
OPIR Video Preprocessing and Compression
for On-Board Aerospace Computing

Eric Shea, Alan George

NSF Center for High-Performance Reconfigurable Computing (CHREC)

ECE Dept., University of Pittsburgh
Room 1238D, Benedum Hall

Pittsburgh, PA 15261
{eric.shea, alan.george}@pitt.edu

Abstract – Increasing bit-depth of new image sensors presents
many challenges on resource-limited, on-board processors in
aerospace. This paper provides new results, analysis, and
insight with our novel methods for preprocessing with
compression of an Overhead Persistent InfraRed (OPIR)
image sensor on embedded processors including Xilinx Zynq-
7020 and Amlogic S905.

I. INTRODUCTION

The increasing bit-depth on next-generation image sensors
presents many unique challenges for video preprocessing
and compression with on-board processors in aerospace
computing. The naturally limiting resources, such as
memory and downlink bandwidth, require more efficient
methods to achieve faster execution of preprocessing and
higher compression ratios (CRs). However, trying to
accomplish these tasks will create a trade-off between video
quality and data throughput that the system designer will
need to consider based on their requirements and the
resources available on their system. The underlying goal is
to perform preprocessing, compression, and downlink faster
than it would be to downlink the raw data from an
Overhead Persistent InfraRed (OPIR) image sensor.
Previous research proved that we can do exactly that with
one of our novel preprocessing methods, Bit-Stream
Splitting (BSS), at bandwidths less than 6 Mbps. The scope
of this research was limited though since it did not test our
other preprocessing method, SuperFrame. This paper
provides an analysis of SuperFrame alone and in
combination with BSS on different CPUs to achieve faster
downlink of sensor data as opposed to downlinking the raw
data for bandwidths typically available for on-board
systems. Based on the data and analysis presented, a
designer will be able to determine which preprocessing
method, architecture, and encoder to use.

As video systems become more mainstream for spacecraft,
drones, and other unmanned aerial vehicles, the image
sensors are getting more diverse and complex as the
demand for better resolution, higher frame rates, and higher
bit-depth increases. There are many dependent variables to
consider when designing to achieve maximum performance
of a real-time video system such as the preprocessing
method, architecture, bit-depth of the image sensor, and
encoder. For example, our two preprocessing methods

effect achievable compression ratios and cause a small
delay in the video data. The CPU architecture, memory,
and clock frequency effects how quickly preprocessing and
compression can be executed. The bit-depth of the image
sensor can limit us to a select few encoders since most can
only handle standard 8- and 16-bit data types. The encoder
effects execution time, compression ratio, ability to be
parallelized based on its multithreading capabilities, bit-
depth, input pixel format, and whether we can perform
lossless and/or lossy compression.

As the bit-depth of image sensors increases, such as the 14-
bit OPIR sensor, the image data surpasses most of the
standard 8-bit codecs. Only a few codecs can compress
anything higher than 8-bit, such as PNG [3], JPEG-LS [4],
FFV1 [5], FFVhuff [6], and JPEG2000 [7]. Furthermore,
one of these can only do lossless encoding and can only
compress a single frame at a time. Since popular codecs
such as x264 (an open-source version of h.264), MJPEG,
and VP8/9 can only process 8-bit data, we must perform
preprocessing on the original video data since it is 14 bits
per pixel.

This paper includes background and related work to give
insight into our novel methodology and provide results
from previous work. It explains our two preprocessing
methods and three compression methods that we use to
increase the compression ratio and speed. In addition, it
includes the experimental setup, which details the two
different CPU architectures used and the OPIR sensor. We
outline different performance metrics used to analyze the
data and finally, the results section provides a comparative
analysis between the performance of each preprocessing
method, CPU architecture, and image encoder.

II. BACKGROUND AND RELATED WORK

Extensive research has been done to achieve higher CRs
with low root-mean-square error (RMSE) for OPIR sensors.
RMSE is a metric we use to compare the original video to
the decompressed video. Without using preprocessing, we
were only able to achieve a CR between 1.0 to 1.9 using
JPEG2000, JPEG-LS, FFV1, and FFVhuff. These CRs are
not acceptable for real-time systems, nor worth the effort to
perform compression. As a result, we developed two novel
preprocessing methods, BSS and SuperFrame, to help

978-1-5386-3200-0/17/$31.00 ©2017 IEEE 142

achieve a more worthwhile CR. We found that, using BSS
with x264 encoder, we could obtain a CR of ~25 and an
RMSE of ~15[1]. Using SuperFrame alone with an image
resolution of 256×256×4200, we could achieve an average
lossless CR of ~2.44 using JPEG2000, PNG, and JPEG-LS.
PNG had the best lossless CR of 3.57 for SuperFrame. A
combination of BSS and SuperFrame was also analyzed
where it performed better than SuperFrame alone for CRs
higher than 20. Other preprocessing methods such as
filtering, factoring, and region-of-interest (ROI) were also
studied, but they did not provide as good of performance
compared to BSS and SuperFrame, so they were not
extensively studied.

