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ABSTRACT 

This paper explores an asynchronous noise-suppression 

technique to be used in conjunction with asynchronous 

Gaussian blob tracking on dynamic vision sensor (DVS) data. 

The high dynamic range and fast acquisition time of DVS 

recordings enables the imaging of high-velocity targets despite 

ordinarily problematic lighting conditions.  The technique 

presented here relies on treating each pixel of the sensor as a 

spiking cell that keeps track of its own activity over time, which 

in turn can be filtered out of the resulting sensor event stream 

by user-configurable threshold values. In addition, 

asynchronous blob tracking is supplemented with double-

exponential smoothing prediction and Bezier curve-fitting in 

order to smooth tracker movement and interpolate target 

trajectory respectively.  This overall scheme is intended to 

achieve asynchronous point-source tracking using a DVS for 

space applications. In the space environment, radiation effects 

are expected to introduce transient, and possibly persistent, 

noise into the asynchronous event-stream of the DVS. Given the 

large distances between objects in space, targets of interest may 

be no larger than a single pixel and can therefore appear 

similar to noise-induced events. In this paper, the asynchronous 

approach is experimentally compared to a more traditional 

approach applied to reconstructed frame data for both 

performance and accuracy metrics. The results of this research 

show that the asynchronous approach can produce comparable 

or even better tracking accuracy while also drastically reducing 

the execution time of the process by seven times on average.  
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1. INTRODUCTION 

Recent years have seen the development of a new class of imaging 

sensors capable of replicating basic properties of biological vision, 

namely its focus on detecting changes within scenes. The first of 

these new neuromorphic vision systems was the DVS proposed in 

[1], which details the sensor’s architecture and relation to biological 

analogs. The DVS functions by detecting logarithmic intensity of 

luminance changes through a series of photoreceptors and 

integrating and comparative circuits associated with each 

individual pixel. Luminance changes are detected via conventional 

photodetectors such as those often found in active-pixel sensors. 

Once the luminance change at a given pixel induces a voltage 

beyond a certain predefined threshold, the cell will generate an 

event that encodes the (x,y) coordinates, polarity, and timestamp. 

Each of the pixel cells of the sensor monitors both positive and 

negative changes in luminance intensity, which is in turn reported 

in the positive or negative value of the polarity associated with each 

pixel event. It is also important to note that the events generated are 

not synchronized with the internal clock, creating the need for the 

timestamp recorded with each event. These events are then 

streamed to the onboard processor through a multiplexing 

technique referred to as address-event representation (AER) that 

serves to maintain the absolute order in which events occurred. This 

system and addressing scheme have been shown to register events 

on the microsecond scale, making the DVS ideal for applications 

requiring extremely fast response times. The overall benefit of this 

asynchronous, change-based architecture is superior power 

efficiency, temporal resolution, and dynamic range as well as 

drastically reduced data rate as compared to conventional cameras 

[1,2]. After several iterations on similar biomimetic vision systems, 

the asynchronous time-based image sensor (ATIS) has emerged as 

one of the more well-developed variations on the base DVS design. 

While it retains the strengths of the DVS architecture, the ATIS also 

encodes the relative intensity of luminance in the timing of events, 

enabling it to reconstruct full gray-scale images in addition to the 

binary events generated by the DVS. The ability to reconstruct 

variable-intensity images allows for more traditional image-

processing and computer-vision techniques, while still leveraging 

the high-speed data acquisition of the asynchronous sensor [3]. 

The primary focus of this research is to exploit the capabilities of 

DVSs for object tracking within the context of space-based 

observation, particularly in a low-Earth orbit (LEO) environment. 

The space environment imposes a unique set of challenges on 

computer vision that impact both the software and underlying 

hardware involved. First, and perhaps most fundamental, of these 

challenges is the size, weight, power, and cost (SWaP-C) 

constraints placed on hardware. DVSs excel in this regard as they 

are both lightweight and power-efficient, while also requiring 

fewer computing resources to perform event-based image 

processing. These qualities make them ideal for deployment on 

space platforms that make use of embedded architectures with strict 

power constraints. Another challenge faced by object tracking in 

space is the relative visibility of certain objects of interest. A 

significant percentage of space debris is made up of objects mere 

centimeters in size, and which have exceptionally low reflectance 

while travelling at extremely high speeds. Despite their small size, 

the high speed of debris poses a serious danger to space platforms, 
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which stand to benefit greatly from autonomous methods of 

avoidance [4,5]. Although some large-scale, ground-based optical 

solutions have been able to track exceptionally small space debris, 

the high dynamic range (HDR) and temporal resolution of DVSs 

may prove useful for autonomous collision avoidance onboard 

space platforms. Furthermore, the change-based detection 

properties of DVSs, coupled with their HDR and relatively low data 

rate, could be ideal for detecting aerial objects on Earth. Recent 

work using DVSs in conjunction with ground-based telescopes has 

demonstrated the potential of event-based approaches to tracking 

celestial objects. This research compared several bio-inspired 

vision sensors, including a DVS and ATIS, for the purposes of 

tracking objects in both low-Earth orbit and geosynchronous orbit 

(GEO) during daytime lighting conditions, displaying the efficacy 

of the HDR of bio-inspired sensors [6].   

