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Abstract – Increasing bit-depth of new image sensors presents 
many challenges on resource-limited, on-board processors in 
aerospace. This paper provides new results, analysis, and 
insight with our novel methods for preprocessing with 
compression of an Overhead Persistent InfraRed (OPIR) 
image sensor on embedded processors including Xilinx Zynq-
7020 and Amlogic S905.  
 

I. INTRODUCTION 
 
The increasing bit-depth on next-generation image sensors 
presents many unique challenges for video preprocessing 
and compression with on-board processors in aerospace 
computing. The naturally limiting resources, such as 
memory and downlink bandwidth, require more efficient 
methods to achieve faster execution of preprocessing and 
higher compression ratios (CRs). However, trying to 
accomplish these tasks will create a trade-off between video 
quality and data throughput that the system designer will 
need to consider based on their requirements and the 
resources available on their system. The underlying goal is 
to perform preprocessing, compression, and downlink faster 
than it would be to downlink the raw data from an 
Overhead Persistent InfraRed (OPIR) image sensor. 
Previous research proved that we can do exactly that with 
one of our novel preprocessing methods, Bit-Stream 
Splitting (BSS), at bandwidths less than 6 Mbps. The scope 
of this research was limited though since it did not test our 
other preprocessing method, SuperFrame. This paper 
provides an analysis of SuperFrame alone and in 
combination with BSS on different CPUs to achieve faster 
downlink of sensor data as opposed to downlinking the raw 
data for bandwidths typically available for on-board 
systems. Based on the data and analysis presented, a 
designer will be able to determine which preprocessing 
method, architecture, and encoder to use. 
 
As video systems become more mainstream for spacecraft, 
drones, and other unmanned aerial vehicles, the image 
sensors are getting more diverse and complex as the 
demand for better resolution, higher frame rates, and higher 
bit-depth increases. There are many dependent variables to 
consider when designing to achieve maximum performance 
of a real-time video system such as the preprocessing 
method, architecture, bit-depth of the image sensor, and 
encoder. For example, our two preprocessing methods 

effect achievable compression ratios and cause a small 
delay in the video data.  The CPU architecture, memory, 
and clock frequency effects how quickly preprocessing and 
compression can be executed. The bit-depth of the image 
sensor can limit us to a select few encoders since most can 
only handle standard 8- and 16-bit data types. The encoder 
effects execution time, compression ratio, ability to be 
parallelized based on its multithreading capabilities, bit-
depth, input pixel format, and whether we can perform 
lossless and/or lossy compression. 
 
As the bit-depth of image sensors increases, such as the 14-
bit OPIR sensor, the image data surpasses most of the 
standard 8-bit codecs. Only a few codecs can compress 
anything higher than 8-bit, such as PNG [3], JPEG-LS [4], 
FFV1 [5], FFVhuff [6], and JPEG2000 [7]. Furthermore, 
one of these can only do lossless encoding and can only 
compress a single frame at a time. Since popular codecs 
such as x264 (an open-source version of h.264), MJPEG, 
and VP8/9 can only process 8-bit data, we must perform 
preprocessing on the original video data since it is 14 bits 
per pixel.  
 
This paper includes background and related work to give 
insight into our novel methodology and provide results 
from previous work. It explains our two preprocessing 
methods and three compression methods that we use to 
increase the compression ratio and speed. In addition, it 
includes the experimental setup, which details the two 
different CPU architectures used and the OPIR sensor. We 
outline different performance metrics used to analyze the 
data and finally, the results section provides a comparative 
analysis between the performance of each preprocessing 
method, CPU architecture, and image encoder. 
 