Fig. 1. Block Diagram of our Methodology

Our novel methodology is shown in Fig. 1 to illustrate our
intent to do on-board processing of video data from an
OPIR sensor. The block diagram consists of preprocessing
using our novel methods such as BSS and SuperFrame,
lossless or lossy compression, and downlink of the
compressed data to a ground station. The decompression
performance of the video data was not analyzed for this
study since it will be done on a ground-based system.

Once we determined that BSS and SuperFrame were the
most effective preprocessing methods, we wanted to see
how long it took to execute them on resource-limited
platforms studied in [2]. Moreover, three progressively
more aggressive compression methods, illustrated in Fig. 2,
were developed and used with BSS to see the speedups
achieved compared to a serial Baseline Method. Using the
Parallelized Method in Fig. 2, we could decrease the
execution time (time it takes to perform preprocessing and
compression) by 2× using two threads compared to the
serial Baseline method which used a single thread. The
Augmented Parallelized Method further decreased the
execution time by offering a 3.4× average speedup over the
serial Baseline Method.

We also compared the execution time between 8- and 16-bit
encoders such as x264, PNG, JPEG-LS, FFV1, FFVhuff,
and FFV1 Version 3. FFVhuff provided the fastest
execution time which was due to inefficient compression of
OPIR video, while PNG and FFV1 executed the slowest for
the 16-bit encoders. We found that using BSS with the 8-bit
encoder, x264, had a much slower execution time due to
having to account for the extra time needed to carry out
BSS. However, it offered the highest CR compared to the
other encoders used.

The overall goal was to show that our methods will allow
for faster downlink of the sensor data as opposed to
downlinking the raw data for bandwidths typically available
for on-board systems. We could downlink the BSS plus

x264 data faster than downlinking the RAW data for
bandwidths lower than 6 Mbps on the P5040, Amlogic
S905, and Xilinx Zynq-7020. The RAD5545 was not able
to preprocess, compress, and downlink the data faster than
downlinking the RAW data for all bandwidths due to the
low clock frequency of a radiation-hardened processor.

Fig. 2. BSS Compression Methods

III. EXPERIMENTAL SETUP

BSS and SuperFrame, and compression, using FFmpeg’s
open-source compression library[6],were executed using
ODROID-C2 and Avnet ZedBoard development platforms
because they are part of NASA’s High-Performance
Spaceflight Computing (HPSC) project and the CHREC
Space Processor (CSP)[8], respectively. Their system
specifications are shown in Table 1.

Table 1: Targeted System Specifications

Board Chipset Architecture Frequency
(GHz)

ODROID-C2 Amlogic S905 4× ARM
Cortex- A53 1.500

Avnet
Zedboard

Xilinx Zynq-
7020 SoC
XC7Z020

2× ARM
Cortx-A9 0.766

For our analysis, the Air Force Research Laboratory
(AFRL) provided us with three video files containing
simulated video data using landsat imagery for
backgrounds. A single frame from each video file is
illustrated in Fig. 3. Each video file has roughly 4200
frames, an image resolution of 256×256 pixels, a bit-depth
of 14, and a grayscale pixel format. These specifications
were chosen to mimic commercial, scientific-grade cameras
currently available for lab use. The 14-bit data is housed in
a 16-bit data container within the video file, which allows
us to leverage standard 16-bit encoders.

143

Fig. 3. Representative OPIR sample frames from
simulated 14-bit video test set for varying cloud
cover situations: (a) Cloud001, (b) Cloud002,

and (c) NoCloud001

Our SuperFrame method can leverage various image
encoders since it is essentially a very large image. In this
study, we analyze libopenJPEG (open-source version of
JPEG2000), JPEG-2000, JPEG-LS, and PNG. All four of
these encoders are able to support an 8- and 16-bit bit
depth. To take advantage of the 8-bit side of the image
encoders we performed BSS on the original, high bit-depth
video file to create one file containing only the lower bytes
of each pixel and the other file containing the higher bytes
of each pixel. Then, we executed SuperFrame on both video
files. Since we used BSS, it allowed us to perform each of
the three Compression Methods shown in Fig. 2.

