P2-24: Intelligent Systems

SHREC Annual Workshop (SAW23-24)

January 17-18, 2024

Dr. Alan George

Mickle Chair Professor of ECE University of Pittsburgh

Dr. David Langerman

Researcher University of Pittsburgh Marika Schubert Evan Gretok Stephen Palli Josh Poravanthattil Eileen Wang Diego Wildenstein Graduate Students University of Pittsburgh

Number of requested memberships ≥ 6

Overview

Goal: Investigate **emerging machine learning** paradigms and devices for space and other embedded applications

Motivation: Al promises to expand capabilities for edge-system sensing and processing without compromising performance

Challenges: Space apps are subject to SWaP-C and reliability constraints, which pose novel complexity for emerging systems

Tasks for 2024

Few-Shot Learning for Space

- Assess performance of few-shot learning onboard space-grade devices
- Enable more accurate classification of unknown classes without retraining

Neuromorphic Vision and Computing

- Characterize resiliency of event-driven SNNs
- Explore tradeoff between biological plausibility and computational efficiency

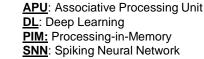
Novel Processor Architectures

- Characterize performance and reliability of Gemini APU in-memory processors
- Evaluate and optimize DL models for PIM architectures

Deep-Learning Kernel Benchmarks

- Explore implementation statistics of DL kernels in vision models
- Create new DL benchmarks to better reflect expected performance

3



T1: Few-Shot Learningin Space!! Evan Gretok, Eileen Wang ewg13@pitt.edu elw96@pitt.edu

T1: Few-Shot Learning

What is Few-Shot Learning?

• Training with a **small number** of samples per class

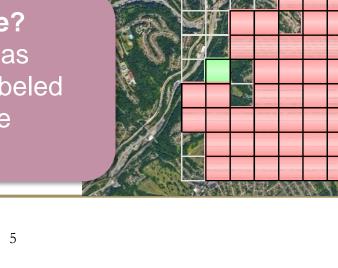
How is Few-Shot Learning Different?

- No large dataset to train as with supervised learning
- X-way, Y-shot for X classes and Y samples provided
- Small query set of images used for testing

What Can Few-Shot Learning Enable in Space?

- Can reduce labelling need, especially useful as vast majority of Earth-observation data is unlabeled
- Enable best guess of never-before-seen image classes on orbit without retraining

ion-Critical Computing



BYU

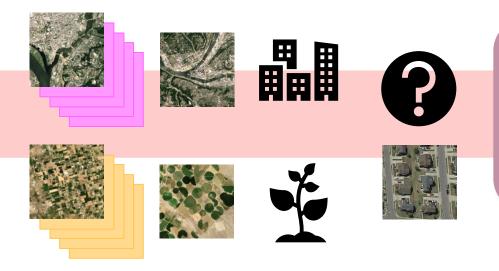
FLORID

University of Pittsburgh

VIRGINIA TECH

C ommercial

T1: Few-Shot Learning



With What Will We Experiment?

- Leveraging existing **Earth-observation** datasets
- Evaluating different few-shot learning algorithms
- Varying number of classes and samples provided
- Exploring responses to **never-before-seen** classes

What Will We Measure?

- Accuracy of few-shot learning approach taken
- Runtime, memory use, and energy consumption of few-shot inference onboard space-grade hardware
- Algorithm-specific traits, such as **inter-class distances** for prototypical networks

VIRGINIA TECH

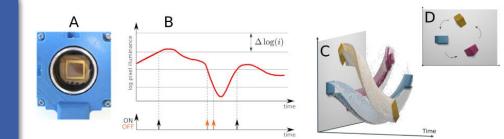
FLORID

T2: Neuromorphic Vision and Computing Joshua Poravanthattil jbp51@pitt.edu

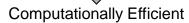
T2: Neuromorphic Vision and Computing

Why Event-Based Sensors and Algorithms?

- SNNs are **powerful** and **efficient**, especially when paired with event-based sensor data
- Prior simulation suggests that backprop SNNs exhibit intrinsic reliability to radiation-induced noise
- Many learning methods and neuron models to explore! \bullet



Biologically Plausible BindsNET (1 SNN architectures can vary from **biologically plausible** How can this **tradeoff** be exploited to make the most snnTorch



•

 \bullet

Resiliency Exploration

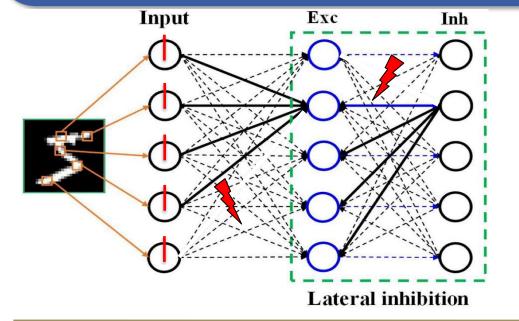
resilient networks?

to computationally efficient

T2: Neuromorphic Vision and Computing

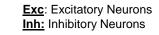
How Will Radiation Tolerance Be Assessed?

