
Software Fault-Tolerant Techniques for Softcore Processors in Com-
mercial SRAM-Based FPGAs

Nathaniel H. Rollins and Michael J. Wirthlin
NSF Center for High-Performance Reconfigurable Computing (CHREC)
Department of Electrical and Computer Engineering
Brigham Young University, Provo, UT. 84602
nhrollins@byu.edu, wirthlin@ee.byu.edu
Keywords - Software fault-tolerance, SRAM-based FPGA, SWIFT, Checkpointing, Hardware fault-injection

1 Introduction

This paper implements software fault-tolerant techniques
on a softcore processor implemented in a commercial
SRAM-based FPGA for use in space-based applications.
These software techniques include a modified version of
software implemented fault tolerance (SWIFT) [8], con-
sistency checks, and checkpointing [6]. To evaluate the re-
liability and costs of using software techniques to protect
a softcore processor, two popular hardware-based tech-
niques are used for comparison: duplication with com-
pare (DWC) with checkpointing, and triple modular redun-
dancy (TMR) with checkpointing. All of these techniques
are implemented on the LEON3 softcore processor - the
processor used by the European space agency (ESA) [5].
In this paper we protect the LEON3 softcore processor
against SEUs at the cost of time instead of area. This
goal is accomplished by using software fault-tolerant tech-
niques. This study shows that specific software mitigation
techniques can detect and recover from 99% of all config-
uration upsets to the LEON3 processor at a third the area
cost of TMR, and for only a 1.8x performance cost.

2 Background

Microprocessors are an important part of most space-based
applications, but the processors used in space are gener-
ally slow, expensive, and inflexible [3]. Processors used
in space-based applications must be able to handle the
harsh radiation-filled environment provided in space, thus
radiation-tolerant processors are required. Making a pro-
cessor radiation-tolerant usually means making an existing
processor resistant to radiation. These processors, called
radiation hardened (rad-hard by process) processors, are
very expensive, and are often one to two decades old [3],
and are therefore larger and slower than current commer-
cial processors.
As an alternative to an older expensive rad-hard proces-
sor, more recent softcore processors have been used in
space. In contrast to rad-hard processors, softcore proces-
sors are fast, flexible, and less expensive. These proces-

sors are called softcore processors because they are imple-
mented in a field-programmable gate array (FPGA) fab-
ric that allows the processor design to be altered. In con-
trast, a hardcore processor is one that is unalterable after it
is implemented. Hardcore processors are implemented as
application-specific integrated circuits (ASICs). Softcore
processors are implemented in the logic of an FPGA.
FPGAs are a popular option for space-based applications
because of their flexibility, reprogramability, and low ap-
plication development costs. They can be reprogrammed
while in-orbit to adapt to changing mission needs or cor-
rect design errors. For example, the Mars rovers use FP-
GAs for their motor control and landing pyrotechnics [7].
Also the Australian FedSat satellite uses FPGAs in its high
performance computing payload [4].
One of the biggest advantages that SRAM FPGAs provide
is the ability to be reconfigured, even while in-orbit. This
ability is provided by an FPGA’s configuration memory
which controls all of the logic and routing on the device.
Changing the hardware design that runs on the FPGA is
done by changing the contents of the configuration mem-
ory. Table 1 shows that for the FPGA device used in this
study (Xilinx Virtex4 SX55), there are about 3x more con-
figuration memory bits than user memory bits in the entire
device.

Configuration Bits 16 804 608 73.9%
User BlockRAM Bits 5 898 240 25.9%
User Flip-Flops 50 560 0.2%

Table 1: Memory bits for the Xilinx Virtex4 SX55 device.

The flexibility and reprogramability that FPGAs provide
for space-based applications comes at a price - SRAM-
based FPGAs are inherently sensitive to the effects of
faults caused by high-energy particles. These single event
upsets (SEUs) can occur not only in FPGA user memory
bits but also in FPGA configuration bits. In other words,
an SEU can cause a lasting effect in the user logic or rout-
ing. Figure 1 shows an example of two SEUs in an FPGA
configuration memory. The first SEU changes the routing,
causing a floating input in user logic. The second SEU
changes the user logic, causing incorrect output.

This work was supported in part by the I/UCRC Program of the National Science Foundation under the NSF Center for High-Performance Recon-
figurable Computing (CHREC).



Look Up Table 
(LUT) 

User FF 

Routing 
Matrix 

1 
1 

101100001010 
010111111100 
110100111011 
000001100101 
101110100010 
111100110101 

01111010 
10010001 
10111011 
01111000 
11110010 

1101 
0011 
1101 

SRAM-based FPGA Fabric 

(a) A design operating correctly.

