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Neuromorphic event-based networks use asynchronous time-dependent information to extract features from input

data that can allow for edge-based distributed applications such as object recognition. The noise resilience properties

of such networks, especially in the context of space applications, are yet to be explored. In this paper, we use the

hierarchy of time surfaces (HOTS) algorithm, which is one of the neuromorphic algorithms, to understand the least

andmost resilientmodules in a neuromorphic network. TheHOTSalgorithmrelies on the computing of time surfaces

that maps the temporal delays between neighboring pixels into normalized features that involve many computations

that are also found in other neuromorphic networks such as exponential decays, distance computations, etcetera.We

implementedHOTSonaDigilent PYNQboardwith aXilinxZynq7020 systemona chip, andwe subjected the boards

running the HOTS network inference to neutron radiation at the Los Alamos Neutron Science Center. Furthermore,

we used simulation models from our previous similar experiments on the event-based sensor to create a neutron

induced noise model to quantify the effect of this noise on the overall performance of the network. This experiment

provides the preliminary measurements of the reliability of the HOTS algorithm and proposes methods to create a

more reliable HOTS architecture in future spacecraft missions.

I. Introduction

F EATURE extraction is a fundamental part of object recognition

in visual processing. A problem associated with this step is

understanding how features should be characterized in an image.

Moreover, as these complex algorithms move to hazardous environ-

ments such as space, their reliability in performing accurately needs

to be considered and evaluated.

One feature extraction algorithm for neuromorphic event-driven

image classification is the Hierarchy Of Time-Surfaces (HOTS)

algorithm [1]. Neuromorphic event-driven sensors are a novel

form of imaging device that offer a new paradigm of artificial

vision as compared to traditional frame-based cameras. Recently,

people have started to investigate using these event-driven sensors

in space applications, whether it be on the ground in telescopes [2]

or for use in space satellites [3,4]. However, space environments

are prone to far more radiative noise than most ground environ-

ments and typically involve additional thermal challenges [5].

Meanwhile, satellite designers need to use commercial-off-the-

shelf processors as opposed to traditional radiation-hardened pro-

cessors in order to take advantage of their better performance and

energy efficiency to make these complex machine learning and

computer vision applications feasible to run on board. Therefore,
satellite designers typically perform additional tests on their hard-
ware and software to ensure their system can survive in a radiative
environment.
Before event-based sensors can be safely used in conjunction

with computer vision applications for onboard processing, the
applications need to be tested under fault injection and radiation
to ensure that the algorithm will perform accurately. Radiation can
cause single-event upsets (SEUs) that can cause data errors, execu-
tion errors, or complete system failures, depending on what area of
memory gets upset [6]. Silent data errors could lead to incorrect
decisions made by an autonomous system without any indication to
the users of a failure [6,7]. Thus, understanding the possible failure
modes of each application before deployment becomes vital to
mission success.
This research evaluates the HOTS algorithm on classification of

the Neuromorphic Modified National Institute of Standards and
Technology (N-MNIST) dataset [8] under a radiative environment
and under simulation-based fault injections. Our experiments pro-
vide the initial evaluation of the reliability of the HOTS algorithm
as a case study to understand how different computations within a
neuromorphic network are affected by these upsets. The results of
this research provide designers with the information needed to add
protection to their mission, whether it be additional hardware pro-
tections or use of dependable computing techniques within software.
This research also presents methods to create a more reliable neuro-
morphic architecture for use in a hazardous environment given the
observations of the fault injection and irradiation.

II. Background

This section provides the background needed to understand this
research. This includes event-driven sensors, the HOTS algorithm,
and the use of radiation testing.

A. Neuromorphic Event-Based Sensors

Biomimetic event-based sensors [9] are novel types of vision
sensors that are modeled after the mammalian retina. They are made

Received 30 August 2022; revision received 17 July 2023; accepted for
publication 18 August 2023; published online 9 October 2023. Copyright ©
2023 by the American Institute of Aeronautics and Astronautics, Inc. All
rights reserved. All requests for copying and permission to reprint should be
submitted to CCC at www.copyright.com; employ the eISSN 2327-3097 to
initiate your request. See also AIAA Rights and Permissions www.aiaa.org/
randp.

*Department of Electrical and Computer Engineering, 4420 Bayard St,
Suite 560; seth.roffe@nsf-shrec.org (Corresponding Author).

†Postdoctoral Researcher, Department of Neurobiology, Biomedical Sci-
ence Tower 3, Fifth Avenue, 4420 Bayard St., Suite 560; himanshu.akolkar@
pitt.edu.

