F1-24: Device & Architecture Studies for Compute Cache Systems

VIRGINIA TECH.

FLORIDA

January 17-18, 2024

Dr. Herman Lam

Assoc. Professor of ECE

Y. Gao, P. Gupta

R. Hernandez-Lopez

D. Klein, J. Madden

Research Students University of Florida

Number of requested memberships ≥ 4

Device & Architecture Studies for Compute Cache Systems

Motivation

Data bottleneck: Bring compute close to data for data-intensive, data-analytics applications

- Perform *acceleration* and *scaling* studies on devices, applications, and platforms for compute cache systems
- **T1: Device & Algorithm Studies** for Compute Cache: Acceleration and scaling studies on devices, applications of interest.
- T2: oneAPI Cross-Platform & ModSim Studies for Compute Cache
- T3: Compute Cache for Edge Computing for FNN (Fire Neural Net)

Device & Algorithm Studies for Compute Cache

Acceleration Studies

- Continued development & evaluation • of devices on FireHose* benchmark:
 - FY2023 accelerators: Graphcore IPU, UPMEM DPU
 - New devices (FY2024) Habana Gaudi • TPU, SambaNova RDU
- **New benchmark:** Circus Tent** •

Suggestions from SHREC Members?

Scaling Studies

- Expand current benchmark development for scaling studies
- Resources available via ALCF clusters at Argonne National Lab
 - Graphcore IPU-POD₆₄
 - SambaNova Datascale SN30
 - GrogRack

- Graphcore IPU-POD₆₄
- 64 Gen 2 IPUs
- 22 PFLOPS @ FP16.16
- 2D Torus Configuration

Datascale SN30

- 8 SambaNova RDUs
- 100s of TFLOPS of compute •
- 8 TB total memory •

*FireHose: https://stream-benchmarking.github.io/firehose/ ** Circus Tent: https://github.com/tactcomplabs/circustent

F1

T2: OneAPI Cross-Platform & ModSim Studies

4

Goals

- Develop compute-cache architectures on heterogeneous systems using Intel OneAPI
- Perform ModSim studies for notional compute-cache systems
- Assess architecture performance across diverse workloads

Why OneAPI ?

- OneAPI offers multi-platform support for programming CPU, FPGAs, GPUs, etc. together.
- HLS programs can facilitate experimentation: easy kernel scheduling, workload division and memory management

BYU

BRIGHAM YOUN

FLORIDA

University of Pittsburgh

VIRGINIA TECH.

T3: Compute Cache for Edge Computing: FNN (Fire Neural Net)

Overview of FNN

Detection

FNN[™] uses its proprietary detector technology along with environmental data from satellites and ground stations to recognize *High-Risk-Lighting[™] (HRL[™])* events and issues relevant ignition alerts.

Verification and Mapping

■ FNN[™] works with its partners to verify and monitor wildfire ignition using satellite feeds, wildfire camera systems, and dedicated UAVs.

Goal & Approach

 Study and develop *compute-cache architectures* toward satisfying the real-time FNN requirement

At the FNN nodes on the computing edge

- Bring compute close to data on the edge for FNN
 - Heterogeneous computing using available and emerging technologies for edge computing (FPGAs, CPUs, PIM*, ...)
 - *Minimize the transfer of unnecessary data to servers:* filter and pre-process raw data at FNN nodes
 - *Distribute (off-load) computation* and *intelligence* as appropriate to nodes

At the cloud servers

- Servers focus on processing (inference) using already filtered and pre-processed data
- Explore the use of other heterogeneous & emerging computing technologies and platforms (e.g., GPU, TPU**)

*PIM: Process-In-Memory

**TPU: Tensor Processing Unit

Milestones, Deliverables & Budget

Milestones

- SMW24: Showcase midway progress on framework, platform, and interconnect exploration
- SAW24-25: Present completed project results

Deliverables

- Application source code and technology-transfer support
- Progress reports documenting research methods, progress, results, and analysis
- Several conference and/or journal publications

Membership Budget

■ Requesting ≥ 4 memberships

Conclusions & Member Benefits

Conclusions

- The goal is to perform *acceleration* and *scaling* studies on devices, applications, and platforms for compute cache systems
 - Perform acceleration and scaling studies on *devices* and *applications* of interest
 - Perform *oneAPI* cross-platform & ModSim studies for compute cache
 - Develop a compute cache system for *edge computing* for FNN (*Fire Neural Net*)

Member Benefits

- Direct influence over selected architecture, app, and interconnect studies
- Technology transfer of accelerated archs/apps/techniques of interest to members
- Key insights and lessons learned from design space explorations & tradeoff analyses