Look Up Table 
(LUT) 

User FF 
Routing 
Matrix 

1 
1 

101100001010 
010111110100 
110100111011 
000001100101 
101110100010 
111100110101 

01111011 
10010001 
10111011 
01111000 
11110010 

1101 
0011 
1101 

SRAM-based FPGA Fabric 

SEU1 SEU2 

(b) The two SEUs shown causes a bit in the SRAM fabric
and a bit in the LUT to flip. The first bit controls routing
to the design, and the second controls logic.

Figure 1: Single event upsets (SEUs) can cause permanent
effects: permanent faults are repaired only when the FPGA
is reconfigured.

A lot of research has identified hardware techniques to pro-
tect FPGA designs in the presence of SEUs. Triple mod-
ular redundancy (TMR) and configuration memory scrub-
bing [1] are one of the most popular ways to protect FPGA
designs. TMR works by triplicating a design and voting
on the outputs of the three modules. TMR voters detect
and mask a faulty module. FPGA configuration scrubbing
refers to the correction of upsets within the configuration
memory. While a design runs on an SRAM-based FPGA,
a scrubbing unit continually checks for upsets in the con-
figuration memory. This is done by reading the contents of
configuration memory and comparing it against a golden
copy of the memory bitstream. Alternatively, CRC values
of a portions of the bitstream are calculated and compared
to the known CRC values. It is common for configuration
scrubbers to be employed when SRAM-based FPGAs are
used in radiation-filled environments such as space. Al-
though TMR and configuration scrubbing is widely used,
it is very expensive in terms of area.
As an alternative to these expensive methods, software
fault-tolerant techniques can be used in softcore proces-
sors [2, 6, 8]. Software fault-tolerant techniques are a pop-
ular way of making traditional processors reliable in the
presence of upsets. Software techniques come at the cost
of performance instead of area. The main purpose of a soft-
ware fault-tolerant technique is to protect processor mem-
ory elements from upsets. In a softcore processor these
techniques must do more than protect user memory ele-
ments - these techniques must also detect and correct pro-
cessor faults caused by upsets in the FPGA logic and rout-
ing.
This study differs from other studies using software tech-
niques [2] and is different than other studies using a fault-
tolerant LEON3 processor [5]. These previous studies use

an ASIC processor implementation, and thus focus on pro-
tecting only the user memories (row two in Table 1). This
study uses software techniques to protect logic and routing
of the LEON3 processor (the FPGA configuration mem-
ory bits - row one in Table 1). Although this study does
protect the memory bits using parity, the focus is on using
software techniques to protect FPGA configuration bits.

3 LEON3 Softcore Processor
The softcore processor used in this study is Aeroflex
Gaisler’s LEON3 [5] processor. This study focuses on
only core of the LEON3 which includes the 32-bit proces-
sor core, hardware multiplier and divider, 1 Kbyte direct-
mapped instruction and data caches, interrupt controller,
and main memory.
The different parts of the LEON3 that are protected are
shown in Figure 2. The fault detection coverage that each
reliability technique provides cannot be divided as clearly
as is shown in the figure so Figure 2 shows the primary pro-
tection technique for each processor unit. The figure also
shows the primary detection technique for routing between
the processor blocks. Checkpointing does not show up in
the figure since it is not a detection technique. Checkpoint-
ing is the recovery method used for all processor units.

Register File 

ICache DCache 

Main Memory 

HW 
Mult/Div 

Interrupt 
controller 

LEON3 

ALU 

7
 stage p

ip
e 

SWIFT 

Const. check 

Parity 

Integer 
Unit 

Figure 2: The primary fault detection methods for each
LEON3 unit.

In this study programs run on the processor without an
OS. Each program is written in C and compiled to assem-
bly code using the SPARC gcc compiler. The assembly
code is manipulated to add control-flow monitoring (part
of SWIFT) and interrupt service routines for checkpoint-
ing and consistency checks. An assembler then creates the
VHDL memory files required to synthesize the FPGA de-
sign.

4 SW Fault-Tolerant Techniques
The goal of this study to use software reliability tech-
niques to create a fault-tolerant LEON3 processor for a
commercial SRAM-based FPGA. This section introduces
these software techniques (SWIFT, consistency checks,
and checkpointing), and shows how each of them detect
or correct upsets in the LEON3.



