SIMD instructions)
 - More complex AIE application, AIE-ML



Conditionsburgh

VT

VIRGINIA TECH


UF

FLORID

Validate Scrubbing Approaches

- JCM ARM DAP Data Extraction Validation
 - Validate ability to extract complete system state
 - Demonstrate improved data transfer rates
 - Support multi-threaded DAP UART extraction
- Improved PCIe Scrubbing Approaches
 - Versal PCIe scrubbing was very successful in 2024
 - XilSEM UE recovery
 - High speed data extraction
 - Improve reliability and speed of "Bare Metal" PolarFire
 - Identify scrubbing failure modes
- XRTC DDR Interface Board Testing
 - Assist in validation of XRTC DDR/NOC testing

Anticipated Radiation Test Experiments

- Berkeley National Laboratory/NSRL (Heavy Ion)
 - Yolo Rare Planes Application Test
 - XRTC DDR Interface Test
 - PCIe scrubbing
 - JCM DAP IF validation
- ChipIR, UK (Neutron)
 - Versal Neutron testing
 - Processor testing methodologies

Lawrence Berkeley National Laboratory

Task 4: Radiation Testing

Questions?