Another challenge of particular interest in this research is the effect 

of radiation on spaceborne hardware. Radiation effects are typically 

classified as either transient or cumulative, from which correct 

operation may or may not be recoverable. Both types of radiation 

effects can pose significant issues for space missions, though 

transient single-event effects (SEEs) can often be managed by 

simple power-cycling of hardware or through standard hardware 

and software dependability techniques [7]. For imaging equipment, 

SEEs can manifest as salt-and-pepper noise that can be mitigated 

via common noise-filtering techniques when processing captured 

images. However, not all SEEs are transient, and some can cause 

permanent damage to sensing equipment that results in affected 

pixels being latched in an excited or unexcited state. Cumulative 

total ionizing dose (TID) effects are of relatively greater concern 

due to the long-term deleterious effects on hardware [8]. TID 

studies with CMOS cameras have shown that proton and heavy-ion 

radiation common in space can significantly impact photodiode 

responsivity and contribute to long-term degradation [9]. Other 

studies conducted on bipolar transistors, such as those that compose 

operational amplifiers, have shown significant impacts on voltage 

response with increasing TID [10]. Given the reliance of DVS upon 

CMOS components, they will likely experience many of the same 

types of degradation as other types of conventional CMOS cameras 

[11]. 

2. RELATED WORK 

The asynchronous nature of DVS data introduces new avenues for 

image processing given that the pixel data does not exist in 

conventional image frames. It is possible to use conventional 

image-processing and computer-vision techniques by integrating 

the events over a predefined period of time and then reconstructing 

conventional frames from these events. Recent work has also 

shown that a hybrid approach can be taken where conventional 

feature detection algorithms, such as the Harris corner detector, are 

used to locate features which are then tracked in the asynchronous 

event stream [12]. However, processing the events entirely in an 

asynchronous manner can significantly reduce the execution time 

of various operations as well as decrease the overall computational 

load. To date, several common image processing algorithms have 

been modified to work solely within an asynchronous context. 

Event-based cluster trackers have proven to be quite effective at 

tracking large objects such as vehicles, which have clear positive 

and negative polarity edges, at extremely high framerate and with 

low computational resource usage [13]. Algorithms for 

asynchronous optical-flow calculation have exhibited superior 

speed and processing usage, while also retaining comparable 

performance to frame-based approaches [14]. An event-based 

Hough circle transform demonstrated the ability to perform high-

speed, multi-object tracking within the context of microparticle 

tracking [15]. Additionally, spiking neural networks (SNNs) have 

been shown to naturally complement the spiking nature of DVS 

pixels. In recent work, SNNs have been used to asynchronously 

detect and track lines via clusters of spiking neurons representing 

line parameters in the Hough space. However, this approach scales 

poorly with increasing DVS pixel array size due to the large 

increase in the number of neurons required [16]. 

One technique of particular relevance used in this research is the 

event-based Gaussian blob tracker introduced in [17]. This 

approach allows for both object detection and tracking by 

instantiating a series of trackers whose position and shape in the 

visual field are defined by the parameters of their bivariate 

Gaussian distribution. Every new event generated by the sensor is 

evaluated for its probability of belonging to each of the existing 

trackers, spawning a new tracker if no tracker has a score beyond a 

predefined threshold. An exponentially decaying activity score is 

also associated with each tracker to differentiate between active and 

inactive trackers. 

Several means of noise filtration have also been adapted for use 

with asynchronous event streams. One such method exploits the 

temporal aspect of the event stream by requiring each incoming 

event to be supported by neighboring events within a certain 

predefined time threshold. A two-dimensional array of the 

camera’s visual field records the timestamp of the most recently 

generated event within a window. When a new event is generated, 

the event is only passed on if the timestamp at the corresponding 

pixel coordinate has a timestamp more recent than the chosen 

support time [13]. An issue with using this method for space 

applications is that objects of low reflectance may not always 

induce enough luminance change to generate an event. As a result, 

objects appearing as a single pixel may not necessarily excite every 

pixel in its path of motion and thus true events could be eliminated 

by the filter. Event-based optical flow has also been adapted for 

noise filtration by approximating the “lifetime” of events defined 

as the time required for adjacent pixels to be excited. Events with 

lifetimes close to zero are considered noise and omitted from the 

resulting event stream. While this method is effective, it requires 

events to be stored within a temporal window and can be 

computationally intensive with increasing window sizes [18]. 