‡Mickle Chair Professor and Department Chair, Department of Electrical
and Computer Engineering, 4420 Bayard St., Suite 560; alan.george@pitt.
edu.

§University of Pittsburgh, BioScience Tower 3, Fifth Avenue; benosman@
pitt.edu.

75

JOURNAL OF AEROSPACE INFORMATION SYSTEMS

Vol. 21, No. 1, January 2024

D
ow

nl
oa

de
d 

by
 N

A
SA

 L
A

N
G

L
E

Y
 R

E
SE

A
R

C
H

 C
E

N
T

E
R

 o
n 

Se
pt

em
be

r 
24

, 2
02

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.I

01
11

92
 

https://doi.org/10.2514/1.I011192
www.copyright.com
www.aiaa.org/randp
www.aiaa.org/randp
http://crossmark.crossref.org/dialog/?doi=10.2514%2F1.I011192&domain=pdf&date_stamp=2023-10-11


up of independent pixels that are driven by changes in light intensity
in their field of view. This method provides an asynchronous stream
of events that, in contrast to the traditional frame-based method of
conventional cameras, also provides temporal context about the
scene. The events can either have the polarity of on, where the light
intensity of the pixel is increasing, or off, where the light intensity is
decreasing. This local, asynchronous event method also provides the
benefit of not containing a global shutter, providing neuromorphic
sensors with a very high dynamic range. Owing to the lack of a
global shutter and the asynchronous nature of the pixels, individual
pixels only depend on the illumination of itself. This large dynamic
range means that bright sources will not oversaturate the entire field
of view, allowing the sensor to still provide useful information.
Similarly, because changes in light intensity are being measured,
any static, redundant background information is not passed through
the sensor, which significantly reduces the data rate in sparse
conditions as compared to when all information was passed, espe-
cially in cases where the camera is stationary [10]. Each pixel
operates asynchronously from the others, producing a very high
temporal resolution [11].
Most neuromorphic sensors output visual information about a

scene in the form of discrete, distinct events using address-event
representation (AER) [12–14]. AER encodes the visual informa-
tion from the sensor in the form of four-tuples containing the x- and
y-pixel coordinates where the event occurred, the time stamp in
microseconds, and the polarity of light intensity (x, y, t, p).

B. HOTS Algorithm

Because neuromorphic vision sensing is an entirely new paradigm
of imaging, the corresponding computer vision applications need to
be adapted to this new paradigm. Instead of working with frames, as
traditional algorithms use, new methods needed to be developed to
account for event streams. For image classification, the HOTS algo-
rithm was developed [1]. The HOTS algorithm uses the temporal
context of a scene around an event to learn information about the
object in the scene. Specifically, the HOTS algorithm tries to answer
the question of how features can be extracted from an event stream.
To answer this question, Lagorce et al. introduced the concept of time
surfaces [1].

The general scheme of the HOTS algorithm is shown in Fig. 1. For
a more detailed description of this method, refer to the work of
Lagorce et al. [1]. Time surfaces are the features that are extracted
from an event stream. For each event in the stream (e � �x; y; p; t�), a
square neighborhood with a size ofR pixels around the event pixel is
chosen to create a time surface using the time of old events in the
neighborhood. For each pixel in the neighborhood, past events are
searched until an event of the same polarity as e is found. The
difference between the time in the neighborhood pixel and the current
event is mapped using an exponential kernel to create a surface of
temporal structures giving context to each event, which can then be
used to extract features from a scene.
This process is repeated over larger spatial and temporal scales,

creating a hierarchical layered network. This network architecture
thus consists of a “hierarchy” of time surfaces that builds and extracts
features from a stream of events. Training this network architecture
creates a model that can then be used as a pattern classifier on
neuromorphic sensor data. The HOTS algorithm was chosen for
the fault injection simulations because it incorporates many of the
widely used components, such as exponential decays, in the event-
based computation algorithms.