- Vary the **neuron model** and **learning method** from biologically plausible to computationally efficient
- Inject data and processor faults on pretrained networks and analyze performance hits
- Investigate state-of-the-art filtering methodology



What Will We Measure?

- Accuracy and loss metrics across neuron models
 and learning methods
- Runtime and power utilization statistics for hardware implementations

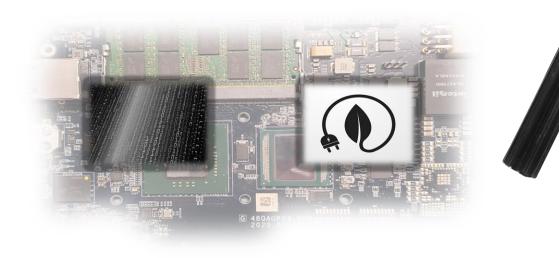


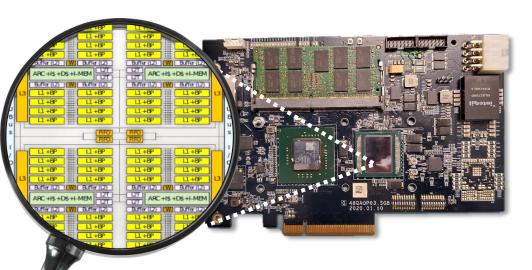
T3: Novel Processing Architectures Diego Wildenstein, Stephen Palli Diego.Wildenstein@pitt.edu Stephen.Palli@pitt.edu

T3: Novel Processing Architectures

What is **PIM**?

- Shared memory between device and CPU reduces data transfers
- High data throughput performance on large scale problems
- Energy consumption is fractionally less than modern CPUs and GPUs



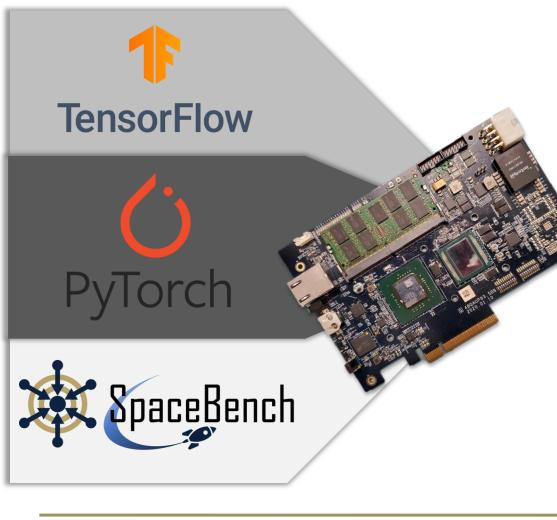


What is the Gemini APU?

- Processing-in-memory (PIM)
 architecture developed by GSI
- 4 cores, each containing over **2million** bit processors in parallel
- Each bit processor governs 24
 individual memory cells

<u>PIM</u>: Processing-in-Memory <u>APU</u>: Associative Processing Unit

T3: Novel Processing Architectures



APU Assessment for Future Missions

- Benchmark low-level linear algebra compute kernels at various precision data types
- Compare APU performance and power efficiency with modern and upcoming space flight hardware
- Assess radiation tolerance and susceptibility to single event effects on APU devices

APU Accelerators for Deep Learning

- Determine what deep-learning models and apps are best suited for APU architecture
- Leverage PIM architecture for optimization of common deep-learning operations
- Compare performance of deep-learning apps on APU with CPU and GPU implementations

T4: Deep-Learning Kernel Benchmarks Marika Schubert marika.schubert@pitt.edu

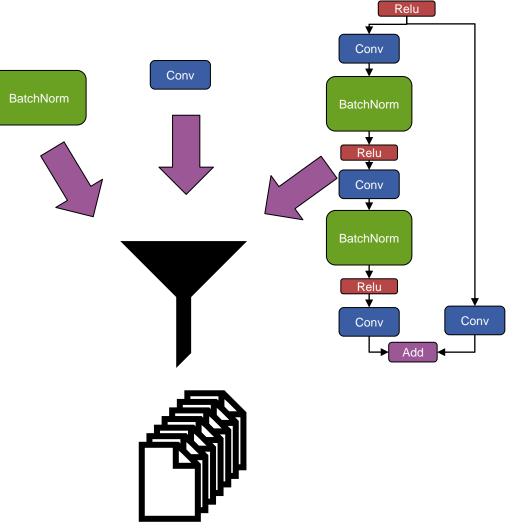
T4: Deep-Learning Kernel Benchmarks

Why Do We Benchmark DL Inference?

