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ABSTRACT
The impact of shape, area allocation and timing constraints
on partitions was determined by selecting a standard set of
submodules and performing over 1,000,000 place/route ex-
periments. Place/route experiments used different area and
timing constraints and their resulting trace reports provided
timing results. These results suggest that the best results are
obtained when about 20% additional area (above synthesis
estimates) is allocated for each submodule. The aspect ratio
of submodules is largely a non-issue (there was one excep-
tion in the data). In some cases, carefully constraining area
dramatically improves results.

1. INTRODUCTION

As FPGA vendors continue to fabricate ever larger devices,
design complexity grows, place and route times increase,
and timing constraints become more difficult to meet. To
alleviate these issues FPGA vendors are now recommend-
ing that customers floor-plan their designs [1]. An FPGA
floor-plan is essentially a map created by the designer that
assigns circuit submodules to specific physical locations on
the FPGA fabric. Effective FPGA floor-plans are often dif-
ficult to create; the process is manual, iterative, and there is
not a lot of design data available to help guide designers as
they create floor-plans for their designs.

Xilinx provides some limited guidance to help design-
ers choose submodules and assign them to physical areas on
the fabric [1] [2] [3]. FPGA floor-planning case-studies do
exist [4] [5] and demonstrate that area constraints can aid
in achieving timing closure but these success stories mostly
suggest that floor-planning is beneficial and provide little
direction in general. Rather than examine a single design
with a few floor-plan modifications, this work takes a dif-
ferent tack and focuses on the submodules themselves and
how area and timing constraints ultimately affect their per-
formance. With this data, designers should be able to create
more effective floor-plans.

This work was supported by the I/UCRC Program of the National Sci-
ence Foundation under Grant No. 0801876

The primary contribution of this paper is to provide the
data that helps to answer the following questions that are of
keen interest to any designer creating FPGA floor-plans for
Xilinx devices.

• What aspect ratios are best for submodules that com-
prise the floor-plan?

• How much area should be allocated for a submodule?

• What impact do area constraints have on the maxi-
mum clock rate for a submodule?

• What guidelines should be followed when assigning
submodules to physical locations on the FPGA?

This paper arrived at the answers to these questions by
performing over one million place and route runs across sev-
eral carefully chosen submodules for Xilinx devices. Each
submodule was placed and routed approximately 200,000
times with various placement and timing constraints and the
resulting timing reports help answer the questions above.
Note that all experiments were performed on Xilinx devices
and the data presented here only applies to Xilinx devices.

2. BACKGROUND

Floor-planning Xilinx FPGAs is performed by adding phys-
ical area constraints to a design, often in the User Constraint
File (UCF) [6]. Constraints are applied in a UCF as shown
in Fig. 1. Hierarchical logical divisions of a design can be
constrained to reside within a particular region of the de-
vice. This region is defined by an AREA GROUP specify-
ing physical ranges of SLICEs, DSPs, and BRAMs. Dif-
ferent grids exist for each of type of resource, so different
ranges are specified for each.

Selecting the range for each resource type requires some
knowledge of the layout of the device. Xilinx FPGA devices
use a heterogeneous island-style architecture. The low level
architecture details remain hidden from the designer, but
tools such as PlanAhead, FPGA Editor, and Xilinx Descrip-
tion Language (XDL) [7] provide high level layout views.
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#Clock Period Constraint
NET “clk” TNM_NET = “clk1”;
TIMESPEC “TS_clk1” = PERIOD “clk1” 2.8 ns HIGH 50 %;

#Area Constraints
INST "fft1024_x0/*" AREA_GROUP = "fft_group";
AREA_GROUP "fft_group" RANGE=SLICE_X24Y81:SLICE_X53Y160;
AREA_GROUP "fft_group" RANGE=DSP48_X2Y34:DSP48_X3Y65;
AREA_GROUP "fft_group" RANGE=RAMB36_X2Y17:RAMB36_X3Y32;

Fig. 1. Sample constraints applied to a design. The clock
period is constrained to 2.8 ns. The fft1024 x0 component
is constrained to an AREA GROUP comprised of separate
ranges for SLICEs, DSPs, and BRAMs.
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Fig. 2. A view from the RapidSmith device browser depict-
ing a section of Xilinx tiles on the xc5vsx240t device. The
different device resources all share the common tile grid.

