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Goals

• Evaluate scalability of apps and libraries across range of compute

• Benchmark realtime network protocols for space deployment

• Investigate software solutions for fault resilience in GPU systems

Motivations

• Distributed computing enables exascale solutions

• Competing network protocols have tradeoffs

• GPU accelerators employed by many systems, but 

increasingly need additional fault-mitigation strategies

Challenges

• Computations spread across nodes require complex orchestration

• Performance demands and security requirements of 

networked systems are continually increasing

• Benchmarking large apps is time-consuming and resource-intensive
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Fault-Tolerant GPU Computing

Improve reliability of apps deployed to space and HPC systemsT3

Deep-Learning Metrics and Performance

Characterize DL-model performance using metricsT4

Hyperscale Processing

Study large-scale apps on distributed CPU and GPU clustersT1

Space Network Protocols

Investigate protocols for reliable and efficient space networkingT2
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Task Leader: Jefferson Boothe

Jefferson Boothe – j.boothe@pitt.edu

Yasser Morsy – yasser.morsy@pitt.edu 

Hyperscale Processing

Study large-scale apps on distributed CPU and GPU clustersT1

mailto:j.boothe@pitt.edu
mailto:yasser.morsy@pitt.edu
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Distributed GPU Computing

• NVSHMEM enables direct communication 

between GPUs using SHMEM standards

• UVM P2P enables direct communication 

between GPUs using non-symmetric 

memory mapping

Graph Analysis Apps

• Graphs computationally challenging due to 

poor memory locality

• BFS is used in Graph500 to test 

supercomputers on data-intensive apps

• Irregular communication patterns can 

stress parallel programming libraries
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Graph Analysis with SHMEM
• Extend benchmarking of parallel programming libraries 

with graph analytic applications on distributed systems

• Analyze scalability across system configurations

• Utilize Pitt CRC and PSC Bridges-2 Resources

NVSHMEM and UVM Analysis

• Explore novel GPU-GPU communication methods to 

accelerate numerical linear algebra algorithms

• Characterize behavior on varying scales and devices 

such as NVIDIA HGX A100 at Pitt CRC

Pitt CRC: Center for Research Computing

PSC: Pittsburgh Supercomputing Center

P2P: Peer to Peer

UVM: Unified Virtual Memory
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Task Leader: David Herr

David Herr – david.herr@pitt.edu

Space Network Protocols

Investigate protocols for reliable and efficient space networkingT2

mailto:david.herr@pitt.edu
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Time-Sensitive Networks

• Standard networking protocols are ineffective at 

meeting needs of aerospace apps

• Time-sensitive protocols aim to meet these 

needs of determinism, reliability, and security

• Need additional comparisons of these protocols

V&V of Simulation Results

• Simulation of time-sensitive protocols can significantly 

reduce costs and time of analysis and comparison

• Verification and Validation are crucial to ensuring 

results are realistic to real-world designs

• TTE hardware is available for purchase, but open 

source TSN Aerospace hardware is still in development

TSN: Time-Sensitive Networking

TTE: Time-Triggered Ethernet

V&V: Verification and Validation
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TSN Protocol Comparison
• Extend simulation benchmarking to include more use cases, 

such as Orion (MPCV) avionics system

• Compare simulation results to equivalent hardware setups 

using TTE testbeds within SHREC Lab

TSN Aerospace V&V

• Investigate hardware testbed, like TSN product line 

from UEI, to compare TSN simulation results from 

OMNeT++ to real hardware

• Compare results from real hardware against that of 

TTE to deepen comparison results

TSN: Time-Sensitive Networking

TTE: Time-Triggered Ethernet

MPCV: Mult-Purpose Crew Vehicle

V&V: Verification and Validation

UEI: United Eletronic Industries
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Task Leader: Tyler Garrett