IV. PERFORMANCE EVALUATION METRICS

The same metrics that were used in [2] are also used in this
study. Using SuperFrame alone, we are not able to use the
Compression Methods in Fig. 1, but when we perform BSS
in combination with SuperFrame, we are able to leverage
all three methods. The main way to evaluate the
compression speed of an encoder is to measure the amount
of time it takes to complete the encode processing. In our
experiment, we used the Linux time() function to measure
the encoder execution time. In addition to the encoder
execution time, we also measured the execution time for
any preprocessing on the input data before beginning the
encoding, which includes the execution time for BSS.

Total run-time (Equation 1) includes the execution time for
preprocessing and compression and the transfer time for
downlink based upon the available bandwidth. We do not
consider decoding time in this metric because a typical
application would operate the decoding process on high-
performance, ground-based servers.

Total Run-Time = Execution Time + Transfer Time (1)

V. SUPERFRAME RESULTS

A. 16-Bit Lossless Image Encoders

In previous research, we performed our SuperFrame
method on a desktop computer with high memory and
computational power with respect to on-board processing
systems. We could use a significantly larger SuperFrame

size of 256×256×4200 (H × W × Frames), however, this
size is not achievable on the Amlogic S905 and Xilinx
Zynq-7020 due to the limited memory. We found that the
maximum SuperFrame size for each platform was
256×256×350 for lossless compression. At this size, a
lossless CR of ~3.5 was achieved for all encoders. This
maximum SuperFrame size achieved a 2.3× greater CR
compared to doing standard frame-by-frame compression,
which is shown in Fig. 4.

Fig. 4. Lossless Compression Ratios for Varying

SuperFrame Sizes

As mentioned above, the execution time is the time it takes
for preprocessing and compression. Fig. 5 shows the
execution times for libopenJPEG, JPEG-LS, and PNG on
the Amlogic S905. JPEG-LS and libopenJPEG offered the
fastest execution with a 20.9× and 2.6× speedup over PNG,
respectively. At higher SuperFrame sizes, the execution
time is much slower due to the increased size needed for the
memory buffer, resulting in reduced efficiency between the
shared memory of the system and application. This is
important to consider as we try to minimize the execution
time as much as possible to achieve a faster downlink of
video data. The execution times of libopenJPEG and JPEG-
LS were, on average, 1.7× and 1.8× faster using
SuperFrame, respectively. However, for PNG, the
execution time was 2.1× slower using SuperFrame.

Fig. 5. Execution Time for Lossless 16-Bit Encoders
libopenJPEG, JPEG-LS, and PNG on Amlogic S905

×

×

144

Fig. 6. Execution Time for Lossless 16-Bit JPEG-LS on

Xilinx Zynq XC7Z020

The execution time for JPEG-LS on the Xilinx Zynq
XC7Z020 chipset is shown in Fig. 6. Similar to the
execution time of JPEG-LS on Amlogic S905, the
execution time decreased by an average of 1.5× for
increasing SuperFrame sizes. The Amlogic S905 offered a
3.9× and 4.5× speedup over the Xilinx Zynq XC7Z020 for
frame-by-frame and SuperFrame compression, respectively.
This was due to the higher clock frequency of the Amlogic
S905.

FFmpeg does not include libopenJPEG and PNG by default
so their external libraries had to be cross-compiled for the
Xilinx Zynq chipset. We were unsuccessful in doing this so
only the execution time for JPEG-LS was analyzed.

B. Total Run-Time Analysis for 16-Bit Lossless Encoders

Similar to our previous research in [2], we performed a total
run-time analysis, shown in Figs. 7 and 8, to show that we
can perform preprocessing, compression, and downlink of
the video data faster than downlinking the raw data to
achieve real-time video. We found that we could achieve
this at bandwidths less than 16Mbps for libopenJPEG, all
bandwidths for JPEG-LS, and bandwidths less than 8 Mbps
for PNG on the Amlogic S905. On the Xilinx Zynq
XC7Z020 in Fig. 8, we found that we could achieve faster
downlink for bandwidths less than 32 Mbps. However,
bandwidths above 16Mbps are uncommon for on-board
processing systems in aerospace. A SuperFrame size of
256×256×350 and 256×256×200 provided the fastest total
run-time offering a 3.2× speedup over RAW. The standard
frame-by-frame compression provided the slowest total run-
time, but still provided a 1.7× speedup over RAW. Overall,
JPEG-LS had the fastest total run-time compared to PNG
and libopenJPEG for all SuperFrame sizes since it provided
the best compression ratio as shown in Fig. 4.