II. BACKGROUND AND RELATED WORK 
 

Extensive research has been done to achieve higher CRs 
with low root-mean-square error (RMSE) for OPIR sensors. 
RMSE is a metric we use to compare the original video to 
the decompressed video. Without using preprocessing, we 
were only able to achieve a CR between 1.0 to 1.9 using 
JPEG2000, JPEG-LS, FFV1, and FFVhuff. These CRs are 
not acceptable for real-time systems, nor worth the effort to 
perform compression. As a result, we developed two novel 
preprocessing methods, BSS and SuperFrame, to help 
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achieve a more worthwhile CR. We found that, using BSS 
with x264 encoder, we could obtain a CR of ~25 and an 
RMSE of ~15[1]. Using SuperFrame alone with an image 
resolution of 256×256×4200, we could achieve an average 
lossless CR of ~2.44 using JPEG2000, PNG, and JPEG-LS. 
PNG had the best lossless CR of 3.57 for SuperFrame.  A 
combination of BSS and SuperFrame was also analyzed 
where it performed better than SuperFrame alone for CRs 
higher than 20. Other preprocessing methods such as 
filtering, factoring, and region-of-interest (ROI) were also 
studied, but they did not provide as good of performance 
compared to BSS and SuperFrame, so they were not 
extensively studied. 
 

 
Fig. 1. Block Diagram of our Methodology 

 
Our novel methodology is shown in Fig. 1 to illustrate our 
intent to do on-board processing of video data from an 
OPIR sensor. The block diagram consists of preprocessing 
using our novel methods such as BSS and SuperFrame, 
lossless or lossy compression, and downlink of the 
compressed data to a ground station. The decompression 
performance of the video data was not analyzed for this 
study since it will be done on a ground-based system. 
 
Once we determined that BSS and SuperFrame were the 
most effective preprocessing methods, we wanted to see 
how long it took to execute them on resource-limited 
platforms studied in [2]. Moreover, three progressively 
more aggressive compression methods, illustrated in Fig. 2, 
were developed and used with BSS to see the speedups 
achieved compared to a serial Baseline Method.  Using the 
Parallelized Method in Fig. 2, we could decrease the 
execution time (time it takes to perform preprocessing and 
compression) by 2× using two threads compared to the 
serial Baseline method which used a single thread. The 
Augmented Parallelized Method further decreased the 
execution time by offering a 3.4× average speedup over the 
serial Baseline Method.  
 
We also compared the execution time between 8- and 16-bit 
encoders such as x264, PNG, JPEG-LS, FFV1, FFVhuff, 
and FFV1 Version 3. FFVhuff provided the fastest 
execution time which was due to inefficient compression of 
OPIR video, while PNG and FFV1 executed the slowest for 
the 16-bit encoders. We found that using BSS with the 8-bit 
encoder, x264, had a much slower execution time due to 
having to account for the extra time needed to carry out 
BSS. However, it offered the highest CR compared to the 
other encoders used. 
 
The overall goal was to show that our methods will allow 
for faster downlink of the sensor data as opposed to 
downlinking the raw data for bandwidths typically available 
for on-board systems. We could downlink the BSS plus 

x264 data faster than downlinking the RAW data for 
bandwidths lower than 6 Mbps on the P5040, Amlogic 
S905, and Xilinx Zynq-7020. The RAD5545 was not able 
to preprocess, compress, and downlink the data faster than 
downlinking the RAW data for all bandwidths due to the 
low clock frequency of a radiation-hardened processor.  
 

 
Fig. 2. BSS Compression Methods 

 
III. EXPERIMENTAL SETUP 

 
BSS and SuperFrame, and compression, using FFmpeg’s 
open-source compression library[6],were executed using 
ODROID-C2 and Avnet ZedBoard development platforms 
because they are part of NASA’s High-Performance 
Spaceflight Computing (HPSC) project and the CHREC 
Space Processor (CSP)[8], respectively.  Their system 
specifications are shown in Table 1. 
 

Table 1: Targeted System Specifications 

Board Chipset Architecture Frequency 
(GHz) 

ODROID-C2 Amlogic S905 4× ARM 
Cortex- A53 1.500 

Avnet 
Zedboard 

Xilinx Zynq-
7020 SoC 
XC7Z020 

2× ARM 
Cortx-A9 0.766 

 
For our analysis, the Air Force Research Laboratory 
(AFRL) provided us with three video files containing 
simulated video data using landsat imagery for 
backgrounds. A single frame from each video file is 
illustrated in Fig. 3. Each video file has roughly 4200 
frames, an image resolution of 256×256 pixels, a bit-depth 
of 14, and a grayscale pixel format. These specifications 
were chosen to mimic commercial, scientific-grade cameras 
currently available for lab use. The 14-bit data is housed in 
a 16-bit data container within the video file, which allows 
us to leverage standard 16-bit encoders.  
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Fig. 3. Representative OPIR sample frames from  
simulated 14-bit video test set for varying cloud  
cover situations: (a) Cloud001, (b) Cloud002,  

