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Modern deep-learning models tend to include billions of parameters, reducing real-time performance. Em-

bedded systems are compute-constrained while frequently used to deploy these models for real-time systems

given size, weight, and power requirements. Tools like parameter-scaling methods help to shrink models to

ease deployment. This research compares two scaling methods for convolutional neural networks, uniform

scaling and NeuralScale, and analyzes their impact on inference latency, memory utilization, and power. Uni-

form scaling scales the number of filters evenly across a network. NeuralScale adaptively scales the model to

theoretically achieve the highest accuracy for a target parameter count. In this study, VGG-11, MobileNetV2,

and ResNet-50 models were scaled to four ratios: 0.25×, 0.50×, 0.75×, 1.00×. These models were benchmarked

on an ARM Cortex-A72 CPU, an NVIDIA Jetson AGX Xavier GPU, and a Xilinx ZCU104 FPGA. Additionally,

quantization was applied to meet real-time objectives. The CIFAR-10 and tinyImageNet datasets were stud-

ied. On CIFAR-10, NeuralScale creates more computationally intensive models than uniform scaling for the

same parameter count, with relative speeds of 41% on the CPU, 72% on the GPU, and 96% on the FPGA. The

additional computational complexity is a tradeoff for accuracy improvements in VGG-11 and MobileNetV2

NeuralScale models but reduced ResNet-50 NeuralScale accuracy. Furthermore, quantization alone achieves

similar or better performance on the CPU and GPU devices when compared with models scaled to 0.50×,

despite slight reductions in accuracy. On the GPU, quantization reduces latency by 2.7× and memory con-

sumption by 4.3×. Uniform-scaling models are 1.8× faster and use 2.8× less memory. NeuralScale reduces

latency by 1.3× and dropped memory by 1.1×. We find quantization to be a practical first tool for improved

performance. Uniform scaling can easily be applied for additional improvements. NeuralScale may improve

accuracy but tends to negatively impact performance, so more care must be taken with it.
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1 INTRODUCTION

Convolutional neural networks (CNNs) are a popular deep-learning (DL) architecture and

provide the backbone for many high-accuracy, real-time computer-vision applications. Over the

past decade, these models have grown larger, both in terms of the number of parameters and the

number of floating-point operations (FLOPs) intrinsic to a model. This increase in parameters

and FLOPs tends to lead to models that can achieve higher accuracies but at the cost of latency

for end-to-end inference or memory required to perform inference. Real-time apps, by contrast,

often have to meet stringent time constraints on less computationally capable embedded systems,

which are often used for their reduced size, weight, and power consumption. In order to reduce

the size of these models, researchers have designed methods to scale the number of parameters in

a model to make them more amenable to resource-constrained systems. Therefore, it is important

to study the tradeoffs in terms of model complexity and on-device performance.

In this research, we study the impact of two parameter-scaling methods, uniform scaling and

NeuralScale, on inference performance when considering the deployment of a real-time applica-

tion. Uniform scaling is a simple method that uniformly changes the number of filters in a CNN

across layers [12]. NeuralScale, a form of neural architecture search (NAS), is a recently pub-

lished method that attempts to learn the importance of parameters; based on the importance of

the parameters, it can then selectively remove filters from each layer to achieve the best accuracy

for a target parameter count [18].

To evaluate the two methods, measurements of inference latency, runtime-memory usage, and

power consumption were gathered across three models: VGG-11, MobileNetV2, and ResNet-50,

at four scaling ratios: 0.25×, 0.50×, 0.75×, 1.00×. These models were chosen to highlight three

common baseline architectures with initial parameter counts ranging from approximately 2 million

to over 20 million and to mirror several of the models from Reference [18]. To understand the

implication of scaling across a wide variety of devices, results were gathered on embedded CPU,

GPU, and FPGA platforms. In order to evaluate the tangible impacts of these methods, we consider

a hypothetical streaming camera application with a frame rate of 60 frames per second (FPS),

which can be required for advanced apps [14, 20]. Any model that achieves a latency less than

16.67 ms is considered to have achieved real-time processing; any further reductions in latency

indicate that there is extra time in the processing budget for other applications on the real-time

system.

We also consider the impact of quantization on models to determine the efficacy of combining

both parameter-scaling methods and quantization toward reaching the goal of real-time perfor-

mance. The CIFAR-10 dataset [15] is used for evaluation to enable easy comparisons to other clas-

sification studies. Additional results in this study compare the effect of dataset on performance by

evaluating MobileNetV2 models trained on both CIFAR-10 and tinyImageNet [19].

This research provides significant insight into the performance of models scaled using uniform

scaling and NeuralScale on embedded devices. Previous research in [9] explored parameter scaling

on an embedded CPU and embedded GPUs by using models trained by the authors of [18]. As an

extension of [9], this article provides several major additions. First, we retrained all models and

gathered new results on a different dataset, CIFAR-10, for novel discussion on the tradeoffs between

accuracy and device performance. We also present new comparisons of MobileNetV2 trained on

the tinyImageNet dataset. The second, and largest, addition to this study is our testing of the impact

of quantization on model performance. Quantization is a tool that can be used in conjunction

with scaling methods, as well as on its own. We, therefore, consider the impact of quantization

in two ways: first, on performance when quantization is applied to scaled models, and second,

as an alternative method to scaling for improving the performance of models towards reaching

real-time performance goals. Third, to further guide the use of parameter scaling, we expand our
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initial inference analysis to include details on the training processes for both uniform scaling and

NeuralScale, including the time of generating these models with all methods. Fourth, we added

a new class of device to this research by characterizing the runtime behavior of inference with

scaled models on an FPGA-based embedded system, which contextualizes performance on latency-

sensitive, real-time systems. Fifth, we measured the power consumption for each of the models

tested in this research. Finally, we use the collective results of our study to provide new guidance

on selecting a scaling ratio, a non-trivial task without the data gathered from this research that

relates device performance to parameter count. Based on our observations, we outline a process

for choosing a scaling ratio with a latency or memory target given one of the devices we tested. In

summary, the contributions of this article include an analysis of:

— Latency, runtime-memory usage, and power measurements across three devices at four scal-

ing ratios using two scaling methods.

— The effect of the dataset on hardware performance.

— Using quantization in conjunction with parameter scaling and its effect on runtime

performance.

— Tradeoffs during training when using NeuralScale.

— NeuralScale’s restructuring of models and limitations to performance due to increased

FLOPs.

— Guidance for scaling ratio selection based on real-world observations.

2 BACKGROUND AND RELATED RESEARCH

This section contains background details on methods utilized by this research, including uniform

scaling and NeuralScale. It also provides context about these methods and how they relate to other

research. Additionally, details about quantization methods are included.

2.1 Neural-Network Performance Metrics

The goal behind neural-network metrics is to capture some of the complexity of a model to under-

stand its inference performance on a particular hardware system. Two common metrics, parame-

ters and FLOPs, are described. The background on these metrics is followed by Critical Datapath

Length (CDL), which is a recently developed metric for understanding model performance.

2.1.1 Parameters and FLOPs. Parameters and FLOPs are two common metrics reported with

newly published models. These two metrics help capture some of the complexity of a model. The

number of parameters is a count of all of the trainable values used to generate a prediction. FLOPs

are a measure of the FLOPs in a model. This value can be derived from the number of multiply-

accumulates in the model, though this estimate does ignore operations like the sigmoid activation

function. However, this value is imperfect in terms of predicting model performance given dis-

crepancies in how lower-level software may fuse kernels or change the execution of the kernels,

especially when highly parallel accelerators like GPUs are used [16].

2.1.2 Critical Datapath Length. CDL was proposed by Langerman et al. in Reference [16] and

can be found as the diameter of the directed-acyclic graph representing a model. It represents the

length of the serial path through which data flows during inference. As noted in their research,

the standard metric of FLOPs is not indicative of real-world performance, especially on massively

parallel devices like GPUs. CDL is included in this research as it is another metric that has been

introduced to better understand and predict model performance. A larger CDL indicates that there

is a longer path through which the data must flow during inference, leading to relatively longer

execution times on highly parallel devices.
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2.2 Neural Architecture Search

Designing neural networks that perform well on resource-constrained devices has become a re-

search topic of interest in the machine-learning and computer-vision fields. Recently, there has

been a significant amount of interest in NAS, where a neural-network architecture is evolved

algorithmically to adapt to specific constraints. Within NAS, there is research interest in creat-

ing networks optimized for specific devices. Cai et al. perform a proxyless NAS by generating an

over-parameterized network and then conducting path-level pruning to create a network that is

efficient for a given platform [3]. This method is performed while avoiding simpler tasks that do

not relate to a given network, dataset, or target platform. Cai et al. demonstrate NAS by choosing

a sub-network from a supernet for deployment on a given device [2]. They do this operation by

training the supernet and then fine-tuning subsets of the supernet. With this method, they were

able to achieve a new state of the art on ImageNet. Another method for pruning is ResRep [7]. This

method uses structural pruning to remove entire filters from CNN layers to achieve a minimal loss

in accuracy for a target FLOPs reduction. The authors of ResRep claim to achieve near lossless

accuracy performance with a ResNet-50 model that has only 45% of the FLOPs of the original

model.