Another technique relies on the supposition that actions and objects 

of interest in the foreground will generate relatively more events 

than the background. The visual field of the sensor is divided into 

an arbitrary number of cells that then maintain an exponentially 

decaying record of the activity occurring within them. Only cells 

with activity scores higher than the average activity of all cells will 

pass their corresponding events through the filter [19]. A modified 

form of this noise suppression is employed in this research. An 

alternative approach has been developed that generates a sparse 

representation within the cells using the K-SVD algorithm, which 

has been used to denoise both individual frames and videos 

composed of reconstructed frames. Although this approach 

thoroughly denoises tested frames, it is computationally time-

consuming and has not yet been shown to operate in real-time 

[20][21].  

Even with the inclusion of noise filtration, event-based blob 

tracking solutions rely on position updates that pull the tracker in 

opposing directions even when accurately tracking objects as a 

whole. This non-uniform movement occurs because the events 

associated with an object do not necessarily have timestamps 

temporally ordered in the direction of the object’s physical motion. 

These constant changes of direction necessitate some form of 
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predictive filter in order to smoothly track object trajectories. 

Kalman and extended Kalman filters have been established as 

extremely effective for object tracking, but the overhead imposed 

can severely impact execution time [22]. Given the high-speed data 

acquisition of the DVS, event-based algorithms must be able to 

cope with potentially high-activity scenes. One alternative 

approach to Kalman filtering makes use of double exponential 

smoothing prediction (DESP), a common data-forecasting method, 

to track head and hand movements. The experimental results 

showed comparable accuracy to the Kalman filtering approach, but 

with 135 times faster performance [23]. Assuming reduced or 

eliminated noise events and the generally consistent motion 

expected in space, this approach is well-suited for smoothing event-

based tracker trajectories. 

In addition to smoothing tracker trajectories, the error of the tracker 

position is assessed by several means adapted from previous works. 

One metric used to predict tracking failure is the forward-backward 

error typically employed with median flow tracking. This technique 

involves comparing the future and past trajectories of a given 

tracker and assigning an error value based on a chosen measure of 

distance. In an event-based context, this error can be used to 

suppress trackers activated by areas of constantly changing motion, 

which most likely do not correspond to objects of interest [24]. 

Lastly, a common metric for measuring tracker precision is the 

intersection over union (IoU) calculated between the given tracker 

and a ground-truth representation of the object of interest. This 

metric has been used extensively to compare the performance of 

different tracking algorithms and is used in this work to compare 

asynchronous and frame-based approaches with noise suppression 

[25]. 

3. APPROACH 

The following section details the algorithm used for object tracking 

and noise suppression intended for space-based applications. The 

blob-tracking aspect of this research relies on the event-based 

Gaussian tracker technique established in [17] with specific 

emphasis on tracking single-point sources. This emphasis is 

necessitated by the large distances at which space objects are to be 

tracked in relation to the comparatively low resolution of the DVS 

(640×480). The event-based Gaussian trackers allow for both 

efficient object detection and tracking but would be susceptible to 

noise and attraction to non-target objects in space environments. 

The asynchronous approach attempts to mitigate this behavior by 

introducing tracker suppression in addition to noise suppression. 

Both asynchronous and conventional frame-based approaches are 

presented and then compared across a variety of metrics. The 

frame-based approach differs in that it accumulates events over a 

predefined interval of time and then constructs an image frame 

from the resulting array. The reconstruction of frames allows more 

conventional image-processing techniques to be applied, but it also 

increases the execution time and computational resources required.  

3.1 Tracking Algorithm 
As stated previously, each event generated by the DVS is 

represented by a vector of the form 𝑒𝑖 = [𝑥𝑖 , 𝑦𝑖 , 𝑡𝑖 , 𝑝𝑖], where the x 

and y values correspond to the pixel location, t to the timestamp of 

the event and 𝑝 to the polarity of the event. The polarity may only 

take on a value of 𝑝 ∈  {1,−1}, indicating an increase or decrease 

in luminance respectively. The motion of objects can then be 

visualized as a point-cloud of events modeled by a bivariate 

Gaussian distribution , 𝛮(𝜇, 𝛴).  The parameters of the Gaussian 

distribution used to model the position and shape of a tracked object 

are defined as  

𝒖 = [𝒙, 𝒚]𝑻             ( 1 ) 

           𝚺 =  [
𝝈𝒙

𝟐 𝝈𝒙𝒚

𝝈𝒙𝒚 𝝈𝒚
𝟐 ].                ( 2 ) 