and (c) NoCloud001 
 

Our SuperFrame method can leverage various image 
encoders since it is essentially a very large image. In this 
study, we analyze libopenJPEG (open-source version of 
JPEG2000), JPEG-2000, JPEG-LS, and PNG. All four of 
these encoders are able to support an 8- and 16-bit bit 
depth. To take advantage of the 8-bit side of the image 
encoders we performed BSS on the original, high bit-depth 
video file to create one file containing only the lower bytes 
of each pixel and the other file containing the higher bytes 
of each pixel. Then, we executed SuperFrame on both video 
files. Since we used BSS, it allowed us to perform each of 
the three Compression Methods shown in Fig. 2. 
 

IV. PERFORMANCE EVALUATION METRICS 
 

The same metrics that were used in [2] are also used in this 
study. Using SuperFrame alone, we are not able to use the 
Compression Methods in Fig. 1, but when we perform BSS 
in combination with SuperFrame, we are able to leverage 
all three methods. The main way to evaluate the 
compression speed of an encoder is to measure the amount 
of time it takes to complete the encode processing. In our 
experiment, we used the Linux time() function to measure 
the encoder execution time. In addition to the encoder 
execution time, we also measured the execution time for 
any preprocessing on the input data before beginning the 
encoding, which includes the execution time for BSS. 
 
Total run-time (Equation 1) includes the execution time for 
preprocessing and compression and the transfer time for 
downlink based upon the available bandwidth. We do not 
consider decoding time in this metric because a typical 
application would operate the decoding process on high-
performance, ground-based servers. 
 
Total Run-Time = Execution Time + Transfer Time        (1)  
 

V. SUPERFRAME RESULTS 
 
A. 16-Bit Lossless Image Encoders 
 
In previous research, we performed our SuperFrame 
method on a desktop computer with high memory and 
computational power with respect to on-board processing 
systems. We could use a significantly larger SuperFrame 

size of 256×256×4200 (H × W × Frames), however, this 
size is not achievable on the Amlogic S905 and Xilinx 
Zynq-7020 due to the limited memory. We found that the 
maximum SuperFrame size for each platform was 
256×256×350 for lossless compression. At this size, a 
lossless CR of ~3.5 was achieved for all encoders. This 
maximum SuperFrame size achieved a 2.3× greater CR 
compared to doing standard frame-by-frame compression, 
which is shown in Fig. 4. 
 

 
Fig. 4. Lossless Compression Ratios for Varying  

SuperFrame Sizes 
 

As mentioned above, the execution time is the time it takes 
for preprocessing and compression. Fig. 5 shows the 
execution times for libopenJPEG, JPEG-LS, and PNG on 
the Amlogic S905. JPEG-LS and libopenJPEG offered the 
fastest execution with a 20.9× and 2.6× speedup over PNG, 
respectively. At higher SuperFrame sizes, the execution 
time is much slower due to the increased size needed for the 
memory buffer, resulting in reduced efficiency between the 
shared memory of the system and application. This is 
important to consider as we try to minimize the execution 
time as much as possible to achieve a faster downlink of 
video data. The execution times of libopenJPEG and JPEG-
LS were, on average, 1.7× and 1.8× faster using 
SuperFrame, respectively. However, for PNG, the 
execution time was 2.1× slower using SuperFrame. 
 

 
Fig. 5. Execution Time for Lossless 16-Bit Encoders 
libopenJPEG, JPEG-LS, and PNG on Amlogic S905 

×

×
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Fig. 6. Execution Time for Lossless 16-Bit JPEG-LS on 

Xilinx Zynq XC7Z020 
 

The execution time for JPEG-LS on the Xilinx Zynq 
XC7Z020 chipset is shown in Fig. 6. Similar to the 
execution time of JPEG-LS on Amlogic S905, the 
execution time decreased by an average of 1.5× for 
increasing SuperFrame sizes. The Amlogic S905 offered a 
3.9× and 4.5× speedup over the Xilinx Zynq XC7Z020 for 
frame-by-frame and SuperFrame compression, respectively. 
This was due to the higher clock frequency of the Amlogic 
S905. 
 