C. Fault Injection

Fault injection is the process of introducing controlled errors and
noise in a system to study their impact on the resilience and perfor-
mance of the system. For environments that are hard to experiment in,
such as space, fault injection can be performed throughmodeling and
simulations. For our experiments, we used two categories of fault
injections: hardware and software. Hardware-based fault injection
happens at a physical level, where faults are induced by disturbing
the hardware from the environment, such as a radiation testing.
This disturbance can manifest as faults in the low-level hardware
components, such as state changes in transistors forming thememory
structure of a processor that could lead to silent data errors [6].
Srour and McGarrity [6] detailed the effects of radiation on

microelectronic circuits, such as damage, ionization, and single-
event effects through radiation beam testing. Therefore, beam test-
ing is popular in the field of space computing to classify SEUs of
new systems and mitigation strategies. Knowledge of how an

a) Input digit b) Event-based
sensor

c) Pixel event stream 
injection

d) Event-RINSE noise e) Synaptic output 
injection

f) Injection into
exponential variables

g) Corrupted time surfaces h) Input polarities
injection

i) Corrupted 
input time

j) Layer clustering k) Layer polarity outputs

On Events

Off Events

Fig. 1 Fault injection into HOTS classification architecture.
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application will behave under radiation is critical to the design
process for space missions, giving an overview of the upsets or
faults a system might encounter.
Software-based fault injection can be performed by injecting

errors at a variety of levels of abstraction to study their effects from
low-level assembly instructions to high-level metainstructions.
In this study, we focus on the high-level abstraction. Namely, the
injection used consists of directly changing elements of data in
software to observe the response of the technique under test. The
effects of radiation on event-driven sensors have been measured
and modeled in previous studies [15]. Our high-level fault injection
model on the HOTS algorithm can be used to complement the
previous study, allowing for analysis of the neuromorphic architec-
ture starting from the input event data streams up to the final feature
layer of the HOTS algorithm. Further details of the fault injections
and their results are provided in Sec. V.B.

III. Related Work

This section discusses the related work on the topic of neuro-
morphic vision sensing. This includes the use of neuromorphic
sensing for space domain awareness (SDA) and previous works done
in testing the reliability of neuromorphic sensors to radiation.

A. Traditional Feature Selection

Feature selection for object recognition is a fundamental problem
in visual processing. Traditionally, features are defined as a function
of the static information around a neighborhood in an image [16,17].
The choice of the function determines the extracted features. Because
conventional frame-based cameras primarily provide spatial infor-
mation, information about temporal dynamics such as fast-moving
objects in the scene is lost. The drawback of this loss of dynamic
information is that frames are captured at artificially timed intervals
(also known as the frame rate). These frames thus contain large
amounts of redundant data if the background of an image does not
change between frames.
Conventional feature extraction algorithms also typically assume

that pixel illumination is the primary source of information.However,
pixel luminance is not invariant to a scene [16]. Therefore, if any
changes to the environment take place, such as changes in lighting
conditions, the feature information will affect processing in conven-
tional methods. Similarly, the low dynamic range of conventional
cameras means that accurately measuring the luminance becomes
difficult [18].
In machine learning, the primary method of image recognition

has involved the use of convolutional neural networks (CNNs) ever
since Krihevsky et al. won the ImageNet Challenge in 2012 [19].
What sets CNNs apart from other network types is that their layers
make use of image convolution filters. Convolutional layers are
composed by sliding different convolutional kernels across an
image, projecting the information in the field onto a feature map.
This feature map then provides local perception. In other words,
areas that are close to a pixel are consideredmore relevant than those
far away [20]. Different convolutional kernels can provide different
pieces of information, such as an edge detection kernel. The prob-
lem with CNNs on embedded systems is that they are computation-
ally complex; and convolving a filter over a large image, whichmay
have redundant background information, becomes infeasible[21].

B. Space Domain Awareness

One particular application that the HOTS algorithm can be useful
in is proximity operations for space domain awareness. Space
domain awareness, previously known as space situational awareness,
has been an important topic in military and civilian applications for
many years [22–25]. SDA is defined as the perception of elements
within a specific area in space, as well as the projection of their future
states [26]. As an example of a use case for an event-based sensing
architecture, optical systems play a part in “reactive SDA”, where
decisions are made after observing data on the field [26]. Under-
standing the movement of the surrounding area enables mission

operators to avoid collision with potentially untracked debris and
perform evasive maneuvers as needed. Vision systems with high
temporal resolution and low latencywould be beneficial to accurately
detect objects for processing in real time.
Optical systems are particularly useful in proximity operations.