Of the three, XDL is the lowest level view and provides the
most information for choosing area constraints.

In the XDL device reports, all physical resources are as-
signed to tiles, and these tiles form a rectangular grid com-
prising the device. A section of these tiles is shown in Fig.
2. The universal tile grid resolves the different gridspaces
which exist for SLICEs, DSPs, and BRAMs. For example,
on the xc5vsx240t device, SLICE X0Y0 and DSP48 X0Y0
reside at tiles (6,263) and (24,263), respectively. The uni-
versality of the tile gridspace allows it to function as a high
level indicator of distance between resources, even resources
of different types. This simplifies the selection of an area to
a selecting a range of tiles. When a range of tiles is selected,
the independent AREA GROUP ranges for the different re-
source types can be easily extracted and applied to a UCF.

This effort used the RapidSmith XDL tool suite [8] ex-
tensively for the automated selection and visualization of tile
ranges and their corresponding ranges for specific resource
types. Both the universal nature of the tile grid and the au-

tomation available through RapidSmith motivate using tiles
in the experiments that follow.

3. EXPERIMENT SETUP

The xc5vsx240t-2 device is selected as the largest device in
the Virtex 5 SX family. The SX series has the greatest ra-
tios of DSPs and BRAMs in relation to the number of CLBs.
This gives the SX series architectures a more regular struc-
ture, having DSP and BRAM columns spread throughout
the fabric. This feature allows for varied area constraints to
be explored. The largest device is selected simply because
it allows for greater area constraint variation and places a
greater burden on the placer.

The submodules selected for testing are listed in Table
1. They represent a sampling of a few dataflow submodules
as well as some control-heavy submodules. The Microb-
laze (MB) and Picoblaze (PB) microcontrollers are available
from Xilinx, as well as the CoreGen LUT-based multiplier
(Mult). The FIR filter and double-precision floating point
quadratic equation solver (FP) are generated from C++ code
by Xilinx AutoESL. The FFT originates from a design in
SystemGenerator. The XST synthesis resource estimates are
listed with each submodule, covering ranges that require be-
tween 1 and 10% of the device.

3.1. Implementing Submodules Independently

For these experiments, it is desirable to implement each sub-
module listed in Table 1 independent of the context of a full
design. However, it is the nature of Xilinx XST and MAP
to remove any unused outputs or logic. A design consisting
of only a submodule without any connected outputs would
therefore be optimized out of existence. This optimization
can be avoided by surrounding the submodule with black
box barriers. These barriers take the form of Xilinx hard
macros and are connected to the inputs and outputs of the
submodule. In this setup, instead of being surrounded by a
full design, the submodule is now surrounded by hard macro
barriers. However, the impact of the barriers on the submod-
ule’s implementation is negligible for two reasons:

• The barriers are initially completely unplaced and are
not grouped into the submodule’s area constraint.

• The nets to or from the barriers are not affected by any
timing constraint.

Therefore, the placer is free to place these barrier compo-
nents basically anywhere not occupied by the submodule
components. With this freedom, the placer almost invari-
ably places the barriers around the perimeter of the submod-
ule. As far as routing is concerned, since there are no timing
constraints on the nets to or from the barriers, any route will
do. Essentially, the barrier presence can be ignored and the
submodules can be treated as independent of a full design.
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Table 1. Lists the sample of submodules and the Xilinx XST estimated resource utilizations when targeting the xc5vsx240t-2
device. Also listed are the clock period timing constraints and the percentage of implementations which met timing without
area constraints. Implementations were over 100 Xilinx MAP (placer) cost table seeds.