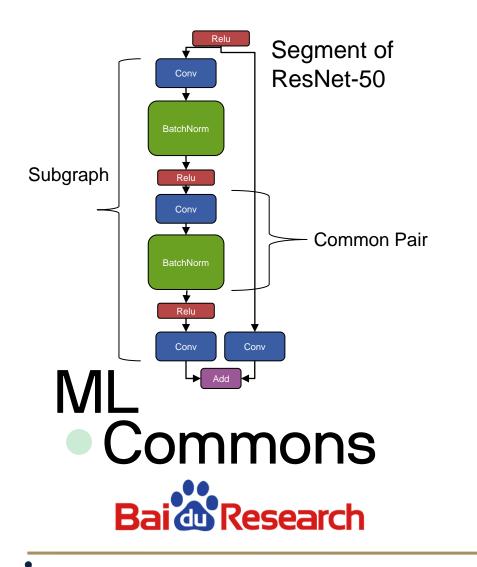
- Test system latency, memory use, software compatibility
- Determine how to **improve models** for given hardware platform

Why do We Need a Granular Benchmark?

- Most DL benchmarks (MLCommons, MLMark) test full model (great if you care about Resnet-50)
- Baidu's DeepBench tests kernels, but from optimized libraries
- Need kernel benchmark for PyTorch performance



T4: Deep-Learning Kernel Benchmarks



on-Critical Comp

Identification of Kernel Sequences and Subgraphs
Identify common kernel pairs and subgraphs to

describe vision models from a more granular perspective

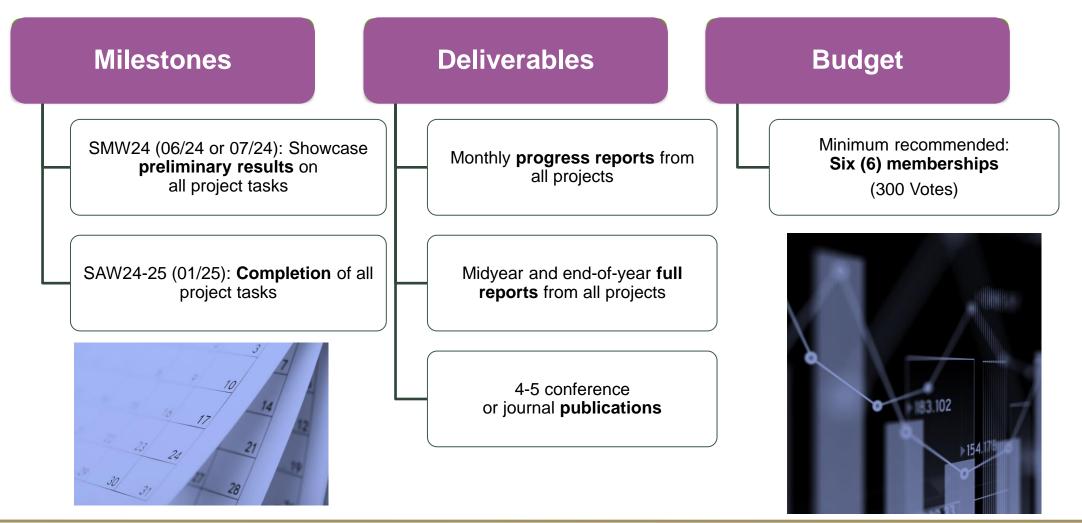
Development and Comparison of Benchmark

- Use summary statistics to create new kernelbased/sub-graph-based benchmark
- Compare kernel coverage of benchmark to similar DeepBench kernel-based benchmark, coverage of MLCommons

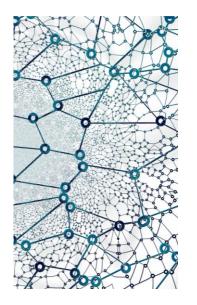
Evaluation of Benchmark on Devices

- Run benchmark on CPU/GPU devices
- Run benchmark on novel accelerators that support PyTorch/ONNX (SambaNova, Tenstorrent, etc)

Milestones, Deliverables, Budget



Conclusions and Member Benefits



Conclusions

- Few-shot learning enables accurate onboard classification with less labelled data and can even generalize its training to never-before-seen samples
- **Neuromorphic architectures** can be designed to provide resilient and efficient inferencing capabilities
- In-memory processing architectures can increase performance of deep-learning apps and expand onboard computation capability
- Deep-learning kernel benchmarks can be used to **explore optimizations** and improve **model selection** for embedded devices

Member Benefits

- Direct influence over processors and frameworks studied
- Direct influence over apps and datasets studied
- Direct benefit from new methods, data, code, models, and insights from metrics, benchmarks, and emulations