These operations involve docking procedures that involve high-
precision maneuvers that require real-time feedback [27]. Neuro-
morphic architectures, such as the HOTS algorithm, provide fast,
asynchronous object classification of spacecraft components that
could aid in autonomous docking procedures. Another potential
use-case application is close-proximity observation, where a space-
craft moves around another object for observation [27]. Using their
high temporal resolution, asynchronous event-based sensor classifi-
cations can potentially provide a faster feedback loop to the controller
and optimize fuel consumption when searching for specific features,
such as frame defects, on the observed system.
Because the technology is so new, the use of event-based sensors

and neuromorphic algorithms in space-related applications is not very
well developed.Most of thework has been carried out in the context of
terrestrial telescope observation of low-brightness objects in low Earth
orbit and geostationary Earth orbit. Reference [28] covers a series of
experiments on using neuromorphic sensors through a fish-eye lens
for all-sky observation. They show that the neuromorphic sensors are
robust to difficult observing conditions and fast-moving objects.
Afshar et al. [29] employed several tracking algorithms using a neuro-
morphic sensor fitted to a telescope.With their collected neuromorphic
data, theywere able to track high-speed objectsmoving across the field
of view.
There has been extensive research into event-based cameras for

real-time tracking and low-power computer systems. Many algo-
rithms have been developed and evaluated for objects to be tracked
within the visual space of an event-driven sensor. For example,
Camunas-Mesa et al. were able to use neuromorphic sensors for
real-time clustering andmultitarget tracking, receiving anF accuracy
of 95%while reducing the computational cost by 88%as compared to
the conventional frame-basedmethod [30].Valeiras et al. developed a
method for object tracking that can track many different shapes, so
long as the pattern of the shapes is known a priori [31]. Similarly,
Lagorce et al. provided amultikernel Gaussianmixturemodel tracker
for the detection and tracking of different-shaped objects [32].
Another method uses spatial matching to allow objects to be tracked
in even occluded conditions [33]. The low computational require-
ments of neuromorphic sensor data analysis even allow tracking
systems to be implemented on embedded platforms [34] and Field-
Programmable Gating Array (FPGAs) [33], making them perfect for
space applications. Novel methods can even detect and track objects
in conditions where both the camera and the objects are moving
independently, as is the case for satellites [35–37].

C. Neuromorphic Sensors Under Radiation

To perform valid fault injection on the HOTS algorithm, a fault
model is needed. The fault model developed in Ref. [15] was used to
perform software fault injection into the data. Specifically, the intro-
duced event-based radiation-induced noise simulation environment
(event-RINSE) was useful in adding radiation-induced noise to
prerecorded data streams. This added noise was then used as a fault
injector, allowing the HOTS algorithm to be tested in a more con-
trolled environment. In this experiment, the HOTS algorithm was
tested for its sensitivity to noise.

IV. Scope and Methodology

This section will discuss the scope and methods to be used in the
experiment. The methodology will cover software fault injection as
well as the radiation experiment.

A. Scope

The operating system was a lightweight version of Linux, but the
complications of Linux’s monolithic kernel will be irrelevant to
the reliability of the HOTS algorithm or the time surfaces. Moreover,
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the operating system hosting the HOTS algorithm is arbitrary, and so
this experiment does not focus on execution errors. That is, any errors
involving segmentation faults, kernel panics, or similar errors are not
studied because these depend on the underlying operating system.
This experiment primarily focuses on silent data errors. Silent data

errors are defined here as any error causing a difference in the output
of each layer. Each layer was individually analyzed and compared
with the final predictions of the network. Observing the outputs of
each layer enables observation on how sensitive the time surfaces are
to noise. This observation also shows how robust the output predic-
tions are to changes in the noise.

B. Methodology

This experiment took place in two distinct phases: the radiation
experiment and the high-level fault injection. These two halves
provide two separate measurements of reliability. Namely, the radi-
ation experiment shows how robust the network architecture is to data
errors, and the software fault injection shows how sensitive theHOTS
algorithm is to noise in the input data and corruptions in the
algorithm.

1. Radiation Experiment

The radiation experiments were performed at the Los Alamos
Neutron Science Center (LANSCE) Weapons Neutron Research
facility. The LANSCE provides a wide-spectrum neutron beam of
energies ranging from∼1 MeV to greater than 10MeV. Four hours of
neutron beam testing at the LANSCE facility provided fluences
similar to that of a 10 year mission on the International Space Station
(ISS) [38]. TwoDigilent PYNQ-Z2 boards, labeled in this research as
PYNQ 0 and PYNQ 1 (Fig. 2), were used as the devices under test
(DUTs) and were radiated while running the HOTS application for
approximately four days, as allowed by the facility. This duration
would be roughly equivalent to the fluence from a 240 yearmission in
the ISS orbit. The effective fluence on the DUTs was calculated by
summing up the number of estimated neutrons passing through the
DUTwhile it was powered, and dividing by a constant that drops off
with the square of the distance from the dosimeter to account for any
decay or absorption of the beam before reaching the target. This
constant is defined in Ref. [39] as