(a)

(b)

(c)

Fig. 7. Total Run-Time Analysis for

Varying SuperFrame Sizes using (a) libopenJPEG,
(b) JPEG-LS, and (c) PNG on Amlogic S905

×

145

Fig. 8. Total Run-Time Analysis for

Varying SuperFrame Sizes using JPEG-LS
on Xilinx Zynq XC7Z020

C. 16-bit Lossy Image Encoders

The performance in terms of compression ratio and
execution time of 16-bit lossy image encoders were
analyzed. JPEG-LS and PNG are lossless only, so
libopenJPEG was solely evaluated. The lossy compression
ratios are shown in Fig. 9 and the execution times are
shown in Fig. 10 using libopenJPEG for SuperFrame sizes
of 256×256×100 and 256×256×200. As the compression
level increases, the compression ratio exponentially
increases. A compression level of four provides a good
tradeoff between compression ratio and RMSE.

Due to the addition of the quantization step needed to
perform lossy compression, the execution time increases by
1.4× and 1.3× for a SuperFrame size of 256×256×100 and
256×256×200, respectively, as shown in Fig. 10. However,
due to the slight increase in execution time of 25 seconds,
we would still be able to preprocess, compress, and
downlink the video data faster than RAW for bandwidths
less than 16 Mbps. Based on these results, a system
designer will need to balance between lossless and lossy
compression ratios, video quality, and execution time.

Fig. 9. Lossy Compression Ratios for Varying

SuperFrame sizes using libopenJPEG

Fig. 10. Execution Time using Lossy

16-bit libopenJPEG

VI. BSS WITH SUPERFRAME RESULTS

Next, we performed BSS in combination with SuperFrame
to leverage the 8-bit side of JPEG2000, JPEG-LS, and
PNG. We achieved a 1.2× CR for JPEG2000, while JPEG-
LS had roughly the same CR, and PNG decreased by 1.6×
compared to the CRs obtained from using SuperFrame
alone with a 16-bit encoder. These results are shown in Fig.
11.

Fig. 11. Lossless Compression Ratios using BSS

with SuperFrame on Amlogic S905

Fig. 12. BSS with SuperFrame Lossless

Execution Time using Amlogic S905

× ×

×

×

146

The execution times for varying SuperFrame sizes using
BSS in combination with SuperFrame on the Amlogic S905
are shown in Fig. 12. Overall, the execution time decreases
with a higher SuperFrame size by an average of 1.1×, 3.4×,
and 4.3× for JPEG2000, JPEG-LS, and PNG, respectively.
Compared to their 16-bit counterpart, JPEG2000, JPEG-LS,
and PNG executed 1.4×, 7.1×, and 3.1× slower for frame-
by-frame compression, respectively, due to the additional
time needed to execute BSS. Leveraging 8-bit SuperFrame
for compression JPEG2000 and JPEG-LS executed 2.2×
and 3.6× slower, respectively, while PNG executed 2.8×
faster.

Fig. 13. BSS with SuperFrame Execution Time

 using Xilinx Zynq XC7Z020

The execution times for varying SuperFrame sizes using
BSS in combination with SuperFrame on the Xilinx Zynq
XC7Z020 are shown in Fig. 13. The execution time for
JPEG2000 could only be found for a SuperFrame size up to
256×256×100 due to the memory allocation restrictions. At
a SuperFrame size of 256×256×100, JPEG-LS had a 4.5×
speedup over JPEG2000. If a system designer were to
choose JPEG2000 as the encoder and a SuperFrame size of
256×256×100, they would get a good CR as shown in Fig.
11, but would have to consider the increased latency of it.
JPEG2000 and JPEG-LS executed more efficiently on the
Amlogic S905 by offering a 5.1× and a 1.9× speedup over
the Xilinx Zynq XC7Z020.

A. Total Run-Time Analysis for 8-bit Lossless Encoders

A total run-time analysis was also performed for 8-bit
lossless encoders on the Amlogic S905 as shown in Fig. 14.
We found that we could achieve preprocessing,
compression, and downlink faster than RAW at bandwidths
less than 16Mbps for JPEG2000, bandwidths less than 32
Mbps for JPEG-LS, and bandwidths less than 16 Mbps for
PNG on the Amlogic S905. Due to the increased efficiency
of PNG’s 8-bit side, we could perform our methodology up
to 16 Mbps compared to just 8 Mbps of its 16-bit side.