FFmpeg does not include libopenJPEG and PNG by default 
so their external libraries had to be cross-compiled for the 
Xilinx Zynq chipset. We were unsuccessful in doing this so 
only the execution time for JPEG-LS was analyzed.  
 
B. Total Run-Time Analysis for 16-Bit Lossless Encoders 
 
Similar to our previous research in [2], we performed a total 
run-time analysis, shown in Figs. 7 and 8, to show that we 
can perform preprocessing, compression, and downlink of 
the video data faster than downlinking the raw data to 
achieve real-time video. We found that we could achieve 
this at bandwidths less than 16Mbps for libopenJPEG, all 
bandwidths for JPEG-LS, and bandwidths less than 8 Mbps 
for PNG on the Amlogic S905. On the Xilinx Zynq 
XC7Z020 in Fig. 8, we found that we could achieve faster 
downlink for bandwidths less than 32 Mbps. However, 
bandwidths above 16Mbps are uncommon for on-board 
processing systems in aerospace. A SuperFrame size of 
256×256×350 and 256×256×200 provided the fastest total 
run-time offering a 3.2× speedup over RAW. The standard 
frame-by-frame compression provided the slowest total run-
time, but still provided a 1.7× speedup over RAW. Overall, 
JPEG-LS had the fastest total run-time compared to PNG 
and libopenJPEG for all SuperFrame sizes since it provided 
the best compression ratio as shown in Fig. 4. 
 
 
 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 7. Total Run-Time Analysis for  

Varying SuperFrame Sizes using (a) libopenJPEG,  
(b) JPEG-LS, and (c) PNG on Amlogic S905 

 
 
 
 

×
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Fig. 8. Total Run-Time Analysis for  

Varying SuperFrame Sizes using JPEG-LS  
on Xilinx Zynq XC7Z020 

 
C. 16-bit Lossy Image Encoders 
 
The performance in terms of compression ratio and 
execution time of 16-bit lossy image encoders were 
analyzed. JPEG-LS and PNG are lossless only, so 
libopenJPEG was solely evaluated. The lossy compression 
ratios are shown in Fig. 9 and the execution times are 
shown in Fig. 10 using libopenJPEG for SuperFrame sizes 
of 256×256×100 and 256×256×200. As the compression 
level increases, the compression ratio exponentially 
increases. A compression level of four provides a good 
tradeoff between compression ratio and RMSE. 
 
Due to the addition of the quantization step needed to 
perform lossy compression, the execution time increases by 
1.4× and 1.3× for a SuperFrame size of 256×256×100 and 
256×256×200, respectively, as shown in Fig. 10. However, 
due to the slight increase in execution time of 25 seconds, 
we would still be able to preprocess, compress, and 
downlink the video data faster than RAW for bandwidths 
less than 16 Mbps. Based on these results, a system 
designer will need to balance between lossless and lossy 
compression ratios, video quality, and execution time.  
 

 
Fig. 9. Lossy Compression Ratios for Varying  

SuperFrame sizes using libopenJPEG 
 

 
Fig. 10. Execution Time using Lossy  

16-bit libopenJPEG 
 

VI. BSS WITH SUPERFRAME RESULTS 
 

Next, we performed BSS in combination with SuperFrame 
to leverage the 8-bit side of JPEG2000, JPEG-LS, and 
PNG. We achieved a 1.2× CR for JPEG2000, while JPEG-
LS had roughly the same CR, and PNG decreased by 1.6× 
compared to the CRs obtained from using SuperFrame 
alone with a 16-bit encoder. These results are shown in Fig. 
11. 
 