�13.87 m�2
�13.87 m� d�2

where 13.87 m is the distance from the beam source to the dosimeter,
and d is the distance from the dosimeter to the DUT. In this experi-
ment, d was 0.911 m for PYNQ 0 and 0.937 m for PYNQ 1.
The Neuromorphic Modified National Institute of Standards and

Technology dataset [8], which consists of neuromorphic event
streams of handwritten numerical digits (zero to nine), was used to
test image classification with the HOTS algorithm. The HOTS archi-
tecture was trained prior to the radiation experiment using 2000
samples from the training dataset and 200 events per sample. Only
one digit class was tested at a time to separate how data errors affect
different classes, as opposed to using an average classification accu-
racy among all digits. Additionally, due to memory and computa-
tional constraints of the embedded platform, only the first 100 events

of a samplewere considered for inference. Due to the cyclic nature of
the N-MNIST dataset, this did not affect the prediction accuracy
significantly. The outputs of each layer as well as their respective time
surfaces were logged for each execution. Three layers of time surfaces
were used with neighborhood sizes of 7 × 7 pixels, 13 × 13 pixels,
and 25 × 25 pixels around each event pixel to cover enough of the
surrounding area to extract different features at each layer. Three layers
were chosen, as was done in the original HOTS publication [1]. This
output helps determine which layers are most sensitive to radiation
effects. Similarly, the results show how robust the prediction outputs
are to data errors. If there is an error in layer 1 but the prediction
accuracy does not change, this shows that the layer network has
intrinsic reliability associated with it. Any errors in the execution of
the application, such as segmentation faults or kernel panics, were not
included in this analysis. The results of the radiation experiment are
discussed in Sec. V.A.

2. Fault Injection Experiment

Noise was added to the N-MNIST input data using the event-based
radiation-induced-noise simulation environment described inRef. [15].
This noise model was created using the actual radiation of an asyn-
chronous time-based image sensor [9], and it is used here to insert noise
into theN-MNISTevent data. The noisewas injected into the input data
using a variable noise-event rate. Changing the event rate can be used to
findhowmuchnoiseneeds tobe added toaffect the prediction accuracy.
Fault injecting in software provides a much more controlled environ-
ment to test the reliability of theHOTS algorithm and the time surface’s
sensitivity to noise. The fault injection results are discussed in Sec. V.B.
The details of the fault injection can be seen in Fig. 1. Noise was

injected into differentmodules of theHOTS algorithm independently
to test their resilience. An input digit (Fig. 1a) is passed through the
event-based sensor (Fig. 1b), which produces an asynchronous event
stream for each pixel. Radiation-based noise injected into input
events (Fig. 1c) modeled using the event-RINSE fault injector
(Fig. 1d) described in Ref. [15] leads to erroneous spikes (in red)
added to the event stream. This also leads to errors in the time surface
computation, as shown in the top three rows in Fig. 1e. The bottom
row of Fig. 1e further shows errors due to additional noise injected
into the exponential kernel computation (Fig. 1f), such as the decay
constant τ (green) and the time of the event t (in magenta): both of
which lead to errors in the decayed synaptic output. The time surfaces
themselves are also prone to noise (blue), which lead to erroneous
time surface values for certain pixels shown in Fig. 1g. The polarities
used in k-means clusteringwere also injected with bit flips, which are
shown in Fig. 1h to see how random changes in cluster assignments
affect the classification. The layer outputs (i.e., the labeled events)
were then passed through a dense multilayered perceptron (MLP) as
features for classification, which are demonstrated in Fig. 1k. The
MLP classifier was a three-layer network consisting of an input layer
with 24 nodes, which is the same size as the number of features of the
last layer of the time surface hierarchy; a hidden layerwith 200 nodes;
and an output layer which is of size 10, which is the number of classes
in the N-MNIST dataset. Each aspect of the algorithm was tested
under fault injection using a simple Bernoulli test with a varying
probability of injection from 10 to 90%. The targets included the time
surface exponential values, the input time context, and the time decay
constant, which are all highlighted in Fig. 1. All targets were injected

a) b)

Fig. 2 TwoPYNQboards radiated atLANSCEand labeled asPYNQ0 (blue) andPYNQ1 (orange): a) cross sectionswhen errors are separatedbywhich
layer the first error occurs at, b) total cross section containing the total number of errors in all layers.
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into separate events to ensure a controlled response that simulated a
single-event upset in memory.