4.1 SWIFT
Software implemented fault tolerance (SWIFT) [8] is a
software reliability technique that, like most software fault-
tolerant techniques, is designed to detect upsets in the pro-
cessor core memory elements and registers. The memory
elements intended for protection include the register file,
pipeline control, and other processor state. This study ex-
tends the intended use of SWIFT to protect the processor
logic and routing.
There are two parts to the traditional SWIFT technique.
The first part protects against data upsets through assembly
language instruction duplication. A true SWIFT instruc-
tion duplication implementation in the LEON3 requires in-
struction set architecture (ISA) changes and incurs a very
large performance overhead. So instead of a true imple-
mentation this study uses register file complement dupli-
cate with compare (CDWC) to protect data. This is ac-
tually a hardware technique, but it is only implemented on
the register file, and the area cost it incurs is very small. Al-
though CDWC doesn’t necessarily provide the same data
protection that true SWIFT code duplication does, it re-
quires no ISA changes and has no performance penalty.
The second part of SWIFT uses software control-flow
monitoring to protect against control errors. Instructions
are added at the beginning of each code block to compare
a dynamic signature with the static signature of the block.
If the dynamic signature ever differs from the block signa-
ture, the block was entered erroneously and a control flow
upset is detected. Control-flow monitoring is effectively
implemented for a small performance overhead.

4.2 Consistency Checks
Performing consistency checks is a well known software
reliability technique used to detect upsets in memories and
functional units. This technique works by periodically ex-
ecuting a set of instructions that verify the correctness of
memories and functional units. Instead of verifying the
correctness of the units themselves, this study uses consis-
tency checks to detect upsets in the logic and routing lead-
ing to the units. These checks are executed as an interrupt
service routine that is executed at regular intervals.

4.3 Checkpointing
Checkpointing is the fault-recovery technique used in this
study. There are different amounts of state that can be
saved in a checkpoint. At the very least, the register file
contents and processor state registers must be saved. Other
memory hierarchies may also be saved such as cache and
main memory. The LEON3 uses write-through caches, so
saving cache contents in a checkpoint is unnecessary. In-
stead the caches are simply invalidated. In this study, the
main memory is also included as part of the checkpoint.
Saving the contents of main memory can be expensive in
terms of area and performance. But in this study it is saved

without a performance penalty since main memory is im-
plemented with on-chip block RAMs (BRAMs). Regard-
less of the size of the main memory, the time required to
save or restore the contents of memory will be constant
since all of the BRAMs that make up the main memory
can be written-to simultaneously. Using on-chip BRAMs
for main memory however, limits the potential size of the
main memory.

5 HW Fault-Injection Results
This section discusses the reliability and costs of the soft-
ware reliability techniques presented in this study. To
evaluate reliability, hardware fault-injection is performed.
Fault-injection works by flipping every FPGA configura-
tion bit as a program executes on the LEON3 processor
(over 16 million flips and program executions).
Before a bit is flipped, the program is run once to com-
pletion in order to ensure that at least one checkpoint has
been taken. Next, the program is run for a random number
of cycles before the bit is actually flipped. After a given
bit is flipped, the system is observed while the program
continues to execute to see how the program is affected.
Finally the bit is repaired. To perform this fault-injection
SEAKR’s XRTC board is used.
In the fault-injection tests each of the FPGA memory bits
is classified as being either required for architecturally cor-
rect execution (ACE) or unnecessary for architecturally
correct execution (unACE). In other words, upsetting an
ACE bit causes the program to run incorrectly, and upset-
ting an unACE bit does not hinder correct program exe-
cution. Upsets to ACE bits are further classified as being
either detectable, recoverable errors (DRE), detected, un-
recoverable errors (DUE), or silent data corruption (SDC)
bits. When a DRE bit is upset, the upset is detected and
successfully repaired. In other words checkpointing suc-
ceeded. When a DUE bit is upset, it is detected, but un-
successfully repaired. In other words checkpointing failed.
When an SDC bit is upset, it goes undetected, thus check-
pointing is never even attempted. Ideally all upsets will be
classified as DRE. Since SDC upsets aren’t even detected,
they are undesirable.
As a way of evaluating the relative effectiveness and
cost of using software techniques to protect a LEON3
processor, two other LEON3 designs are implemented.
These LEON3 processors are protected with hardware-
based techniques: DWC with checkpointing and TMR
with checkpointing. DWC with checkpointing is used for
comparison since it is a popular processor reliability tech-
nique [6]. TMR with checkpointing is included in the com-
parison because TMR is the most common SRAM-based
FPGA design reliability technique.
In order to provide the average percentage of ACE and un-
ACE bits for each LEON3 processor design, Table 2 shows
approximate configuration and user memory bit usages for
each design. The percentages shown in parentheses are



with respect to the values in Table 1.