 
Fig. 11. Lossless Compression Ratios using BSS  

with SuperFrame on Amlogic S905 
 

 
Fig. 12. BSS with SuperFrame Lossless  

Execution Time using Amlogic S905 
 
 

× ×

×

×
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The execution times for varying SuperFrame sizes using 
BSS in combination with SuperFrame on the Amlogic S905 
are shown in Fig. 12.  Overall, the execution time decreases 
with a higher SuperFrame size by an average of 1.1×, 3.4×, 
and 4.3× for JPEG2000, JPEG-LS, and PNG, respectively. 
Compared to their 16-bit counterpart, JPEG2000, JPEG-LS, 
and PNG executed 1.4×, 7.1×, and 3.1× slower for frame-
by-frame compression, respectively, due to the additional 
time needed to execute BSS. Leveraging 8-bit SuperFrame 
for compression JPEG2000 and JPEG-LS executed 2.2× 
and 3.6× slower, respectively, while PNG executed 2.8× 
faster.  
 

 
Fig. 13. BSS with SuperFrame Execution Time 

 using Xilinx Zynq XC7Z020 
 
The execution times for varying SuperFrame sizes using 
BSS in combination with SuperFrame on the Xilinx Zynq 
XC7Z020 are shown in Fig. 13. The execution time for 
JPEG2000 could only be found for a SuperFrame size up to 
256×256×100 due to the memory allocation restrictions. At 
a SuperFrame size of 256×256×100, JPEG-LS had a 4.5× 
speedup over JPEG2000. If a system designer were to 
choose JPEG2000 as the encoder and a SuperFrame size of 
256×256×100, they would get a good CR as shown in Fig. 
11, but would have to consider the increased latency of it. 
JPEG2000 and JPEG-LS executed more efficiently on the 
Amlogic S905 by offering a 5.1× and a 1.9× speedup over 
the Xilinx Zynq XC7Z020.  
 
A. Total Run-Time Analysis for 8-bit Lossless Encoders 
 
A total run-time analysis was also performed for 8-bit 
lossless encoders on the Amlogic S905 as shown in Fig. 14.  
We found that we could achieve preprocessing, 
compression, and downlink faster than RAW at bandwidths 
less than 16Mbps for JPEG2000, bandwidths less than 32 
Mbps for JPEG-LS, and bandwidths less than 16 Mbps for 
PNG on the Amlogic S905. Due to the increased efficiency 
of PNG’s 8-bit side, we could perform our methodology up 
to 16 Mbps compared to just 8 Mbps of its 16-bit side. 
 
 
 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 14. BSS with SuperFrame Total Run-Time Analysis 
for Varying SuperFrame Sizes using (a) JPEG2000, (b) 

JPEG-LS, and (c) PNG on Amlogic S905 
 

VII. CONCLUSIONS 
 

The analysis presented in this paper provides beneficial 
insight for using CPUs to maximize performance for video 
preprocessing and compression. The experiment provided 
the speedups achieved for executing our novel 
preprocessing methods, compression, and downlink across 
all platforms which allows a designer to successfully 
choose which preprocessing method, architecture, and 
encoder to use for an OPIR image sensor based on their 
system specifications. We found that due to the resource 

×
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limitations of the platforms used, we were not able to use a 
maximum SuperFrame size of 256×256×4200 used in 
previous research. The maximum SuperFrame size 
achieved for lossless compression was 256×256×350 on the 
ODROID-C2 and Avnet ZedBoard development platforms, 
but it still showed worthy compression ratios for 
libopenJPEG, JPEG-LS, and PNG compared to doing 
standard frame-by-frame compression.  It was found that 
performing lossy compression resulted in an even smaller 
SuperFrame size of 256×256×250 due to the extra memory 
needed to perform the quantization step. The execution time 
of each image encoder was analyzed and it was found that 
JPEG-LS offered the fastest 16-bit execution time 
compared to libopenJPEG, JPEG2000, and PNG, while 
PNG offered the fastest 8-bit execution time. We were able 
to show that our preprocessing and compression methods 
allowed for faster downlink of OPIR data as opposed to 
downlinking the raw data for bandwidths typically available 
for on-board systems.  
 
Future work will be to make the system a more 
heterogeneous architecture. This will include integrating an 
FPGA with a hard-core CPU, and a GPU into the system to 
perform video preprocessing and compression; the FPGA 
will perform the preprocessing through an optimized 
pipeline, the CPU will package the data into a raw video 
file which will then be sent to the GPU to perform the 
compression to take advantage of the GPU’s data-parallel 
architecture.  
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