2.3 NeuralScale

Another NAS-based reduction method called NeuralScale was proposed by Lee and Lee [18]. With

NeuralScale, only the width component of the network is scaled. NeuralScale attempts to select

the best number of filters for each individual layer at a given scaling factor rather than scaling uni-

formly across layers. The authors showed accuracy improvements over other scaling methods [18].

To target a specific number of parameters, NeuralScale first performs an iterative pruning

method to determine the importance of each filter in the network [18]. The importance is defined

as a measurement of the increase in error caused by the removal of that filter. When removing a

filter causes a large decrease in accuracy, the filter is considered to be more important. This metric

of importance is explained in the research of Molchanov et al. [21].

As the pruning method is performed across many iterations, the change in the number of filters

per layer compared with the number of parameters in the network is learned. With this knowledge,

a model of the number of filters in a layer given the total number of parameters can be generated.

Essentially, a curve is fit which shows how the parameter count changes as the number of filters is

increased for each layer. Using the learned curve, stochastic gradient descent is then used to refine

the model until the target parameter count is reached. An in-depth, mathematical explanation can

be found in the NeuralScale article [18]. The steps of iteratively pruning the model, searching for

the parameters for the curve, and then generating the network with stochastic gradient descent

represent one iteration of what the authors define as architecture descent. Architecture descent

can then be run iteratively for a set number of steps or until convergence.

After completing several iterations of architecture descent, the method requires a scaling ratio

to be set. The filter layout for the model is then generated using the previously learned curve. The

target parameter count is set so that the number of parameters in the generated model is similar

to the number of parameters that would exist in the original model when each layer is uniformly

multiplied by the scaling ratio. The final step is to train the newly scaled model architecture on

the target dataset. The entire NeuralScale process is depicted in Figure 1.

2.4 MobileNets and Uniform Scaling

MobileNets are a group of networks aimed at making an efficient architecture for mobile de-

vices [12]. MobileNetV1 and MobileNetV2 use a depthwise-separable convolution to reduce the
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Fig. 1. This figure shows diagrams of the NeuralScale and uniform-scaling processes. (Top diagram) The first

step in the NeuralScale process is architecture descent [18]. Here, the target dataset is used to determine the

importance of the parameters of each filter to the overall accuracy of the model. This importance is then used

to create a new base model, which is then again iteratively pruned. This process is repeated for 15 iterations

in this research. After architecture descent, the importance of the parameters has been learned. Second, the

model is scaled using a scaling ratio and the learned parameter importance. Note that it generates a model

where the output layers are not a uniform multiple of the original model, shown in the dashed red box. In the

third step, the model must be trained on the target dataset. The final, optional step is to quantize the model

to reduce datatype precision. (Bottom diagram) For uniform scaling, the first step is to uniformly multiply

all filter counts by the same scaling ratio. The second step is to train the model on the target dataset. The

final, optional step is to quantize the model.
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computational complexity of the models [12, 32]. Hyperparameters of the network include the

width multiplier and image resolution. The effect of the width multiplier on the network is the

same as the effect of the scaling ratio with uniform scaling in this research. The individual num-

ber of filters in each layer are all multiplied, uniformly, by the scaling ratio to shrink the model

to target fewer parameters and make it more amenable to resource-constrained systems. Figure 1

highlights the main steps in uniform scaling.

2.5 Quantization for Improved Inference

Modern computer-vision models tend to be over-parameterized [6], meaning they are a good can-

didate for quantization. Through quantization, the precision of a model can be lowered from stan-

dard 32-bit floating-point (float32) values to half-precision floating point (float16), 8-bit

integer (int8), or even binary. Quantization can improve the runtime performance of models on

target platforms [10]. Additionally, some hardware accelerators like Xilinx’s DPU run only int8

models [37]. In our research, int8 quantization is used as it is supported by the tools of all tested

platforms.

Quantization can take many forms. Of interest to this research is post-training quantization

(PTQ). PTQ has exceptionally low engineering overhead as models are not retrained or fine-tuned.

Part of the training dataset may be used to determine scaling values for the activations in the

model. This process is known as calibration. If PTQ does not achieve satisfactory performance,

further methods like quantization-aware training (QAT) can be used to fine-tune the model on

the training dataset [10].

2.6 Real-Time Computer Vision

There are many cases where a computer-vision application would need to be performant on an em-

bedded system. One of the most relevant examples is the vision processing system for a self-driving

car. Consider a car moving at 80 miles per hour, roughly 117 feet per second. If an obstruction sud-

denly enters the roadway 20 feet ahead of the vehicle, an object detector with 100 milliseconds of

processing time will produce its first result when the car has already traversed half of the distance

to the object in question. Therefore, it is critically important that low latency is achievable on

embedded devices. Furthermore, the high-resolution vision necessary for detecting small obstruc-

tions will be even slower due to the added computational cost from the increase in the number of

pixels and limited memory bandwidth on the embedded devices.

For this research, we consider a real-time latency constraint of 16.67 ms, or a frame rate of 60 FPS.

Many state-of-the-art computer-vision apps target this rate even with more complex goals than

classification [14, 20]; it follows that simple classification models should also be able to reach this

real-time goal. Ideally, models will only use a fraction of this time as often the processing system

needs to perform other operations with this time budget. Therefore, achieving smaller latencies is

prudent as less of the time budget spent on the model enables more of the budget to be used for

other important applications in the pipeline.

3 APPROACH

In this research, we analyze the performance of three different models using uniform scaling and

NeuralScale on three embedded systems. We test these models on one CPU-based device, one

GPU-based device, and one FPGA-based device to understand the performance tradeoffs when

using parameter scaling for models deployed on resource-constrained systems. Finally, we also

explore the effect of quantizing scaled models and explore the tradeoffs between using scaling and

quantization separately.
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Table 1. Overview of the Three Embedded Devices and the Accompanying Inference Frameworks

Platform Type Inference Framework Datatype Precisions Tested

ARM Cortex-A72 (Raspberry Pi 4) CPU ONNX Runtime float32, int8

NVIDIA Jetson AGX Xavier GPU NVIDIA TensorRT float32, mixed float32/int8

Xilinx ZCU104 FPGA SoC Vitis AI & Xilinx DPU int8

Table 2. Specifications of the AGX Xavier

[25, 35] and GTX 1080 Ti [24, 34]

AGX GTX

Metric Xavier 1080 Ti

Architecture Volta Pascal

Peak Perf. (TFLOPS) 1.4 11.3

CUDA Cores 512 3584

TDP (W) 30 250

Memory (GB) 16 11

Mem. BW (GB/s) 136 484

3.1 Test Platforms

Details about the three embedded device platforms are included below. An overview of the test

platforms is shown in Table 1. Each device runs a separate inference framework designed for

improved performance on its architecture. A brief overview of the three frameworks studied is

also included.

3.1.1 CPU Platform and ONNX Runtime. This research used the Raspberry Pi 4, which features

a quad-core ARM Cortex-A72 CPU [31]. We used it as an embedded CPU baseline due to its sim-

plicity and strong open-source community support. Its uses in rapid prototyping also make it an

attractive solution. Though several years old, this processor architecture is still in active use and is

therefore still relevant for research purposes. For example, the ARM Cortex-A72 is featured in the

Xilinx Versal AI Core system-on-chip (SoC), which is a new platform for embedded AI applica-

tions [38]. The board used in this research features 4.0 GB of RAM. A 64-bit version of the Ubuntu

GNU/Linux operating system was used.

On the CPU device, we tested with ONNX Runtime, which is designed for efficient inference

with Open Neural Network Exchange (ONNX) models. ONNX Runtime is an open-source

project backed by Microsoft and includes a Python API which allows for optimized execution

of ONNX models on various accelerator types as well as standard CPU inference. ONNX Runtime

supports different quantization schemes. For this research, we studied static PTQ for int8 models.

For more information, the reader is directed to the ONNX Runtime documentation [27].

3.1.2 GPU Platform and NVIDIA TensorRT. The specifications for the Jetson AGX Xavier plat-

form tested in this research are listed in Table 2. For reference to a desktop-class GPU, the speci-

fications of a GTX 1080 Ti are also listed. The GTX 1080 Ti was used in the original NeuralScale

research [18]. Note the significant limits to the core count, thermal profile, and memory bandwidth

on the embedded device. Also, note that while the Jetson AGX does have more memory than the

GTX 1080 Ti, this memory is shared across the GPU and CPU cores. The shared memory architec-

ture can offer performance improvements for GPU memory accesses as data does not have to be

copied between the host memory and device memory like on most GPUs.

NVIDIA TensorRT is a tool used for high-performance inference on NVIDIA GPUs [22]. It allows

for several performance optimizations such as mixed precision, layer fusion, automatic kernel
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selection, and others. Using an ONNX model as input, TensorRT can create the appropriate high-

performance engine automatically [1, 26]. For this study, we tested the models with float32 and

mixed float32/int8 precision enabled.

3.1.3 FPGA Platform and Xilinx DPU. The Xilinx Zynq UltraScale+ MPSoC ZCU104 evaluation

kit served as the FPGA platform in this research. The ZCU104 device features a SoC with a quad-

core ARM Cortex-A53 CPU and a Xilinx 16 nm FPGA fabric [40]. The Xilinx-distributed ZCU104

DPU v2022.2-v3.0.0 board image was used for testing on the device.