(a)

(b)

(c)

Fig. 14. BSS with SuperFrame Total Run-Time Analysis
for Varying SuperFrame Sizes using (a) JPEG2000, (b)

JPEG-LS, and (c) PNG on Amlogic S905

VII. CONCLUSIONS

The analysis presented in this paper provides beneficial
insight for using CPUs to maximize performance for video
preprocessing and compression. The experiment provided
the speedups achieved for executing our novel
preprocessing methods, compression, and downlink across
all platforms which allows a designer to successfully
choose which preprocessing method, architecture, and
encoder to use for an OPIR image sensor based on their
system specifications. We found that due to the resource

×

147

limitations of the platforms used, we were not able to use a
maximum SuperFrame size of 256×256×4200 used in
previous research. The maximum SuperFrame size
achieved for lossless compression was 256×256×350 on the
ODROID-C2 and Avnet ZedBoard development platforms,
but it still showed worthy compression ratios for
libopenJPEG, JPEG-LS, and PNG compared to doing
standard frame-by-frame compression. It was found that
performing lossy compression resulted in an even smaller
SuperFrame size of 256×256×250 due to the extra memory
needed to perform the quantization step. The execution time
of each image encoder was analyzed and it was found that
JPEG-LS offered the fastest 16-bit execution time
compared to libopenJPEG, JPEG2000, and PNG, while
PNG offered the fastest 8-bit execution time. We were able
to show that our preprocessing and compression methods
allowed for faster downlink of OPIR data as opposed to
downlinking the raw data for bandwidths typically available
for on-board systems.

Future work will be to make the system a more
heterogeneous architecture. This will include integrating an
FPGA with a hard-core CPU, and a GPU into the system to
perform video preprocessing and compression; the FPGA
will perform the preprocessing through an optimized
pipeline, the CPU will package the data into a raw video
file which will then be sent to the GPU to perform the
compression to take advantage of the GPU’s data-parallel
architecture.

ACKNOWLEDGEMENTS

This work was supported by the CHREC Center members
and by the I/UCRC Program of the National Science
Foundation under Grant No. IIP-1161022.

REFERENCES

[1] A. Ho, A. George, A. Gordon-Ross, “Improving

Compression Ratios for High Bit-Depth Grayscale
Video Formats,” Proc. of IEEE Aerospace Conference,
Big Sky, MT, Mar. 5-12, 2016.

[2] A. Ho, E. Shea, A. George, A. Gordon-Ross,

“Comparative Analysis of Parallel OPIR Compression
on Space Processors,” Proc. of IEEE Aerospace
Conference, Big Sky, MT, Mar. 4-11, 2017.

[3] W3C, Portable Network Graphics (PNG) Specification

(Second Edition), November 2003

[4] Information Technology-Lossless and near-lossless

compression of continuous-tone images-Baseline.
International Telecommunication Union (ITU-T
Recommendation T.87). ISO/IEC 14495-1, 1998.

 FFV1 Video Codec Specification [Online]. Available:
http://ffmpeg.org/~michael/ffv1.html

[6] FFMPEG [Online]. Available: http://www.ffmpeg.org

[7] ISO/IEC 15 441-1: Information Technology-JPEG

2000 Image Coding System-Part 1: Core Coding
System, 2000.

[8] C. Wilson, J. Urriste, P. Gauvin, J. Stewart, A. George,

H. Lam, T. Flatley, G. Crum, M. Wirthlin, “CHREC
Space Processor (CSP): A Broad Vision for Hybrid
Space Computing,” Proc. of 3rd International Workshop
on LunarCubes, Palo Alto, CA, Nov. 13-15, 2013.

BIOGRAPHY

Eric Shea received his B.S degree in EE
from the University of Florida. He is an
M.S. student and a research assistant in
the on-board processing group of the
NSF CHREC Center at the University of
Pittsburgh.

Alan George is Professor of ECE at the
University of Pittsburgh, where he
serves as serve as Ruth and Howard
Mickle Endowed Chair and the
Department Chair of Electrical and
Computer Engineering in the Swanson
School of Engineering at Pitt. He also
serves as the Director of the NSF
Center for High-performance

Reconfigurable Computing (CHREC). He received the B.S.
degree in CS and M.S. in ECE from the University of
Central Florida, and the Ph.D. in CS from the Florida State
University. Dr. George's research interests focus upon
high-performance architectures, networks, systems,
services, and apps for reconfigurable, parallel, distributed,
and fault-tolerant computing. He is a Fellow of the IEEE.

148

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