Submodule Logic LUTs Memory LUTs Registers BRAMs DSPs Clock Met Timing
(FFT) 1024-point 18-bit FFT 2574 571 4001 5 12 2.8 ns 59 %
(FIR) 128-tap 18-bit FIR filter 3106 36 7376 0 100 3.4 ns 35 %
(FP) Double-precision quadratic 13270 450 21584 12 40 5.0 ns 23 %
(MB) Microblaze 1395 84 1443 0 3 5.0 ns 27 %
(Mult) 18-bit LUT multiplier 362 23 466 0 0 2.7 ns 41 %
(PB) Picoblaze 113 34 135 0 0 2.8 ns 27 %
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Fig. 3. FIR submodule implemented without area con-
straints, but varying clock period constraints. At each con-
straint, the clock period achieved is plotted for 100 place-
ment seeds. The percentage of implementations that met the
constraint are also indicated. The shaded region overlaps all
implementations that met their constraints.

3.2. Establishing Baseline Clock Constraints

Before applying any area constraints, a baseline clock con-
straint is selected for each submodule in Table 1. A baseline
clock period constraint is selected for each submodule that
is not simple to achieve, yet not overly difficult. Each sub-
module is placed and routed over a range of 100 ps steps of
clock constraint without any area constraints. An example
of this is shown in Fig. 3 for the FIR submodule. Each clock
constraint is implemented for each of 100 placer seeds. At
the high end of the clock constraint range all implementa-
tions meet the constraint. At the low end none of the imple-
mentations meet their constraint. The first constraint that is
realizable for the FIR submodule is 3.3 ns, but only 2% of

implementations achieve that. This constraint may be unre-
alizable as soon as this submodule is placed in a full design.
The next constraint, 3.4 ns, is realized by 35% of the im-
plementations, and is selected as the clock constraint which
is applied in conjunction with area constraints. The other
submodules follow a similar baseline clock constraint selec-
tion process. The baseline clock constraint and percentage
of implementations that meet that clock constraint without
an area constraint are listed in Table 1 for each submodule.

3.3. Variation of Area Constraints

Only rectangular area constraints will be considered in these
experiments. Obscure area constraints are avoided not only
to simplify the exploration but also because area constraints
do not constrain the routing, so the routing will naturally
overlay a rectangular area even if the area of the placement
is an “L” or “T” shape. The rectangular area constraints are
varied in two dimensions. The first dimension is the aspect
ratio of the rectangle defined by (1).

Aspect Ratio =
Area Constraint T ile Width

Area Constraint T ile Height
(1)

For the implementations of the submodules, the aspect ra-
tio is allowed to vary over all unique ratios from combina-
tions of integers between 1 and 5 (1:1, 1:2, 1:3, 1:4, 1:5,
2:1,. . . ,5:4). The second dimension is the area overhead per-
centage or the rectangle defined by (2).

Overhead % =

✓
Resources Within Area

Est. Resources Required
� 1

◆
⇥ 100

(2)
By this definition, an area overhead of 0% implies that the
area constraint encloses just the resource requirement esti-
mated by synthesis, while an area overhead of 50% implies
that the area constraint encloses 50% more resources than
the required number of resources. For the implementations
of the submodules, the overhead is allowed to vary between
0 and 150% at 10% increments.
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Each submodule is assigned a starting tile around which
its area constraints should be centered. This tile is chosen
to be near DSPs or BRAMs if they are required, or to be in
a CLB rich region if they are not. It is chosen to be nearly
centered on one side of the device’s central clock column.
This location is chosen to maximize the allowable horizon-
tal and vertical growth of the area constraints considered
while avoiding, as much as possible, horizontal growth that
crosses the central clock column. It has been noticed that
wire segments that cross the central clock column can have
greater delays than corresponding wire segments elsewhere
on the device (more on this in the results). For each sub-
module, the UCF area constraints that correspond to each
combination of aspect ratio and overhead are generated with
a custom Java program based on the RapidSmith framework.