This device supports the Xilinx Deep-Learning Processing Unit (DPU). This intellectual

property (IP) core is designed to accelerate the inference performance of CNNs by leveraging the

compute resources of the FPGA fabric in the combined CPU/FPGA SoC [37]. The Vitis AI software

platform is used to convert PyTorch models into a format that can be deployed on the DPU [13].

3.2 Model Training and Setup

In this subsection, we summarize the training device, framework, and hyperparameters. First, we

outline the method for training models on the CIFAR-10 dataset. Next, we detail the additional steps

for training MobileNetV2 on tinyImageNet. Model training and achieving the highest accuracy is

not the primary focus of our study. Instead, we consider the impact of model structure on device

performance. Therefore, before using scaling to deploy a model, additional investigation into the

best hyperparameters should be performed to improve model accuracy.

3.2.1 Comparing Scaling Methods with Three Models on CIFAR-10. To study the impact of the

base model structure, we trained versions of VGG-11 [33], MobileNetV2 [32], and ResNet-50 [11]

using uniform scaling and NeuralScale. The VGG-11 and MobileNetV2 implementations we used

were from the original NeuralScale repository [17], but the models were fully retrained in this

research. Models were trained on a desktop computer featuring an AMD Ryzen 5 2600 CPU, 16.0

GB of RAM, and an NVIDIA GTX 1080 Ti GPU.

We performed the NeuralScale architecture descent method with a batch size of 128, a learning

rate of 0.09, and a weight decay of 5× 10−4. The CIFAR-10 dataset [15] was used for training. Data

augmentations were used to artificially increase the training dataset size; these augmentations

resized the images to 32 × 32, randomly cropped, randomly horizontally flipped, and randomly

erased sections of the image. Following the method of the original NeuralScale research [18], we

performed 15 iterations of architecture descent.

Once the search space was explored through architecture descent, we scaled the three models

using uniform scaling and NeuralScale to four ratios: 0.25×, 0.50×, 0.75×, 1.00×. We generated

five models at each of these ratios using the two scaling methods to create a more fair accuracy

comparison between the two methods. The same hyperparameters were used for this training

setup. 150 epochs were used. Additionally, the learning ratio was reduced by a factor of 10 at

epochs 50, 100, and 125. A training/validation split of 80/20 was used to save the best weights on

the validation set during the training process.

We also gathered metrics inherent to each model. FLOPs were found by measuring the multi-

ply accumulates (MACs) using [42] and multiplying the MACs by two. While this method is not

a perfect way to calculate FLOPs, it does provide an estimate. The CDL was measured by exporting

the model to the ONNX format and by then finding the diameter of the graph of the model [16].

Training was performed with PyTorch version 1.12.1. Models were exported to ONNX using

opset version 13. Only the model that performed best on the validation split was exported to the

ONNX format. The ONNX models are ingested by both ONNX Runtime and NVIDIA TensorRT.

The trained PyTorch models were deployed via Vitis AI.
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3.2.2 Comparing Scaling Methods with Two Datasets on MobileNetV2. We also investigate the

impact of datasets on real-time performance to determine how performance scales with larger in-

puts. The same training method previously used on the three models with CIFAR-10 was used to

train MobileNetV2 models with the tinyImageNet dataset [19] installed via the Python package

from [30]. CIFAR-10 contains 32 × 32-pixel RGB images with 10 classes. The tinyImageNet dataset

contains 64 × 64-pixel RGB images with 200 classes, representing a subset of the data in the Ima-

geNet dataset [5]. By holding the model configuration and training parameters consistent when

comparing with two datasets, we can investigate the impact of dataset on the performance of the

reduction methods. We chose to perform this investigation on MobileNetV2 as testing showed

good performance across the devices when trained on CIFAR-10, and [18] also performed testing

between MobileNetV2 and tinyImageNet.

The larger image sizes caused the GPU to run out of memory during architecture descent on the

NVIDIA GTX 1080 Ti GPU. Therefore, when training the tinyImageNet models, a reduced batch

size of 64 had to be used. Otherwise, for simplicity of comparison, the same hyperparameters from

CIFAR-10 training were used. Note that more advanced hyperparameter selection could improve

accuracy, but hyperparameter tuning in general is dataset-dependent and therefore outside the

scope of this study. Consistent with our other study across models, comparisons will only be made

between the reduction methods within a dataset and not between datasets.

3.3 CPU Benchmarking

The first CPU-specific task is the generation of quantized ONNX models. For simplicity, quantiza-

tion was performed on the same device as the original training. ONNX Runtime static PTQ [28] was

used to convert the float32-based ONNX model into an int8 model. To perform quantization, 1,000

random training image samples were used as a calibration dataset. The ONNX Runtime quantizer

was then run on the model, and a final accuracy on the test dataset was gathered.

A separate Docker container with ONNX Runtime version 1.12.1 was built for testing on the

ARM Cortex-A72 device. The Raspberry Pi 4 default maximum clock rate of 1.5 GHz was used for

testing. We gathered latency measurements by sending random data through the models with 20

cycles of warmup followed by 80 cycles of measured inferences. Memory measurements were gath-

ered using the Python Memory Profiler [29]. This tool measures the amount of runtime memory by

querying the OS to determine the amount of memory used. It also can report the specific amount of

memory used by a specific line of Python code. The profiler was used to record the amount of mem-

ory needed for the ONNX Runtime InferenceSession generation. Both latency and memory mea-

surements were averaged over 50 trials to better sample inference latency and runtime-memory

utilization. All measurements were gathered using a batch size of 1 to represent a streaming app

performing inference on 1 image at a time, a common use case on embedded systems.

3.4 GPU Benchmarking

NVIDIA JetPack version 5.1, which includes TensorRT version 8.5.2, was prepared on the NVIDIA

AGX Xavier. The AGX Xavier includes several different power modes. For this testing, we config-

ured the device for an approximate max power budget of 30 W, with two CPU cores enabled at

a frequency of 2,100 MHz, a GPU frequency of 900 MHz, and a memory frequency of 1,600 MHz.

This mode was chosen to enable the fastest clock frequencies for the GPU.

Using the TensorRT Python API, we converted the original float32 ONNX models into serialized

TensorRT engines. We also enabled the conversion of the model using int8 operations by creating a

calibration cache using 1,000 training images as described in the TensorRT documentation, which

allows TensorRT to perform implicit quantization [23]. Note that TensorRT engine generation is

non-deterministic due to the use of profiling to optimize kernel selection at the time of generation.
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The accuracy of both unquantized and quantized engines was measured using the test datasets

through the Python TensorRT API.

Latency measurements were gathered on all serialized engines using NVIDIA’s trtexec program,

details of which can be found in the TensorRT documentation [23]. We used this program to load

the serialized engines generated through the Python API. This program then profiled the latency

of inference using a batch size of 1 by sampling the performance for a total of 10 seconds with 2 sec-

onds of warmup. Memory measurements were also gathered using trtexec. To estimate the runtime

memory required, the TensorRT documentation recommends summing the size of the serialized

engine, the persistent memory allocated, and the memory allocated to store the activations [22].

We gather the size of the serialized engine using the du -b Bash command. The size of persistent

memory and activation memory are reported in the verbose mode of the trtexec program. Since

all steps from engine generation to runtime performance can have variance, we performed this

pipeline of engine generation and analysis 50 times to sample the overall latency and memory

requirements of each model when using TensorRT for inference.

3.5 FPGA Benchmarking

The Xilinx-released Vitis-AI Docker container, version 3.0.0.106, was used for converting the Py-

Torch models into DPU models. This container was run on the same systems used for model train-

ing. The pipeline found in Xilinx’s sample code at [36, 39] was used for reference. The DPU only

runs on quantized models, therefore no float32 results are gathered. We use 500 sample images

from the training dataset to calibrate the quantizer. Then we export the model and set it to target

the ZCU104.

A modified version of the app from Reference [36] was created to load the 10,000 test images in

the test datasets. This app reports the latency of inference when using only 1 thread, essentially

setting the batch size to 1 as the thread concurrency represents the number of inferences that can

be performed in parallel on the DPU. Accuracy on the test dataset was recorded on the device.

Again, the latency performance was averaged over 50 trials.

3.6 Power Benchmarks

Power results are reported in terms of the dynamic power to compare how power utilization varies

across the models. Additionally, the results are reported as the throughput (images/sec) per watt of

peak load power. This metric helps to identify the overall efficiency of inference on the devices. To

avoid device-dependent frameworks, an external power meter was used to measure the total device

power for the three devices under test. Specifically, we used the Poniie PN2000 Electricity Usage

Monitor. Idle power measurements were gathered when no foreground processes were running

on the devices. Then, we measured the power during the execution of each model and recorded

the peak load power. The dynamic power consumed during the execution of each model can be

found by subtracting the idle power from the peak load power measurements. We found these

measurements to be precise enough to identify trends in power across scaling methods and scaling

ratios.