C. Platform Selection

We used two separate platforms for our experiments. The radiation
experiment was performed on the Digilient PYNQ-Z2 board, employ-
ing a Xilinx ZYNQ-7020 system on a chip (SOC), which has a dual-
core ARM Cortex-A9 processor and an Artix-7 FPGA fabric. This
SOC acts analogously to the Center for High-Performance andRecon-
figurable Computing (CHREC) space processor (CSP) developed at
the National Science Foundation’s Center for Space, High-
Performance and Resilient Computing (SHREC), which has been
employedonmultiple platforms aboard the International Space Station
[40–42]. The SHREC also uses the CSP alongside a neuromorphic
sensor on their Configurable and autonomous Sensor Processing
Research mission, which is the primary reason why PYNQ is used
as a device under test [3,4].
Because high-level fault injection was performed in software, the

platform becomes irrelevant. Therefore, for software fault injection, a
desktop computer employing an AMD Ryzen 5 3600X six-core
processor was used. This platform is arbitrary and will not affect
the experimental results.

V. Results

This section covers the results of the radiation experiment and
insights from fault injection. The HOTS algorithm vulnerabilities are
discussed herein.

A. Los Alamos Neutron Science Center Experiment

The primary purpose of the LANSCE radiation experiment is to
measure the cross section of theHOTS algorithm on theXilinx Zynq-
7020 SOC. The cross section is defined as the vulnerable area on the
chip where, if impacted by radiation, an error event is expected.
However, the error events need to be defined in such a way that

provides insight into the vulnerability of the algorithm. Error events

were defined as differences from the calculated and expected time

surfaces for every event in each of the three layers. The cross section,

alongwith the 95% confidence interval, was calculated for each layer

where an error event first arose, which is shown in Fig. 2a. Similarly,

the total cross section and 95% confidence interval for all combined

layers can be seen in Fig. 2b.
The 95% confidence interval seems to increase with each layer, as

expected, because the time surface is larger in higher layers, leading to

a higher chance of vulnerability. It is important to note, however, that

despite thesedata error events, therewerenoevents that causeda loss in

prediction accuracy. Therefore, it is seen that the HOTS algorithm

shows an intrinsic reliability as an application. Between the several

feature points in a time surface, aswell as the intrinsic reliabilitywithin

the classifier, a small number of elements being affected in the time

surface will most likely not cause any loss of accuracy. This result is

consistent with Ref. [7], which showed intrinsic reliability within

neural-network classifiers.
Furthermore,weclassify the typesof errors observed in the radiation

experiment. There are three types of data errors that were observed:

1) silent data errorswhere the time surface amplitude fallswithin [0, 1],

implying the error occurs before the exponential calculation; 2) silent

data errors where the time surface amplitude does not fall within [0, 1],

implying the error occurs after the exponential calculation; and 3) data

errorswhere values aremissing from the output time surface, implying

the error occurs within the parameters of the architecture.
Figure 3a demonstrates an example of error type 1, where silent

data errors occurred before the exponential decay calculation in the

time surface generation. The residuals show two points in the

observed, flattened time surface that differ from the expected result.

Both cases are constrained within the range of [0, 1], which implies

that the error caused an erroneous t value to be used in the calculation
of the exponential decay: e−�jt−t0 j∕τ�.
Figure 3b shows an example of a much more extreme data error.

This figure shows cases of both error types 2 and 3. At around an
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Fig. 3 Examples of data errors seen in time surfaces during irradiation. Time surfaces were flattened from two dimensions to one dimensions for easier
visibility.
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index of 50, the amplitude of the time surface jumps to about 5000,
which is well out of the normal range of [0, 1] constrained by the
exponential calculation. Therefore, it can be assumed that the error
occurs in the value of the time surface after the exponential decay, and
not in any of the data or parameters beforehand. Similarly, some
values of the expected time surface were missing from the observed
one, causing a constant offset from the expected pattern after an index
of 100. Surprisingly, neither of these error events caused a drop in
prediction accuracy, probably due to the fact that this time surface
only represents one of many features in an event stream.
Figure 3c shows a histogram of the observed time offsets from the

data errors. Themajority of the time offsets were small, falling within
�0.2 s. This small offset implies that the majority of data errors
occurred before the exponential calculation, keeping the erroneous
output bound within [0, 1], which was most likely due to the amount
of computation time spent on the time surface exponential calcula-
tions. The majority of the runtime was spent calculating the time
surface exponential values, leaving the data used in the calculation
vulnerable to radiation. However, this bound from the calculation
means that the majority of the output errors would not be significant
enough to cause a change in the clustering output.