Tyler Garrett – tmg61@pitt.edu

Thomas Plunkett – thp49@pitt.edu 

Fault-Tolerant GPU Computing

Improve reliability of apps deployed to space and HPC systemsT3

mailto:j.boothe@pitt.edu
mailto:yasser.morsy@pitt.edu


P3
T3: Background

11

Fault Mitigation

• Similar fault-mitigation techniques can apply to 

embedded systems and supercomputers

• On-chip error detection, isolation, and correction 

leverage software-based solutions

• Using GPU microarchitecture to intelligently 

map apps enables increased reliability

GPU Reliability

• GPU computing enables high-performance apps 

for both space and HPC

• Each domain is vulnerable to high error rates 

due to either radiation or wear out

• Cost of inaccurate computation can range from 

high energy consumption to mission failures

Application

Common Fault-Tolerant Backend

Hardware

Embedded HPC
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Reliable ML Apps for Space Missions
• Investigate soft-error mitigation on ML models and data 

collected from STP-H7

• Optimize GPU-accelerated ML apps targeting STP-H12 

imaging pipeline using RTF

Reliable ML Apps for HPC

• Explore GPU permanent faults in HPC ML apps

• Detect and isolate faulty cores in HPC systems

• Leverage custom kernels to analyze GPU hardware
GPU GPU

ML Inference

Kernels

GPU Cluster

CUDA Cores

Faulty Core

RTF: Resilient TensorFlow
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Task Leader: Calvin Gealy

Calvin Gealy – c.gealy@pitt.edu
DL: Deep Learning

Deep-Learning Metrics and Performance

Characterize DL-model performance using metricsT4

mailto:c.gealy@pitt.edu
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Quantization Metrics

• Quantization often improves inference 

performance of models by reducing 

precision of operations

• Previous research suggests varying effects 

depending on model type and target device

SPOC Metrics

• SPOC are proposed set of metrics that aim 

to better represent model performance 

on specific hardware

• Need analysis on how to best make 

actionable decision with these metrics

• Previous SHREC research indicates SPOC 

helps explain model performance

FLOPs

CDL

Params

Size

float32:

float16:

int8:

binary: 4× memory 

reduction

SPOC: Size, Param, Ops, Critical Datapath Length (CDL)
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Expanding SPOC Metrics to GPUs
• Extend benchmarking of SPOC metrics with analysis on 

embedded and desktop GPU systems

• Characterize metric scalability using micro models

• Analyze latency, memory, and caching behavior

Quantization Metrics

• Develop new metric to capture effect of quantization on 

model performance

• Benchmark using previous SPOC testing suite on 

embedded and desktop CPU and GPU systems

SPOC Benchmark

Xeon

Arm

A100

Jetson

ONNX Runtime 

Quantizer

32 bit

8 bit

DL: Deep learning

SPOC: Size, Param, Ops, Critical Datapath Length (CDL)
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Milestones

SMW24 (Jun/Jul 24): Showcase 
preliminary results on 

all project tasks

SAW24-25 (Jan 25): Completion 
of all project tasks

Deliverables

Monthly progress reports from 
all projects

Midyear and end-of-year full 
reports from all projects

4-5 conference or journal 
publications

Budget

Minimum recommended: Five 
(5) memberships

(250 Votes)
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Conclusions

• Analyze scalability of SHMEM and NVSHMEM communication 

libraries using high-performance apps and algorithms

• Investigate simulation of realtime space protocols for network 

performance and potential security challenges

• Evaluate GPU faults for space and HPC systems and investigate 

software solutions for fault mitigation

• Characterize scalability of DL models by using SPOC metrics as 

guidebook to performance

Member Benefits

• Direct influence over processors and frameworks studied

• Direct influence over apps and datasets studied

• Direct benefit from new methods, data, code, models, and 

insights from metrics, benchmarks, and emulations

DL: Deep learning

NVSHMEM: Nvidia SHMEM

SHMEM: Shared Hierarchical Memory

SPOC: Size, Param, Ops, Critical Datapath Length (CDL)
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