4 RESULTS

The results section details model metrics, device performance, and quantization results. For graph

legibility, VGG-11, MobileNetV2, and ResNet-50 are abbreviated as VGG11, MNV2, and RN50, re-

spectively. This research aims to compare scaling methods rather than model types. Therefore, we

will only draw comparisons between the two methods and not between model types. The uniform-

scaling 1.00× models represent the original models before any scaling. Error bars representing the

standard deviation are included on all latency and memory usage charts, as well as the accuracy
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Fig. 2. Model metrics for three models under study with CIFAR-10. Each marker represents the four scaling

ratios from left to right: 0.25×, 0.50×, 0.75×, 1.00×.

bars for the NVIDIA AGX Xavier due to the non-deterministic nature of engine generation. For

latency, memory, and dynamic power, a lower value is better. For accuracy and throughput per

watt, a higher value is better.

Accuracy measurements are included in this study to relate changes in accuracy given the scal-

ing methods. Note that all models used the same hyperparameters to make the study of multi-

ple methods, models, and scaling ratios possible. VGG-11 accuracy results in this study are sim-

ilar to the original NeuralScale research [18]. Additional discussion on accuracy will follow in

Section 5.2.

4.1 Model Metrics on CIFAR-10

The maximum accuracy achieved on each model versus the number of parameters are displayed

in Figures 2(a), 2(b), 2(c). Due to the wide range in the number of parameters in each model, each

graph is displayed separately. Note that the marked points from left to right represent the four

scaling ratios in order: 0.25×, 0.50×, 0.75×, and 1.00×. The goal of the NeuralScale method is to

achieve a higher accuracy for the same number of parameters. This goal was achieved for VGG-

11 and MobileNetV2 as the NeuralScale line is always above the uniform-scaling line. However,

that is not the case for the ResNet-50 model tested. While likely a limitation of using the same

hyperparameters for all models, it is important to note that NeuralScale alone is not guaranteed

to generate a more accurate model than uniform scaling.

Figures 2(d), 2(e), 2(f) show the accuracy compared with the number of FLOPs in each model. For

VGG-11 and MobileNetV2, the two lines begin to overlap. When comparing the NeuralScale 0.50×
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Table 3. CDL of the CIFAR-10 Models Tested Compared with the

Range of MFLOPs for the Scaling Methods

Uniform Scaling NeuralScale

Model CDL MFLOPs range MFLOPs range

VGG-11 23 20.06–306.75 83.37–992.31

MobileNetV2 111 5.51–58.01 44.98–591.98

ResNet-50 118 11.80–168.69 70.99–1619.63

The MFLOPs value of the original model is represented by the top of the

range for the uniform-scaling models.

VGG-11 model to the original, equivalent to uniform-scaling 1.00×, the large reduction in param-

eters only leads to a 0.9× increase in FLOPs with a near identical accuracy, only 0.14% different.

For MobileNetV2, the NeuralScale 0.25×may reduce the parameter count over the uniform-scaling

0.75×model, but the NeuralScale model is actually 0.10% less accurate with 1.3×more FLOPs. With

ResNet-50, all uniform-scaling models used far fewer FLOPs than their NeuralScale counterparts,

often at significant accuracy improvements. Overall, these results indicate that simply scaling to

target a number of parameters ignores the potential impact on the number of FLOPs in the model,

which is influential to the overall accuracy of the models.

Figures 2(g), 2(h), 2(i) show the number of FLOPs in a model versus the number of parameters.

By fitting a line to the number of FLOPs required for each parameter, we can see the rate at which

the FLOPs increase relative to the parameter count. All lines have an R2 > 0.999. Compared with

uniform scaling, the NeuralScale models increase the FLOPs per parameter at a rate of 3.2× for

VGG-11, 10.5× for MobileNetV2, and 9.8× for ResNet-50. This result indicates that NeuralScale

learns to increase the number of FLOPs in a model for a target parameter count to try to achieve

a more accurate model.

Finally, the CDL for each model and the FLOPs range for the models generated by uniform

scaling and NeuralScale are displayed in Table 3. Parameter scaling does not affect the depth of

the networks; therefore, all models with the same base have the same CDL. As noted in [16], CDL

is a more meaningful metric for memory-bound devices such as GPUs, while FLOPs are more

meaningful on compute-bound devices such as CPUs.

4.2 CPU Results

The CPU results are first presented with a comparison of scaling methods while varying the best

model. Next, a comparison of scaling methods while varying the dataset is presented using the

MobileNetV2 model. Finally, a summary is provided for the reader’s benefit. For the CPU device,

the idle power was measured to be 3.1 W.

4.2.1 Comparing Scaling Methods with Three Models on CIFAR-10. The inference results for the

float32-based models on the ARM Cortex-A72 cores are shown in Figure 3. Across all three devices,

the dashed teal lines represent the performance of the original models, while the dashed red line

represents a real-time target of 60 FPS. Latency results for a batch size of 1 are shown in Figure 3(a).

Note that the uniform-scaling models are always faster than their NeuralScale counterparts. On

the CPU, many models struggle to meet real-time performance, represented by the dashed red line

on the latency graph. For uniform scaling, one VGG-11 model, three MobileNetV2 models, and

one ResNet-50 model achieve this constraint. However, with NeuralScale models, only the 0.25×

models achieve real-time latency. NeuralScale is designed for resource-constrained systems, but

it does not optimize for latency, thus it is important to consider the impact of the scaling method

toward reaching real-time performance.
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Fig. 3. Arm Cortex-A72 float32 model performance using ONNX Runtime. The dashed red line represents a

real-time latency target of 60 FPS. The dashed teal lines denote the performance of the original, unscaled

models (equivalent to uniform scaling 1.00×).

Also note that, as shown in Figure 3(b), the memory utilization between the two scaling types is

always approximately equivalent. The memory consumption has a Pearson correlation coefficient

of 0.999 (p=1.6 · 10−30) with the number of parameters in the model. This result indicates that, by

adjusting the number of parameters, it is possible to estimate the amount of memory that will be

used by the device. However, given the larger number of FLOPs in the NeuralScale models, they

tend to run more slowly on a less parallel device like a CPU.

In terms of power, uniform-scaling models always use less dynamic power than their Neu-

ralScale counterparts, though not by large margins. Given the much faster inference speeds of

the uniform-scaling models, throughput per watt of peak load power is significantly higher for

uniform-scaling models over NeuralScale. Therefore, we conclude that uniform-scaling models

are more efficient for processing on a CPU than their NeuralScale counterparts. For example, to

achieve any improvement over the baseline model with MobileNetV2, the scaling ratio has to be

set to 0.25× for NeuralScale, while all ratios tested are more efficient for uniform scaling.

Figures 4(a), 4(b), 4(c) show the accuracy versus average latency performance on the three mod-

els tested. For VGG-11 and MobileNetV2, we see that the increases in accuracy come at the clear

tradeoff of latency on the CPU device. As the uniform scaling and NeuralScale lines overlap, we can

see how higher accuracies are only achieved with higher latencies. For the ResNet-50 model, the

uniform scaling implementations are always more accurate, often at lower latencies. Figures 4(d),

4(e), 4(f) show the accuracy versus average memory utilization on the three models tested. Given

that parameter count is highly correlated with memory utilization on the CPU, we do not see a
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Fig. 4. Arm Cortex-A72 float32 model accuracy tradeoffs using ONNX Runtime. The dashed red line repre-

sents a real-time latency target of 60 FPS.

tradeoff between memory and accuracy. On the CPU, NeuralScale models achieve higher accura-

cies for the same memory for VGG-11 and MobileNetV2, while uniform scaling achieves a higher

accuracy for the same memory for ResNet-50.

Next are the results for the int8-based models on the ARM Cortex-A72, shown in Figure 5. Again,

similar trends are evident to those found in the float32 models. The uniform-scaling models always,

and quite often significantly, outperform their NeuralScale counterparts in terms of inference la-

tency. On average, the quantized NeuralScale models are 3.3× slower than their uniform-scaled

counterparts. Several more models now achieve real-time performance. For VGG-11, the three

smallest uniform-scaling models are faster than 16.67 ms, while only one NeuralScale model is.

For MobileNetV2, all uniform-scaling models meet the real-time constraint, while only the small-

est NeuralScale model does. Finally, for ResNet-50, three uniform-scaling models are real-time,

while only one NeuralScale model is.

Memory utilization between the two scaling types again tends to be approximately the same.

However, an unexpected result in terms of model accuracy occurred for the NeuralScale 0.25×

ResNet-50 model. Its uniform-scaling counterpart was able to quantize well, but the NeuralScale

version of the model was not able to do so, with an accuracy drop of approximately 48% due to quan-

tization. This drop is likely due to the change in model structure resulting from the NeuralScale

process, discussed in Section 5.1.

Different from the float32 models, the int8 uniform-scaling VGG-11 models use more power than

their NeuralScale counterparts. Uniform-scaling int8 MobileNetV2 and ResNet-50 models still use

less power than NeuralScale versions, as shown in Figure 5(d). The uniform-scaling VGG-11 model

can operate more efficiently on the hardware than NeuralScale, as shown by its significantly higher

throughput per watt in Figure 5(e). Additionally, the other uniform-scaling models always remain

significantly more efficient in terms of throughput per watt than their NeuralScale counterparts.

