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Goal: Investigate emerging machine learning paradigms and devices for 

space and other embedded applications

Motivation: AI promises to expand capabilities for edge-system sensing and 

processing without compromising performance

Challenges: Space apps are subject to SWaP-C and reliability constraints, which pose novel 

complexity for emerging systems
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APU: Associative Processing Unit

DL: Deep Learning

PIM: Processing-in-Memory

SNN: Spiking Neural Network

Few-Shot Learning for Space

• Assess performance of few-shot learning onboard space-grade devices

• Enable more accurate classification of unknown classes without retraining
T1

Neuromorphic Vision and Computing

• Characterize resiliency of event-driven SNNs

• Explore tradeoff between biological plausibility and computational efficiency
T2

Novel Processor Architectures

• Characterize performance and reliability of Gemini APU in-memory processors

• Evaluate and optimize DL models for PIM architectures
T3

Deep-Learning Kernel Benchmarks

• Explore implementation statistics of DL kernels in vision models

• Create new DL benchmarks to better reflect expected performance
T4
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T1: Few-Shot Learning

   …in Space!!
Evan Gretok, Eileen Wang

ewg13@pitt.edu elw96@pitt.edu

mailto:ewg13@pitt.edu
mailto:elw96@pitt.edu
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How is Few-Shot Learning Different?

• No large dataset to train as with supervised learning

• X-way, Y-shot for X classes and Y samples provided

• Small query set of images used for testing

orested              esidential          ridge                  ommercialBR CF

What Can Few-Shot Learning Enable in Space?

• Can reduce labelling need, especially useful as 

vast majority of Earth-observation data is unlabeled

• Enable best guess of never-before-seen image 

classes on orbit without retraining

What is Few-Shot Learning?

• Training with a small number of samples per class
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With What Will We Experiment?

• Leveraging existing Earth-observation datasets

• Evaluating different few-shot learning algorithms

• Varying number of classes and samples provided

• Exploring responses to never-before-seen classes

What Will We Measure?

• Accuracy of few-shot learning approach taken

• Runtime, memory use, and energy consumption of 

few-shot inference onboard space-grade hardware

• Algorithm-specific traits, such as inter-class 

distances for prototypical networks
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T2: Neuromorphic Vision 

and Computing
Joshua Poravanthattil

jbp51@pitt.edu

mailto:Your.email@pitt.edu
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Why Event-Based Sensors and Algorithms?

• SNNs are powerful and efficient, especially when paired 

with event-based sensor data

• Prior simulation suggests that backprop SNNs exhibit 

intrinsic reliability to radiation-induced noise

• Many learning methods and neuron models to explore!

Resiliency Exploration

• SNN architectures can vary from biologically plausible 

to computationally efficient

• How can this tradeoff be exploited to make the most 

resilient networks?

Biologically Plausible

Computationally Efficient

SNN: Spiking Neural Network
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How Will Radiation Tolerance Be Assessed?

• Vary the neuron model and learning method from 

biologically plausible to computationally efficient

• Inject data and processor faults on pretrained networks 

and analyze performance hits

• Investigate state-of-the-art filtering methodology

What Will We Measure?

• Accuracy and loss metrics across neuron models 

and learning methods

• Runtime and power utilization statistics for 

hardware implementations

Exc: Excitatory Neurons

Inh: Inhibitory Neurons
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T3: Novel Processing 

Architectures

Diego Wildenstein, Stephen Palli
Diego.Wildenstein@pitt.edu

Stephen.Palli@pitt.edu

mailto:Diego.Wildenstein@pitt.edu
mailto:Stephen.Palli@pitt.edu
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What is the Gemini APU?

• Processing-in-memory (PIM) 

architecture developed by GSI

• 4 cores, each containing over 2-

million bit processors in parallel

• Each bit processor governs 24 

individual memory cells

What is PIM?

• Shared memory between device and 

CPU reduces data transfers

• High data throughput performance 

on large scale problems

• Energy consumption is fractionally 

less than modern CPUs and GPUs

PIM: Processing-in-Memory

APU: Associative Processing Unit
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APU Accelerators for Deep Learning

• Determine what deep-learning models and apps are 

best suited for APU architecture

• Leverage PIM architecture for optimization of common 

deep-learning operations

• Compare performance of deep-learning apps on APU 

with CPU and GPU implementations

T3: Novel Processing Architectures

12

APU Assessment for Future Missions

• Benchmark low-level linear algebra compute kernels at 

various precision data types

• Compare APU performance and power efficiency with 

modern and upcoming space flight hardware

• Assess radiation tolerance and susceptibility to 

single event effects on APU devices

PIM: Processing-in-Memory

APU: Associative Processing Unit
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T4: Deep-Learning Kernel 

Benchmarks
Marika Schubert

marika.schubert@pitt.edu
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Why Do We Benchmark DL Inference?

• Test system latency, memory use, software 

compatibility

• Determine how to improve models for given 

hardware platform 

Why do We Need a Granular Benchmark?

• Most DL benchmarks (MLCommons, MLMark) test 

full model (great if you care about Resnet-50)

• Baidu’s DeepBench tests kernels, but from optimized 

libraries

• Need kernel benchmark for PyTorch performance

Conv
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Identification of Kernel Sequences and Subgraphs

• Identify common kernel pairs and subgraphs to 

describe vision models from a more granular perspective

Development and Comparison of Benchmark

• Use summary statistics to create new kernel-

based/sub-graph-based benchmark

• Compare kernel coverage of benchmark to similar 

DeepBench kernel-based benchmark, coverage 

of MLCommons

Evaluation of Benchmark on Devices

• Run benchmark on CPU/GPU devices

• Run benchmark on novel accelerators that support 

PyTorch/ONNX (SambaNova, Tenstorrent, etc)
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SMW24 (06/24 or 07/24): Showcase 
preliminary results on 

all project tasks

SAW24-25 (01/25): Completion of all 
project tasks

Monthly progress reports from 
all projects

Midyear and end-of-year full 
reports from all projects

4-5 conference 
or journal publications

Minimum recommended: 
Six (6) memberships

(300 Votes)

Milestones Deliverables Budget
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Conclusions 
• Few-shot learning enables accurate onboard classification with less labelled

data and can even generalize its training to never-before-seen samples

• Neuromorphic architectures can be designed to provide resilient and efficient 
inferencing capabilities

• In-memory processing architectures can increase performance of deep-learning 
apps and expand onboard computation capability 

• Deep-learning kernel benchmarks can be used to explore optimizations and 
improve model selection for embedded devices 

Member Benefits 
• Direct influence over processors and frameworks studied

• Direct influence over apps and datasets studied

• Direct benefit from new methods, data, code, models, and insights from metrics, 

benchmarks, and emulations
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