Each submodule is implemented for each of 100 MAP
(placer) cost table seeds for each combination of aspect ratio
and overhead, requiring 182,400 iterations of Xilinx v13.1
MAP and PAR. PAR options are left defaulted while MAP
options include “-t *” to vary the cost table seed and “-u”
to prevent the entire submodule from being optimized away.
The experiments were scripted across a variety of machine
clusters available at the Brigham Young University super-
computing facility.

4. RESULTS

The results of the experiments described in the previous sec-
tion are shown in Fig. 4. Each graph displays the percentage
of implementations of a specific submodule which met its
clock period constraint at each combination of aspect ratio
and area overhead.

A somewhat unexpected generality found in any sub-
module other than the FIR filter is that any combination of
aspect ratio and area overhead can meet a reasonably diffi-
cult clock period. This is noticed by the existence of non-
zero percentages at any point in the graphs of Fig. 4 for any
submodule except the FIR submodule. This is not necessar-
ily intuitive because it is generally understood that deviating
from a square aspect ratio can increase total wire length and
that restricting area can adversely affect the quality of the
placement or subsequent routability. This may be partially
explained by the fact that the submodules all have at least
about a 1:1 LUT to register ratio, so there should be a small
percentage of paths which could become the critical path.

4.1. Area Overhead Effects

Although generally any area overhead can meet the target
clock constraint, it is noticed that very low area overheads
of 0-20% tend to have the fewest implementations that meet
the clock constraints, often fewer than when the submod-
ule is implemented without an area constraint. An excep-
tion to this occurs when a near ideal aspect ratio is used in

conjunction with low overhead such as seen with the Mult
submodule at an aspect ratio of 0.2-.33 and overhead of 0%.
The Mult submodule has a large number of vertical shift and
carry chains, and a small overall area, so it prefers area con-
straints with lower (vertically oriented) aspect ratios. As the
area overhead increases, there is more room for the placer
to skew a submodule away from the area constraint’s aspect
ratio and toward an aspect ratio more preferable for the sub-
module, whatever that may be. Therefore, higher area over-
head can lead to a greater percentage of the implementations
meeting the timing constraints.

Generally, above 20% overhead, the percentages of im-
plementations meeting the timing constraints are similar to
percentages when the submodule is implemented without
area constraints. The Microblaze and Picoblaze, however,
display positive exceptions to the trend with dramatic im-
provements when implemented with area constraints. The
Microblaze in particular only met its timing constraint in
27% of implementations without area constraints, yet most
of the results with area constraints meet the timing constraint
in over 80% of implementations.

4.2. Aspect Ratio Effects

Aspect ratio generally appears to have little effect on any
of the results once area overhead exceeds about 20%. At
lower area overheads, the effects of aspect ratio are most
pronounced at the extremes. In particular, the Microblaze
and Picoblaze implementations suffer at low (vertically ori-
ented) aspect ratios and low overhead. This is in contrast
to the Mult submodule which showed a strong preference
for low aspect ratios. Meanwhile, the FP submodule has
greater difficulty at both the high and low aspect ratio ex-
tremes with low overhead. Breaking the generality, the FIR
submodule implementations simply will not meet its target
clock constraint except at moderate aspect ratios, regardless
of the area overhead.