The accuracy versus latency charts shown in Figures 6(a), 6(b), 6(c) are similar to the trends

shown on the float32 models. Again we see that accuracy gains for NeuralScale VGG-11 and

MobileNetV2 models come at the cost of latency, while the uniform-scaling ResNet-50 models
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Fig. 5. Arm Cortex-A72 int8 model performance using ONNX Runtime. The large error in quantization ac-

curacy for NeuralScale 0.25× ResNet-50 is likely caused by the change in model structure resulting from

the NeuralScale process. The dashed red line represents a real-time latency target of 60 FPS. The dashed

teal lines on the bar graphs denote the performance of the original, unscaled models (equivalent to uniform

scaling 1.00×).

Fig. 6. Arm Cortex-A72 int8 model accuracy tradeoffs using ONNX Runtime. The dashed red line represents

a real-time latency target of 60 FPS.
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Fig. 7. Arm Cortex-A72 float32 dataset comparison using ONNX Runtime. The dashed red line represents a

real-time latency target of 60 FPS. The dashed teal lines denote the performance of the original, unscaled

models (equivalent to uniform scaling 1.00×).

outperform their NeuralScale counterparts. In Figures 6(d), 6(e), 6(f), we see memory utilization

again is highly correlated with parameter count, and therefore, the most accurate model should be

used when targeting memory utilization.

4.2.2 Comparing Scaling Methods with Two Datasets on MobileNetV2. The results for CIFAR-10

and tinyImageNet with float32 MobileNetV2 models are shown in Figure 7. In terms of latency,

NeuralScale models are again slower than their uniform-scaling counterparts. For CIFAR-10, Neu-

ralScale models are 3.6× slower, while for tinyImageNet, they are 3.3× slower. The difference

between the memory consumptions of NeuralScale and uniform scaling is similar and not signifi-

cantly impacted by the dataset.

Interestingly, in this study, the NeuralScale models are less accurate on tinyImageNet than the

uniform-scaling models. This trend differs from the results of [18]. While it is likely caused by

non-optimized hyperparameters, it does indicate that the NeuralScale method is potentially more

sensitive to hyperparameter choices, making it more difficult to use than uniform scaling.

Finally, for the power measurements, there are no significant differences in dynamic power,

though NeuralScale models do tend to use slightly more power than their uniform-scaling coun-

terparts. Our results also indicate that dataset has essentially no effect on throughput per watt of

peak load power. Uniform scaling always significantly outperforms NeuralScale.
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Fig. 8. Arm Cortex-A72 int8 dataset comparison using ONNX Runtime. The dashed red line represents a

real-time latency target of 60 FPS. The dashed teal lines denote the performance of the original, unscaled

models (equivalent to uniform scaling 1.00×).

Similar results were gathered for the quantized models, shown in Figure 8. NeuralScale models

were 3.9× and 3.5× slower than their uniform-scaling counterparts for CIFAR-10 and tinyIma-

geNet, respectively. The trends in memory utilization, accuracy, power, and throughput per watt

match the trends seen on float32 models.

4.2.3 CPU Summary. On the CPU, uniform-scaling models are consistently faster than Neu-

ralScale models. Memory usage is approximately equivalent. The difference in accuracy is depen-

dent on the model and dataset. The dynamic power is approximately consistent, though uniform-

scaling models often use slightly less power. Finally, the throughput per watt is consistently much

higher for uniform scaling than NeuralScale.

4.3 GPU Results

In this section, we report the results from the NVIDIA Jetson AGX Xavier. Similar to the CPU

results, we first report the results for the three base models trained on CIFAR-10, followed by a

comparison of MobileNetV2 trained on the two datasets. Finally, we provide a summary for review.

For the GPU device, the idle power was measured to be 8.1 W.

4.3.1 Comparing Scaling Methods with Three Models on CIFAR-10. On the NVIDIA Jetson AGX

Xavier, the uniform-scaling models once again tend to perform faster than their NeuralScale coun-

terparts, but often by a small margin, as shown in Figure 9(a). As the device has greater parallel

computational capacity than the CPU testbed, the CDL is the more impactful metric. The GPU is
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Fig. 9. NVIDIA Jetson AGX Xavier float32 model performance using TensorRT. Error bars for the inference

memory footprint are non-negligible. This variance is attributed to the non-deterministic behavior of engine

generation caused by large variations in the memory required for the activations when running the model.

The dashed teal lines denote the performance of the original, unscaled models (equivalent to uniform

scaling 1.00×).

therefore less sensitive to the additional FLOPs of the NeuralScale models, and the execution time

difference is less pronounced. The slowest model is roughly 4.5 ms, placing its percent of the overall

real-time processing budget at approximately 27%. Therefore, in the worst case, these models leave

plenty of processing time for other tasks across all three model types. The memory results on the

AGX are more irregular, as shown in Figure 9(b). The trend on the VGG-11 model shows that Neu-

ralScale models tend to use slightly more memory than their uniform-scaling counterparts. The

ResNet-50 results also similarly follow this trend, though there is more variance in the memory us-

age for the uniform-scaling models. This variance is caused by the differing memory usage of the 50

trials of TensorRT engine generation, showing that TensorRT will conduct tradeoffs between mem-

ory usage and runtime depending on the kernels it selects for the engine to optimize performance.

For MobileNetV2, the uniform-scaling models at 0.25× and 0.75× use an unexpectedly large

amount of memory. This large utilization is attributed to large amounts of memory being used

for the activations, one of the three components summed to provide the estimate of overall run-

time memory on the GPU devices. This results indicate that, especially given the large variance at

0.25×, sometimes the engine generated by TensorRT uses far more memory than even the same

model on different runs of the engine generation. We generated 50 separate engines for each in-

dividual model, resulting in large differences in estimated memory consumption for some of the

models, shown by the large error bars in Figure 9(b). Given the non-deterministic nature of engine
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Fig. 10. NVIDIA Jetson AGX Xavier float32 model accuracy tradeoffs using TensorRT.

generation, it is therefore wise to attempt engine generation multiple times to confirm the most effi-

cient engine is created. It also indicates that TensorRT, on certain attempts to generate the engines,

concluded that allocating additional memory for activations was worth the cost for improvements

to latency given which kernels it decided to use.

Next are the dynamic-power results, shown in Figure 9(d). On VGG-11, there is not a consistent

difference in dynamic-power utilization between uniform scaling and NeuralScale. However, uni-

form scaling always achieves consistently better throughput per watt than NeuralScale as shown

in Figure 9(e). On MobileNetV2 and ResNet-50, the uniform-scaling models always use less power

and have better throughput per watt than their NeuralScale equivalents.

Figures 10(b), 10(a), 10(c) show the accuracy versus latency of the models. Once again, we see

that the increase in accuracy comes at the cost of latency for VGG-11 and MobileNetV2. Addi-

tionally, the NeuralScale line tends to be slightly above the uniform scaling line for the same

latency, though the values are close. For ResNet-50, we again show that uniform scaling is best

due to its higher accuracy. Figures 10(d), 10(e) show the accuracy versus memory trends. Note

that MobileNetV2 is not included due to the large variations in memory. Based on these graphs,

NeuralScale achieves better accuracy for the same memory utilization for VGG-11, while uniform

scaling outperforms NeuralScale on ResNet-50.

Quantized-model inference results are shown in Figure 11. TensorRT failed to generate a quan-

tized engine for the NeuralScale 0.25× ResNet-50 model as it was unable to calibrate the activations

in the model. For the NeuralScale 1.00× ResNet-50 model, it failed to generate an engine as it ran

out of memory on the device. These results are therefore not included in the bar charts. Again,

the inference latency of the uniform-scaling models is less than that of the NeuralScale models.

Across all model types, inference latency is now near or below 1.2 ms. In the worst case, the mod-

els are only using about 7.2% of the real-time latency budget, leaving plenty of processing time

for other tasks. In general, the NeuralScale versions are 1.2× slower than their uniform-scaling

counterparts. In terms of runtime-memory usage, the NeuralScale models use more memory than

their uniform-scaling counterparts, but not by as large of a margin as seen in the float32 models.

The dynamic power of the quantized uniform-scaling VGG-11 models, displayed in Figure 11(d),

is consistently higher than their NeuralScale counterparts. This larger dynamic power is likely
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Fig. 11. NVIDIA Jetson AGX Xavier float32/int8 model performance using TensorRT. TensorRT failed to gen-

erate models for NeuralScale 0.25× and 1.00× ResNet-50 due to calibration and memory errors, respectively.

The low accuracy performance of the other NeuralScale ResNet-50 models is likely caused by the change in

model structure due to the NeuralScale process. The dashed teal lines denote the performance of the original,

unscaled models (equivalent to uniform scaling 1.00×).

caused by the model better utilizing the device, as uniform scaling is more efficient in terms of

throughput per watt, shown in Figure 11(e). Similar to the float32 models, the uniform-scaling

MobileNetV2 and ResNet-50 models consistently use less power and are more efficient than the

NeuralScale versions of these models.

When quantized, Figure 12(a) indicates that uniform scaling and NeuralScale have similar ac-

curacy for each millisecond of latency for VGG-11. Figures 12(b),12(c), however, show that uni-

form scaling outperforms NeuralScale in terms of accuracy versus latency on MobileNetV2 and

ResNet-50. The results are similar for accuracy versus memory as Figure 12(d) shows NeuralScale

outperforming uniform scaling for VGG-11 and the opposite for MobileNetV2, Figure 12(e), and

ResNet-50, Figure 12(f). Also note that for NeuralScale 0.75× MobileNetV2, the tools struggled

to quantize as well, leading to a drop in accuracy. This result indicates that QAT would likely be

needed to improve accuracy performance.