B. Fault Injection

The results from the event-RINSE fault injection can be seen in
Fig. 4. The noise model for the event-RINSE consists of a burst of on
events followed by a long relaxation period of off events, meaning that
there are several hundred induced event spikes in each noise-event
occurrence [15]. Induced noise rateswere tested fromzero to 100 noise
occurrences per second. The cumulative average among all 10 classes
of the N-MNIST dataset was shown to drop to a random chance at
around 80 noise occurrences per second, as seen in Fig. 4a. However,
even small amounts of radiation noise, such as five effects per second,
cause a drop in accuracy, implying that the system is sensitive to
variance in the input data. This sensitivity follows due to the creation
of many random noise features created that will interfere with the
classification, especially on a memory-constrained embedded system
where not all events in an input file can necessarily be used for feature
extraction.
Figure 4b separates the classes for digit “1” and digit “5” and

compares them to the cumulative average. Classes with a diverse set
of features, such as digit 5 show a higher resilience to the average,
typically scoring around one standard deviation above the average.
Conversely, classes without many features to extract, such as digit 1,
consistently had an accuracy lower than one standard deviation below
the average. This is most likely due to the random noise having a
larger impact on the classification when there are fewer features to
extract from a stream. However, in an actual radiative environment, it
is unlikely to see significantly high enough noise rates for this data
dependency to cause significant effects, except for extreme cases.
To control the response of high-level fault injections, four separate

variables were individually targeted using software bit flips with vary-
ing probabilities of injection. The results of the software fault injection
effects on the accuracy of the HOTS classification as compared to its

accuracy without injection can be seen in Fig. 5. Injection into all four
variables (the exponential, polarity, decay constant, and event time)
caused the accuracy to drop to a random chance (10% accuracy) by
50% injected events. The exponential and the decay constant caused
the sharpest decline in accuracy where the accuracy dropped to below
25%, even for 10% affected events. This is expected due to the fact that
they drastically changed the shape of the time surface feature. Surpris-
ingly, injecting into the polarities shows the slowest drop in accuracy
despite directly affecting the k-means center clustering. However, this
phenomenon could be due to the fact that the polarity injections only
lead to reassignment from the original polarity to another polarity
bounded within the number of clusters in each layer as used during
training, leading to a lower probability of a data error occurring.

VI. Conclusions

The results of the current experiments demonstrate the reliability
and vulnerabilities of feature extraction in neuromorphic data. The
response of the hierarchy of time surface architecture to radiation as
well as the response of time surface features to targeted fault injection
were measured. Within the radiation experiment, no change in accu-
racy was seen due to any data errors observed within the time surface
layers. The classifier used the output of the hierarchy of time sur-
faces, which means that only errors propagating to the output of the
hierarchy could have any possible effect on the accuracy.However, as
observed in Ref. [7], multilayered perceptrons have intrinsic resil-
ience to data errors within the nodes, providing an overall boost to the
reliability of the HOTS architecture. It is also likely that the large
number of features provided by creating a time surface for every event
in a data file as compared to the low chance for a malicious error in
memory to occur during computation gives a higher resilience to a
layer being affected. Similar results have been found in recent work
by Nagarajan et al., where they studied the effect of noise injection in
neurons in a spiking neural network performing digit classification
on the N-MNIST dataset that could be comparable to the current
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work. The authors also found a significant drop (85.6%) in accuracy
of the spiking neural network with the addition of noise. A similar
study on the TrueNorth neuromorphic processor simulating a spiking
neural network was reported by Brewer et al. They also showed the
resilience of the spiking neural network against proton-induced
single events.
Within the data errors, the time offsets were then calculated,

which are shown in Fig. 3c. This figure shows a histogram of how
radiation tended to shift the temporal spikes calculated through
inversion of the exponential function. Themajority of the calculated
offsets are positive after the natural logarithm of the exponential
multiplied by the negative of the decay constant. This provides
evidence that the majority of the errors encountered in the radiation
test occurred before or during the calculation of the exponential.
This is most likely due to the fact that the creation of the time sur-
faces is the most computationally complex part of the algorithm.
Once the time surfaces, and thus the exponential values, are calcu-
lated, the rest of the inference is quick, leaving little chance for a
radiation strike to corrupt the data. The most time-consuming parts
of an algorithm will generally be the most vulnerable to radiation
because the time where an error may occur is larger.
To combat the randomness of a radiation experiment, controlled