The FIR filter demonstrates an exception to the gener-
alities noticed among the other submodules. This may be
due to its composition. The FIR submodule differs from
the other submodules by utilizing a disproportionately large
number of DSPs in relation to the number of other resources.
The overall tile area selected is dominated by the high DSP
requirement. This condition makes it difficult for the rel-
atively few registers to adequately fill in the total area, re-
quiring longer path delays between registers. Path delays
are found to be minimized when the tile area is minimized
and the tile aspect ratio is near 2.0. The actual underly-
ing physical geometries of the tiles are unknown, but it is
noticed that wire delays are about equal for an equivalent
number of interconnect tile hops in either the horizontal or
vertical direction. Consider a wire beginning at the lower
left interconnect tile in Fig. 2. The nearest interconnect tile
to the north is one tile away, while the nearest interconnect
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Fig. 4. Each graph shows the percentage of implementations of a specific submodule meeting its specified clock constraint
when rectangular area constraints are applied. The rectangle aspect ratio (width/height) varies along the vertical axes, while
the area overhead varies along the horizontal axes. The percentage of implementations meeting timing is mapped to the
gradient bar at the right of each graph.
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tile to the east is three tiles away. The wire going to either
has essentially the same delay. Over a large range of tiles
on any Xilinx device, the average horizontal spacing of in-
terconnect tiles is about double that of the average vertical
spacing. This leads to a preferred tile aspect ratio of 2.0 to
minimize path delays. Therefore, at low area overhead, the
FIR implementations which meet the clock constraint form
a band centered on an aspect ratio of 2.0.

It is noticed that the lower bound on the aspect ratio of
the FIR submodule decreases as the area overhead increases.
This is easily explained because as the area overhead in-
creases, progressively lower (vertically oriented) aspect ra-
tio constraints can still fit a higher (horizontally oriented)
aspect ratio placement within the area boundaries. The de-
crease in the aspect ratio upper bound as the overhead in-
creases is not as intuitive. The reason for this trend has to do
with crossing the central clock column of the device.

4.3. Central Clock Column Effects

The central column of the device contains specialized tiles
for clocks, I/O, etc. Wire segments which cross the cen-
tral column can have greater delay than corresponding wire
segments elsewhere on the device. The exact differences in
delay depend on segment length and load, but can be on the
order of hundreds of picoseconds. Slightly increased de-
lays can also be found on wires crossing horizontal clock
region boundaries, but these delays are only on the order of
tens of picoseconds. The upper bound on the aspect ratio
for the FIR submodule corresponds precisely with the area
constraint crossing over the central column, causing routes
that cross the central column to have increased delay. How-
ever, it should be noted that the central column effect may
be overly pronounced in the FIR submodule because of the
impact of the disproportionate number of resources. The FP
submodule spans the central column at higher (horizontally
oriented) aspect ratios as well and has many implementa-
tions meeting the clock constraint in those cases. So, while
it does not disrupt all implementations, an area constraint
which includes the central column may have a negative ef-
fect on timing.

5. CONCLUSION

The results profile how area constraints affect timing in sub-
modules independent of a full design. They help answer the
following questions:

What aspect ratios are best for submodules that com-
prise the floor-plan? The general results suggest that most
submodules are aspect-ratio agnostic. The exceptional case,
however, indicates that the tile aspect ratio should be se-
lected to be near 2.0 if possible.

How much area should be allocated for a submodule?
The minimum area overhead of 0% can provide implemen-

tations that meet the clock constraint, however, to meet tim-
ing most often, an area overhead of at least 20% is preferred.

What impact do area constraints have on the maximum
clock rate for a submodule? In general, area constraints do
not prohibit meeting maximum clock rate. Variations of as-
pect ratio and area overhead can impact how often the maxi-
mum clock rate is achieved, but it is achievable with an area
constraint. For some submodules, area constraints can sub-
stantially improve how often the maximum clock rate is met
when compared with their unconstrained counterparts.

What guidelines should be followed when assigning sub-
modules to physical locations on the FPGA? If possible,
submodules should not be assigned to areas that cross the
central column of the device.

This work does not consider effects introduced by the
context of a full design, but this is a natural direction for
future work. Future work could also explore less regular
architectures, such as those with only one DSP column or
large areas occupied by fixed functionality silicon. Variation
of timing results could also be explored when the area con-
straint is assigned to different locations on the FPGA fabric.
In addition to area constraint effects on timing, there are ef-
fects on routes which spill outside the constrained area. This
spillover can impact routed submodule reuse when wire use
conflicts with that of another submodule. Understanding the
routing spillover could improve the effectiveness of incre-
mental or partial-reconfiguration design flows.
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