Figure 13 shows the memory usage per parameter for all models on the AGX Xavier. Note the log

scale on the y-axis. With float32 models, NeuralScale uses an average of 4.6× the runtime memory

of uniform-scaling models. For the int8 models, the increase is not nearly as large at 1.3× the

memory usage. Essentially, on the GPU, the modified parameter layout of the NeuralScale models

becomes less efficient than simply scaling the layers uniformly with float32 values. This result is

further evidence that, especially on the GPU, simply scaling to a set number of parameters does
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Fig. 12. NVIDIA Jetson AGX Xavier float32/int8 accuracy tradeoffs using TensorRT.

Fig. 13. AGX memory usage per parameter. Note the log scale on the y-axis.

not guarantee equivalent or efficient runtime-memory usage when using float32 values, while the

trend observed on the CPU showed parameter count correlated well with memory usage.

Another result that is important to note is that neither of the two working NeuralScale ResNet-

50 models, 0.50× and 0.75×, could be quantized with high accuracies shown in Figure 11(c). Their

uniform-scale counterparts had no quantization issues. Even when we attempted to use all 50,000

training images for the PTQ calibration dataset, the achieved accuracy was only 25% for the Neu-

ralScale 0.75× model. Given this result, uniform-scaled models are the better option when using

quantization on the AGX Xavier.

4.3.2 Comparing Scaling Methods with Two Datasets on MobileNetV2. When comparing the two

scaling methods across the two datasets, uniform-scaling float32 models continue to be faster than

their NeuralScale counterparts, displayed in Figure 14(a). For CIFAR-10, the NeuralScale models

are an average of 1.6× slower. With the larger images of tinyImageNet, NeuralScale models are

1.8× slower than their uniform-scaling counterparts.
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Fig. 14. NVIDIA Jetson AGX Xavier float32 MobileNetV2 dataset comparison using TensorRT. The dashed

teal lines denote the performance of the original, unscaled models (equivalent to uniform scaling 1.00×).

The estimated runtime-memory usage for the tinyImagNet MobileNetV2 model contains similar

variations to those seen with the CIFAR-10 models, Figure 14(b). These results indicate that the

memory utilization can vary in terms of activation memory when using MobileNetV2 with this

version of TensorRT. However, for models with lower variation, uniform-scaling models tend to

use less memory than the NeuralScale models.

In terms of power utilization, the dataset does not change the relationship between NeuralScale

and uniform scaling, Figure 14(d). Once again, the uniform-scaling models consistently use less

power than their NeuralScale counterparts. However, the dataset itself can change dynamic power

as the tinyImageNet models use more power than the CIFAR-10 models. With a more complex

dataset, the models have more operations to do, likely leading to an increase in power. In terms of

throughput per watt, Figure 14(e), uniform scaling is more efficient than NeuralScale. Additionally,

performance across datasets is similar.

Finally, the results for the int8 models are shown in Figure 15. NeuralScale models are an average

of 1.2× and 1.4× slower for CIFAR-10 and tinyImageNet, respectively. Additionally, there was

significant memory variation, though NeuralScale models consistently use more memory than

uniform scaling. Finally, power results are similar to the float32 models with approximately similar

throughput per watt between the scaling methods.

4.3.3 GPU Summary. On the GPU, the uniform-scaling models are consistently faster than

their NeuralScale counterparts. Estimated memory utilization can vary based on the implemen-

tation chosen by TensorRT. Additionally, power utilization is lower for uniform scaling, which

also achieves higher throughput per watt.
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Fig. 15. NVIDIA Jetson AGX Xavier float32/int8 MobileNetV2 Dataset Comparison using TensorRT. The

dashed teal lines denote the performance of the original, unscaled models (equivalent to uniform scaling

1.00×).

4.4 FPGA Results

This subsection presents the results gathered on the Xilinx ZCU104. Again, we first present results

comparing the scaling methods across three models with CIFAR-10, followed by results across

datasets and a device summary. For the FPGA device, the idle power was measured to be 16.6 W.

4.4.1 Comparing Scaling Methods with Three Models on CIFAR-10. The Xilinx ZCU104 using Vi-

tis AI and Xilinx’s DPU only support int8-based models. Inference results are shown in Figure 16.

For VGG-11 and MobileNetV2, the uniform-scaling models are slightly faster than the NeuralScale

models, displayed in Figure 16(a). However, for ResNet-50, the performance of some of the uniform-

scaling models, 0.25× and 0.50×, is slightly slower than the NeuralScale models. Overall, the num-

ber of parameters in the model is highly correlated with the runtime on the FPGA with a Pearson

correlation of 0.924 (p=1.2 · 10−10). This result indicates that parameter scaling is an appropriate

technique for FPGA-based devices.

Given that the ZCU104 FPGA fabric is not reconfigured to run different models and always

has the same DPU-based bitstream, memory measurements were less sensible for this device.

On the FPGA, the accuracy performance of the generated models is shown in Figure 16(b). The

NeuralScale ResNet-50 models did not reach the expected accuracies. Based on these results, the

structure of the NeuralScale models was more challenging for Vitis AI to quantize satisfactorily

using PTQ. Techniques like QAT are therefore needed for improved accuracy performance with

NeuralScale.
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Fig. 16. Xilinx ZCU104 int8 model performance using Vitis AI and Xilinx’s DPU IP-core. The dashed teal lines

denote the performance of the original, unscaled models (equivalent to uniform scaling 1.00×).

Fig. 17. Xilinx ZCU104 int8 model accuracy tradeoffs using Vitis AI and Xilinx’s DPU IP-core.

Next, the power results are presented in Figure 16(c). The dynamic-power trends on the FPGA

are again similar to the other devices with uniform scaling consistently outperforming NeuralScale.

However, in terms of throughput per watt, Figure 16(d), there is no clear advantage between uni-

form scaling and NeuralScale. The efficiency of the models tends to be very similar, with Neu-

ralScale being more efficient than uniform scaling for some of the ResNet-50 models.

Finally, we compare the accuracy versus latency results for the ZCU104. Figure 17(a) shows

NeuralScale outperforming uniform scaling as it is always more accurate for the same latency on

VGG-11. For MobileNetV2, at the two smaller scaling ratios, Figure 17(b) indicates that NeuralScale
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Fig. 18. Xilinx ZCU104 int8 dataset comparison using Vitis AI and Xilinx’s DPU IP-core. The dashed teal

lines denote the performance of the original, unscaled models (equivalent to uniform scaling 1.00×).

is more accurate than uniform scaling, though performance becomes similar at larger values. Given

that the latencies of these models are only a minuscule part of the overall real-time processing

budget, it is evident that NeuralScale models are the best option for FPGAs. Finally, Figure 17(c)

indicates that uniform scaling is once again faster with higher accuracies than NeuralScale on

ResNet-50.

4.4.2 Comparing Scaling Methods with Two Datasets on MobileNetV2. The results comparing

scaling methods on MobileNetV2 across datasets are shown in Figure 18. In terms of latency, the

NeuralScale models are more impacted by the growth in image size of tinyImageNet compared

with CIFAR-10. NeuralScale models are only 1.1× slower than their uniform-scaling counterparts

on CIFAR-10. However, with the larger image size and additional growth in operations, they are

1.6× slower than uniform scaling on tinyImageNet. These results indicate that the growth in image

size was more detrimental for the more complicated NeuralScale models.

Finally, in terms of dynamic power, NeuralScale models continue to use more power than uni-

form scaling, Figure 18(c). Interestingly, the dynamic power of the tinyImageNet models is lower

than the CIFAR-10 models. In terms of throughput per watt, the dataset does not have a large

impact on the scaling methods as efficiency is similar.

4.4.3 FPGA Summary. For the FPGA, NeuralScale models are generally slower than uniform-

scaling models, with larger images slowing down NeuralScale models more. However, latency
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Fig. 19. Using ARM Cortex-A72, comparison of the performance of select models to the original model (Uni-

form scaling, 1.00×, float32).

and parameter count have a large correlation when analyzed on the CIFAR-10 dataset. Uniform-

scaling models use less power. However, depending on the model, throughput per watt is relatively

consistent between the two scaling methods.

4.5 Parameter Scaling versus Quantization Performance on CIFAR-10

In this subsection, we compare an original float32 model to uniform and NeuralScale float32 models

at 0.50×. We also compare these models to an int8 version of the original model. We chose a scaling

ratio of 0.50× for this case study as it represents the middle of the range for the ratios tested. We

calculate the speedup for each of the optimized models over the original float32 model. We also

compare the reduction in memory usage by dividing the original model’s memory usage by the

value for each of the three optimizations. The dynamic-power improvement is also compared by

dividing the original model’s dynamic power by the reduced model’s power. As a reminder, the

dynamic power is the peak load power minus the idle power. The improvement to the throughput

per watt (TpW) is also presented. Additionally, we report the accuracy of all models in these

comparisons. Please note that the accuracy range depicted on the charts in this section is reduced

to 70–100% to make it easier to compare the variations between the optimization methods.