fault injection in software was also performed to find the most
vulnerable parts of the HOTS architecture. The event-RINSE allows
observations on how the classification accuracy decreases when there
is corruption in the sensor data. Data errors within the algorithm can
be detected or corrected via redundancy, but it becomes difficult to
detect problems if the sensor providing the input itself is affected.
Figure 4a shows that the accuracy of the HOTS algorithm does
decreasewith increased radiation noisewithin the input event stream.
However, Fig. 4b shows that the drop in accuracy is dependent on the
feature map of the data and is, therefore, data dependent. It is likely
that the radiation responsewill be different under a different dataset. It
should also be noted that due to the memory and computational
constraints of embedded systems, all events in an input file were
unable to be used to create time surfaces. Increasing the number of
events used in each samplewouldmost likely providemore resilience
to input noise by increasing the signal-to-noise ratio. Additionally,
simply knowing the radiation noise model opens up opportunities for
filtering or noise reduction before processing.
High-level fault injection shows how faults within the onboard

memory or cache can propagate to data errors. The primary targets for
data errors within the architecture would be the exponential ampli-
tude, the decay constant τ, the event time spike t, and the polarity used
in clustering. To ensure that the results were unaffected by changes in
the testing datasets, the training dataset was used for validation to
ensure a 100% prediction accuracy without fault injection. To under-
stand the slope of accuracy decay, the accuracy with fault injection
was compared to the accuracy without fault injection. All four
variables were shown to drop the inference accuracy very quickly.
The exponential value and the decay constant were shown to have the
sharpest decline in accuracy with the probability of injection. This
sharp decline is most likely due to those variables drastically chang-
ing the overall feature shape of the time surface, which would lead to
significant changes in clustering. The decay constant significantly
impacts the shape of the feature because it affects all points in the
output as opposed to one pixel in the time surface. Meanwhile,
injections in the exponential were postcalculation of the exponential
amplitude, meaning the erroneous value was not bounded by [0, 1],
causing severe changes in the feature shape, such as is the case in
Fig. 3b. However, the radiation experiment showed that this case is
unlikely. Interestingly, the polarity that defines the features used for
classification had the least sharp decline in accuracy. To prevent
crashes, the polarity bit flips had to be bound to the number of features
in each layer, which means there is a lower probability of the injected
polarity being different from the expected one. With an actual radi-
ation experiment, it is much more likely that a bit flip in the polarity
variable would cause a segmentation fault, which was not accounted
for in this experiment because they are platform dependent. The event
time shows the second shallowest decline of the accuracy next to the
polarity. The event time, as it is used in the exponential values, would

not lead to as strong as a response as the others due to the fact that the
exponential calculation masks the error by keeping it bound within
[0, 1], and thus does not cause changes that are as severe in the output,
similar to Fig. 3a.
In all variable cases, however, the accuracy still drops to a random

chance before a 50% probability of injection, demonstrating a severe
vulnerability to SEUs in these components. To combat this, tradi-
tional reliable computing techniques can be used. In the case of the
exponential, a solution to prevent vulnerability at the cost of memory
or runtime can be to calculate the value three or more times and take a
majority vote on the output, similar to triple modular redundancy.
Another option for error detection is to have a quick boundary check
along the time surface. Due to the nature of the exponential, any
values that are larger than one or less than zero would be impossible,
and thus would be a data error. Similarly, the polarity calculation can
also be performedmultiple times and put to a vote.Multiple copies of
the decay constant can be stored and voted on before any computa-
tion, allowing for redundancy with minimal time and memory over-
head. Unfortunately, there is no ground truth to the event time spike
during computation, and so any redundancy would have to occur in
the input data files. However, the probability of any of these values
being impacted by radiation causing a decline in accuracy is small.
Although, adding additional redundancies and checks in these vari-
ables is a possible way to improve reliability for mission-critical
software with little overhead.
The overall results of these experiments can be used to infer the

response to radiation of other neuromorphic applications, such as any
method using an exponential kernel.With the radiation experiment, it
is shown that there is intrinsic reliability within the HOTS applica-
tion, where no decline in inference accuracy is seen, even with errors
in the layers. Fault injections show how propagating computational
errors can lead to failures in inference. Both of these experiments
together can give mission designers a starting point to creating the
architectures for reliable, neuromorphic applications.
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