Approximate LEON3 Memory bit usage
LEON3 Design Config Bits BRAM Bits FFs

SW Tech & Check 1 844 248 (11%) 423 936 (7%) 1318 (3%)
TMR & Check 4 780 069 (28%) 829 440 (14%) 3677 (7%)

DWC & Check 3 036 476 (18%) 608 256 (10%) 2670 (5%)

Table 2: Approximate configuration memory and user
memory usage for each LEON3 design.

Hardware fault-injection is performed for a set of programs
and the average ACE and unACE configuration bit percent-
ages for each of the LEON3 designs is shown in Table 3.
The table shows that for the LEON3 processor protected
using software techniques, 7% of the FPGA bitstream bits
corresponding to the processor are ACE bits. Note that this
7% is not a percentage of all the bits in the DUT (Table 1),
but is a percentage of only the those bits in the DUT that
correspond just to the LEON3 processor design (column
two of Table 2). Of the upsets to those ACE bits, 92% are
detected and successfully corrected, an additional 4% are
detected but unsuccessfully corrected, and the remaining
4% are undetected. Overall, only 1% of upsets to all the
bits corresponding to the LEON3 processor cannot be both
detected and corrected.

HW Fault-Injection Results (Average)
LEON3 Design unACE ACE

DRE DUE SDC
SW Tech & Check 93% 92% 4% 4%
TMR & Check 91% 93% 6% 1%
DWC & Check 92% 74% 23% 3%

Table 3: Average LEON3 bitstream bit classification per-
centages for the three LEON3 processors.

The area costs for the different LEON3 processor protec-
tion schemes are shown in Table 4. The cost is measured
with respect to an unprotected LEON3 processor. The ta-
ble shows that one of the huge advantages of using soft-
ware techniques is the very low area cost they incur. The
area cost of the LEON3 processor protected with software
techniques is about a third the cost of using TMR, and
about half the cost of using DWC.

Area Costs
LEON3 Design Slices BRAMs DSPs
SW Tech & Check 1.43x 1.92x 1.00x
TMR & Check 3.76x 3.75x 3.00x
DWC & Check 2.37x 2.75x 2.00x

Table 4: Area costs for the LEON3 processor designs.

The true cost of using software techniques to detect and
recover from upsets in a processor is revealed in Table 5.

The table shows how many more clock cycles are needed
on average to execute a program compared to running the
program on an unprotected LEON3. It also shows the av-
erage increase in code size. On average, the LEON3 pro-
tected with software techniques requires 1.8x more clock
cycles than an unprotected processor.

Performance Costs (Average)
LEON3 Design Code Size Run Time
SW Tech & Check 1.20x 1.76x
TMR & Check 1.01x 1.03x
DWC & Check 1.01x 1.03x

Table 5: Average performance and code size costs for the
three LEON3 processors.

6 Conclusion
Software fault-tolerant techniques can detect and recover
from 99% of upsets to a LEON3 processor at a third
the area cost of TMR for a mere 1.8x performance cost.
Although the user memories are protected, the hardware
fault-injection evaluations inject faults into configuration
memory only (which controls processor logic and routing).

References
[1] Correcting single-event upsets through Virtex parital config-

uration. Technical report, Xilinx Corporation, June 1, 2000.
XAPP216 (v1.0).

[2] F. Abate, L. Sterpone, C. Lisboa, L. Carro, and M. Vi-
olante. New techniques for improving the performance of
the lockstep architecture for SEEs mitigation in FPGA em-
bedded processors. Nuclear Science, IEEE Transactions on,
56(4):1992 –2000, 2009.

[3] K. Anderson. Low-cost, radiation-tolerant, on-board pro-
cessing solution. Aerospace Conference, 2005 IEEE, pages
1–8, March 2005.

[4] A. Dawood, S. Visser, and J. Williams. Reconfigurable FP-
GAS for real time image processing in space. Digital Signal
Processing, 2002. DSP 2002. 2002 14th International Con-
ference on, 2:845–848 vol.2, 2002.

[5] J. Gaisler and E. Catovic. Multi-Core Processor Based on
LEON3-FT IP Core (LEON3-FT-MP). In DASIA 2006 -
Data Systems in Aerospace, volume 630 of ESA Special Pub-
lication, July 2006.

[6] G.-L. Park and H. Y. Yong. A new approach for high
performance computing systems with various checkpointing
schemes. The Journal of Supercomputing, 33:65–78, 2005.
10.1007/s11227-005-0221-3.

[7] D. Ratter. FPGAs on Mars. xCell Journal, (50), August
2004.

[8] G. A. Reis, J. Chang, and N. Vachharajani. Software-
controlled fault tolerance. ACM Transactions on Architec-
ture and Code Optimization, 2(4):366–396, December.