Figure 19 shows these results on the ARM Cortex-A72 device. The NeuralScale models see the

least improvement in latency, including a slowdown for the MobileNetV2 model. Uniform scaling

improves the latency more than quantization for VGG-11, but quantization has a larger speedup

for MobileNetV2 and ResNet50. Across the three models tested, quantization improves latency per-

formance by 3.1×. Uniform scaling improves latencies by slightly more at 3.2×, while NeuralScale

only improves latencies by 1.4×. However, in terms of memory usage, Figure 19(a), both Neu-

ralScale and uniform scaling have a larger improvement. In terms of dynamic power, none of the

reduction methods provide a significant improvement, Figure 19(c). Finally, in terms of throughput
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Fig. 20. Using the Jetson AGX Xavier, comparison of the performance of select models to the original model

(Uniform scaling, 1.00×, float32).

per watt, shown in Figure 19(d), NeuralScale is consistently the worst. Uniform scaling performs

best with VGG-11, but quantization produces the best improvement for the other two models.

These results indicate that quantization is generally better for improving latencies on the ARM

Cortex-A72 while the scaling methods are better for improving memory usage.

On the AGX Xavier, quantization always outperforms the scaling methods in terms of latency,

Figure 20(a), and memory usage, Figure 20(b). Latencies are improved by 2.7× with quantization

alone, while uniform scaling improves performance by 1.8×, and NeuralScale improves by 1.3×.

Dynamic power is improved by 1.3× with quantization. With uniform scaling it is also improved

by 1.3×, while with NeuralScale it is improved by 1.2×. Note that if the peak load power were to

be considered, these differences would be smaller. Additionally, quantization always produces the

largest improvement to throughput per watt, as shown in Figure 20(e). These results indicate that

TensorRT and the AGX are well optimized for quantization. There is also minimal overall change

to accuracy, shown in Figure 20(c), though a more complex scheme like QAT could be used to

improve the performance of the quantized MobileNetV2 model.

Essentially, quantization was able to achieve similar or better results to that of both uniform

scaling and NeuralScale at a ratio of 0.50× on the three models tested. This result indicates that

quantization can be considered as an alternative to parameter scaling for model deployment. It is

equally important, therefore, to consider the practicality of training models with the two different

optimizations to decide which tool should be used first, discussed in Section 5.5.

5 DISCUSSION

The discussion section highlights the main lessons learned from this research. First, insight is

provided as to why NeuralScale models have significantly more FLOPs than their uniform-scaling

counterparts. Next, we discuss tradeoffs for the accuracy of the models in this study. This
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Fig. 21. Layer widths at 1.00× scaling for models trained on CIFAR-10. Y -axis represents layer widths, x-axis

represents depth in network.

discussion is followed by details about selecting a scaling ratio and the challenges of training

scaled models. Finally, we provide a discussion of lessons for using parameter scaling when

deploying models.

5.1 Model Layout

One of the interesting aspects of the NeuralScale method is how it adjusts the widths of the layers

in models, as shown in Figure 21. In this figure, the y-axis represents the width of a layer, while

the x-axis represents the layer number, or depth, in the network. The layer widths are shown for a

scaling ratio of 1.00× as this ratio depicts the model layout with the number of parameters chosen

by the original model designers. As the scaling ratio is 1.00×, the uniform-scaling method simply

returns the original network layout.

Figure 21 is insightful because it shows the structure for a more efficient architecture, in terms of

accuracy per parameter, as determined by NeuralScale. NeuralScale tends to shift the parameters

from the end of the network to the beginning or middle. In CNNs, earlier layers capture more

general features like textures while later layers capture more specific details [41]. Figure 21 displays

how NeuralScale infers that general features are more useful on CIFAR-10. This result is interesting

because most of the models as designed by the original sources tend to place more parameters near

the end of the network.

A possible reason why NeuralScale may shift so many parameters to the beginning of the net-

work is that when it trains and attempts to prune an early layer, it discovers a larger drop in

accuracy, and therefore identifies it as more important. As these earlier layers tend to hold more

fundamental shapes [41], removing one of them would likely remove a main component of higher-

level features. NeuralScale perhaps overparameterizes the early layers even further as it continues

to place more emphasis on having duplicates of more fundamental features rather than learning

more complex high-level features. We also hypothesize that the vastly different model layouts, es-

pecially for ResNet-50, meant that some of the quantization tools struggled with the NeuralScale

versions of these models. Given that the uniform-scaled ResNet-50 models did not struggle to quan-

tize with ONNX Runtime, TensorRT, or Vitis AI, it seems likely that the non-standard structure in

the NeuralScale models made it more difficult for these tools to perform PTQ well.

For the NeuralScale models, there is an observed large increase in FLOPs for the same parameter

count as uniform scaling. This result can be explained by the relationship between FLOPs and the

model layout. Earlier in the network, there is also a larger spatial dimension. The relationship of

FLOPs in a convolutional layer is on the order of O(n2) to the spatial dimension due to the height

and width of the image factoring into the FLOPs calculation. Therefore, there is a large increase in

the number of FLOPs to be performed when more of the parameters are used for these earlier filters.
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5.2 Accuracy Tradeoffs

Given that the same hyperparameters were used for training all models, we cannot guarantee

that all models are the most accurate possible. However, it is also important to note that several

tools, namely TensorRT and Vitis AI, failed to generate accurate models with NeuralScale ResNet-

50 models when attempting quantization with CIFAR-10. Therefore, extra care needs to be taken

in the form of QAT to try to improve performance. Doing so, though, will result in increased

complexity, which shows the value of a simpler scaling method like uniform scaling.

Accuracy in this study is further limited because parameter scaling often removes the ability to

perform transfer learning. When using transfer learning, weights from a model pre-trained on a

more complex dataset like ImageNet [5] are used as an initialization for the model being trained on

a new dataset. However, without using standard model sizes, it is often difficult to use pretrained

weights to help improve the accuracy of a model. There are several methods [4, 8] that attempt

to transfer weights between models of different sizes, but these methods have other limitations

and are outside the scope of this study. Not using transfer learning can increase the challenge of

creating the most accurate model for a given task.

Additionally, NeuralScale ResNet-50 models were less accurate than their uniform-scaling coun-

terparts. This result is perhaps most interesting because NeuralScale is designed to produce more

accurate models per parameter, but it failed to do so on CIFAR-10 in this study. Therefore, the

additional complexity of the NeuralScale pipeline is not always justified. NeuralScale was also

less accurate than uniform scaling on MobileNetV2 with tinyImageNet, differing from the results

of Reference [18]. While additional accuracy could likely be gained via an exhaustive hyperparam-

eter search, this would be prohibitively expensive given the training times of architecture descent

and NeuralScale as discussed in Section 5.4. It also shows that NeuralScale is sensitive to hyperpa-

rameter selection in practice, making it more difficult to recommend for other models and datasets

due to these tradeoffs.

Finally, we consider VGG-11 and MobileNetV2, which both showed consistent accuracy versus

latency tradeoffs on our test platforms with CIFAR-10. On the embedded CPU, when targeting

latency, both methods produced similar results. When targeting runtime-memory utilization, Neu-

ralScale outperforms uniform scaling. For the embedded GPU, again both methods perform simi-

larly in terms of latency, while results are mixed for memory utilization. Finally, on the embedded

FPGA, NeuralScale slightly outperforms uniform scaling with generally higher accuracies at the

same latency.

5.3 Scaling Ratio Selection

A major challenge with parameter scaling methods for deployment is setting the scaling ratio.

While a smaller ratio reduces the parameter count, in the case of NeuralScale, it does not neces-

sarily lead to better on-device performance. One of our main contributions is, therefore, guidance

on setting a scaling ratio based on the empirical results of this study.

Table 4 shows the estimated linear relationship between latency and the number of parameters,

while Table 5 shows the estimated linear relationship between device memory and parameter count.

Using one of the equations from the tables, we can solve for a scaling ratio, S , with Equation (1).

Pt represents the target parameter count, which can be estimated using the tables. In this equation,

y represents the target latency (in ms) or memory usage (in MB). Po is the value of the parameter

count in the original model.

S ≈

√
Pt

Po

=

√
(y − b)/m

Po

. (1)
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Table 4. Linear Equations (y = mx+b) for Estimating Latency Given a

Parameter Count

Device Precision Pearson Correlation Slope (m) Bias (b)

CPU
float32 0.786 (p = 5.2 · 10−6) 5.7 · 10−6 17.9
int8 0.648 (p = 6.1 · 10−4) 2.2 · 10−6 9.7

GPU
float32 0.850 (p = 1.5 · 10−7) 1.6 · 10−7 9.6 · 10−1

int8 0.546 (p = 8.6 · 10−3) 2.8 · 10−8 5.1 · 10−1

FPGA int8 0.924 (p = 1.2 · 10−10) 1.7 · 10−7 6.9 · 10−1

Results assume 32 × 32-pixel images, such as CIFAR-10. (y = latency (ms),

x = parameters).

Table 5. Linear Equations (y=mx+b) for Estimating Memory Usage

Given a Parameter Count

Device Precision Pearson Correlation Slope (m) Bias (b)

CPU
float32 0.999 (p = 1.6 · 10−30) 4.2 · 10−6 9.3
int8 0.991 (p = 8.6 · 10−21) 1.8 · 10−6 9.9

GPU
float32 0.391 (p = 5.9 · 10−2) 4.0 · 10−6 62.5
int8 0.994 (p = 7.8 · 10−21) 1.0 · 10−6 1.3

Results assume 32 × 32-pixel images, such as CIFAR-10. (y = memory (MB),

x = parameters).

It is, of course, important to note the Pearson correlation coefficients between the latency and

parameters and memory utilization and parameters. Given a lower Pearson correlation coefficient,

the less useful the linear equation will be at estimating a scaling ratio. In terms of latency require-

ments and estimating a scaling ratio, the linear equations are best for estimating float32 perfor-

mance on the GPU and int8 performance on the FPGA. For targeting a set memory utilization, the

linear equations are useful at both precisions on the CPU and with int8 on the GPU. Given these

equations, and the accompanying correlation values, we can now estimate a target scaling ratio

given a latency or memory constraint.

To compare the usability of these equations, we performed a brief case study with the CIFAR-

100 dataset [15], which is similar to CIFAR-10 but instead contains 100 classes. We attempted to

achieve real-time performance with uniform scaling on the ARM Cortex-A72 embedded CPU. The

result of Equation (1) is a scaling ratio of ≈ 0.82. Therefore, we chose a slightly more conservative

ratio of 0.80×. We then trained a MobileNetV2 model with uniform scaling at this ratio and also

attempted quantization on the unscaled model. Once the models were trained, we found that the

uniform scaling achieved a latency of 18.2 ms and an accuracy of 64 %. Therefore, even with an ap-

proximation for the optimal scaling ratio, we still failed to meet real-time performance of 16.67 ms

and would need to attempt training again with a smaller scaling ratio. On the other hand, the

quantized base MobileNetV2 model reached real-time performance on CIFAR-10 and continued to

do so with CIFAR-100 with a latency of 9.1 ms and an accuracy of 65.3 %, an improvement over

the float32 uniform-scaling model at a ratio of 0.80×. Again, we see the challenges of using scaling

methods for deployment. If quantization alone is not capable of meeting the latency requirements,

scaling is a useful tool. However, we conclude that quantization remains the best first step for

improving runtime performance.

5.4 Training Challenges

While this article is focused on the deployment performance of scaled models, it is also important to

note the changes to the training process when using these scaling methods. NeuralScale includes
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Table 6. Total Time to Run Architecture Descent on

Each Model for the 15 Iterations

Model Dataset Time

VGG-11 CIFAR-10 5h 22m 57s

MobileNetV2 CIFAR-10 7h 57m 52s

MobileNetV2 tinyImageNet 1d 6h 5m 52s

ResNet-50 CIFAR-10 1d 18h 1m 51s

Training times measured on an NVIDIA GTX 1080 Ti.

Fig. 22. Averaging training time per epoch of each model utilizing an NVIDIA GTX 1080 Ti, averaged over 30

epochs.

the pre-scaling step of architecture descent, which can be costly depending on the number of

parameters in a model. Architecture descent is dependent upon a dataset, and therefore, cannot be

performed once per model, but needs to be performed once per dataset+model combination. For

reference, Table 6 shows the times for architecture descent for each of the three models on CIFAR-

10 and the time of MobileNetV2 with tinyImageNet. As is evident on MobileNetV2, the larger image

sizes have a big impact on architecture descent time as the tinyImageNet dataset is 3.8× slower than

the CIFAR-10 version. ResNet-50 has significantly more parameters and is theoretically therefore

a model that would be more likely to be scaled to achieve better on-device performance. However,

having more parameters leads to much longer pruning times with architecture descent.

For both uniform scaling and NeuralScale, the models must be completely retrained if changing

the scaling ratio or changing the dataset. This could be costly if you do not know what scaling ratio

to use, though Section 5.3 provides intuition for selecting a value. Figure 22 shows the average

training time per epoch for each of the models. Note that since the NeuralScale models tend to

have more FLOPs, they are significantly costlier to train than their uniform-scaling counterparts.

For example, with 1.00× MobileNetV2, the NeuralScale model takes over 2.05× as long to train

as the uniform-scaling model on CIFAR-10. This tradeoff in training time is important to consider

depending on how many scaling ratio combinations may need to be tested to reach a target latency

or memory utilization and how often retraining is expected.

5.5 Recommendations for Model Deployment

When considering model deployment, reduction methods aim at improving a model’s inference

performance. As studied in this research, the results of the parameter scaling reduction method can

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 3, Article 38. Publication date: May 2024.



38:32 C. B. Gealy and A. D. George

be of mixed utility. A simple version like uniform scaling tends to give good latency and memory

improvements over the original model, but often at the cost of accuracy. NeuralScale generates

models that can be more accurate than the original but can perform worse in terms of latency and

memory usage.

One of the main challenges of parameter scaling is that training is performed after scaling the

model. Other reduction methods like structured pruning use a fully trained model that is then

pruned to reduce the model size [7]. This difference means that training techniques like transfer

learning can still be effectively used for achieving more accurate models.

In contrast to parameter scaling and similar to structured pruning, quantization is also done

after training the model. As shown in Figure 19, quantization is able to achieve similar speedups

to uniform scaling and better speedups compared with NeuralScale on the CPU, though it is not as

efficient in terms of memory usage. On the GPU in Figure 20, quantization is always better than the

two scaling methods in terms of speedup and memory-use reduction. All three of the frameworks

tested in this research had native support for quantization through PTQ. While parameter scaling

requires changing the model definition in the PyTorch code, quantization can be easily used to

reduce the size of a model. Quantization is therefore a natural first reduction method to use since

parameter scaling and structured pruning both require additional setup in the model definition to

enable the removal of filters.

6 CONCLUSION

Computer-vision models have continued to grow in size and complexity, while the desire to deploy

models on resource-constrained, embedded devices increases as machine learning is deployed on

edge devices. Therefore, it is important to explore methods that can help achieve better real-time

performance across devices. Parameter-scaling methods aim at adjusting the size of these large

and complex vision models by reducing the number of filters in the layers of the model. Uniform

scaling, originally used in MobileNets [12], uniformly multiplies the number of filters in a layer

by a consistent scaling value. NeuralScale, proposed in [18], attempts to fine-tune this process to

determine the importance of the different layers, allowing it to adaptively adjust the widths of

the layers. This research analyzed the performance of these models on embedded CPU, GPU, and

FPGA systems.

Models scaled using NeuralScale tend to be slower than their uniform-scaling counterparts on

the CPU and GPU testbeds. This slowdown is because NeuralScale tends to shift parameters ear-

lier in the model, resulting in more computationally intensive inference. On CIFAR-10, NeuralScale

models have 6.4×more FLOPs on average. Combining parameter scaling with quantization enables

additional performance gains. For VGG-11 and MobileNetV2, uniform scaling and NeuralScale

tend to have similar accuracy versus latency trends with CIFAR-10, showing how the increase in

accuracy for NeuralScale comes at the cost of latency reductions. On the FPGA testbed, both meth-

ods performed similarly, with NeuralScale achieving higher accuracies for the same latencies on

VGG-11 and MobileNetV2. When analyzing the tinyImageNet results, we found that NeuralScale is

very sensitive to hyperparameter selection, which can reduce the achieved accuracy. Additionally,

the increased computational intensity of the NeuralScale models reduces its utility for providing

improved performance.

Averaging over all the models tested on CIFAR-10, on the embedded CPU, NeuralScale models

perform inference at a speed that is 2.9× slower than their uniform-scaling counterparts while con-

suming the same amount of memory. On the embedded GPU, NeuralScale models are 1.3× slower

than their uniform-scaling counterparts, while they also consume 2.0× more memory. Inference

speed on the FPGA is the same on average. When optimizing for power, uniform scaling gener-

ally produces models that require less power, though results are mixed for VGG-11. Overall, we
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recommend using NeuralScale with VGG-11 and MobileNetV2 and uniform scaling with ResNet-

50 to realize the most accurate models for CIFAR-10. On tinyImageNet, however, we found that

our uniform-scaling versions were more accurate than NeuralScale, differing from the accuracies

achieved in [18]. While likely a result of non-optimal hyperparameters, it highlights the sensitivity

of the NeuralScale training process.

Between quantization and parameter scaling, this research demonstrated that quantization is

the best first step for model deployment on resource-constrained platforms. When comparing the

results on CIFAR-10, on the CPU, quantization alone reduces latency by 3.1× and memory con-

sumption by 1.8× over the original model while having similar dynamic-power consumption. On

the GPU, quantization reduces latency by 2.7×, memory consumption by 4.3×, and dynamic-power

consumption by 1.3× over the original model. It also easily enables FPGA-based inference using

tools like Vitis AI and Xilinx’s DPU. If additional latency performance is needed, combining quan-

tization with parameter scaling can result in faster models, but doing so may prevent the use of

other training techniques that enable more accurate models, such as transfer learning. Overall,

uniform scaling tends to be the easier and more viable method for improved latency and memory

performance, while NeuralScale can produce more accurate models but adds additional complexity

to the training process and additional operations to the models.
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