As each new event is generated, the probability of the event being 

associated with an active or inactive tracker is calculated as  

     𝒑𝒊(𝒖) =
𝟏

𝟐𝝅
|𝚺𝒊|

−
𝟏

𝟐𝒆−
𝟏

𝟐
(𝒖−𝒖𝒊)

𝑻𝚺−𝟏(𝒖−𝒖𝒊)     ( 3 ) 

where ui denotes the corresponding locations of active and inactive 

trackers. The event is then associated with the tracker with the 

highest calculated p score and the parameters of the tracker are 

updated according to the weighted update calculation 

         𝒖𝒕 = 𝜶𝟏𝒖𝒕−𝟏 + (𝟏 − 𝜶𝟏)𝒖                ( 4 ) 

       𝚺𝒕 = 𝜶𝟐𝚺𝒕−𝟏 + (𝟏 − 𝜶𝟐)𝚫𝚺      ( 5 ) 

where 

𝚫𝚺 =  [
(𝒙 − 𝒖𝒕𝒙)

𝟐 (𝒙 − 𝒖𝒕𝒙)(𝒚 − 𝒖𝒕𝒚)

(𝒙 − 𝒖𝒕𝒙)(𝒚 − 𝒖𝒕𝒚) (𝒚 − 𝒖𝒕𝒚)
𝟐 ] . ( 6 ) 

If no tracker has a calculated 𝑝 score above a certain predefined 

threshold 𝛿𝑝, a new tracker is instantiated with mean centered on 

the new event’s location and covariance matrix initialized to 

predefined values. In this research, a 𝛿𝑝 of 0.001 was used while 

the starting values of the covariance matrix were varied 

experimentally. In addition to the parameters of the bivariate 

Gaussian, each of the trackers has an activity score that is updated 

according to the equation 

𝑨𝒊(𝒕) = {
𝑨𝒊(𝒕 − 𝚫𝒕)𝒆−𝚫𝒕/𝝉𝟏 + 𝟏, 𝐢𝐟 𝒑𝒊(𝒖) > 𝜹𝒑

𝑨𝒊(𝒕 − 𝚫𝒕)𝒆−𝚫𝒕/𝝉𝟏 , 𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞
  ( 7 ) 

where ∆𝑡 is the time elapsed since the last tracker update and 𝜏1 is 

a constant chosen to tune the rate of tracker deactivation. If the 

activity 𝐴𝑖  falls below a certain predefined threshold, the tracker 

will become inactive. In the asynchronous tracking approach, every 

event is processed as it is received. However, while the frame-based 

approach retains the timestamps associated with each event, it 

evaluates all events in order at discrete time steps after noise 

suppression has taken place. In [17], two activity thresholds were 

used to differentiate between deactivated and destroyed trackers. 

However, given that trackers in this research are intended for 

single-point sources that may have activities as low as one between 

updates, the activity threshold is chosen such that any activity is 

sufficient for the tracker to be considered active and no trackers are 

permanently destroyed. This can lead to large numbers of inactive 

trackers, but also ensures that small objects of interest will be 

tracked effectively. 

In order to monitor the trajectory of the Gaussian blob tracker, its 

position is smoothed using DESP at regular intervals of time 𝜏, 

which are chosen at runtime. With this method, the 𝑥  and 𝑦 

positions of the blob tracker are treated as a time series of points 

modeled with a linear regression equation whose y-intercept and 

slope vary over time. At each multiple of time 𝜏, two smoothing 

statistics are calculated as  

𝑺𝒖𝝉
⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝜶𝟑𝒖𝝉⃗⃗⃗⃗ + (𝟏 − 𝜶𝟑)𝑺𝒖𝝉−𝟏

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗                 ( 8 ) 

𝑺𝒖𝝉
⃗⃗ ⃗⃗ ⃗⃗  ⃗

[𝟐]
= 𝜶𝟑𝒖𝝉⃗⃗⃗⃗ + (𝟏 − 𝜶𝟑)𝑺𝒖𝝉−𝟏

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
[𝟐]

      ( 9 ) 

where α3 is an update parameter chosen to determine the degree of 

exponential decay and 𝑢𝜏⃗⃗⃗⃗  is the vector representing the blob 
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tracker’s x and y location at time τ. The first smoothing statistic, 

𝑆𝑢𝜏
⃗⃗ ⃗⃗ ⃗⃗  , represents the smoothed average value of event positions 

associated with the tracker, while the second, 𝑆𝑢𝜏
⃗⃗ ⃗⃗ ⃗⃗  

[2]
, captures the 

smoothed trend in event positions, i.e. the tracker’s motion. With 

these smoothing statistics, the tracker position at time 𝜏 + 1 is then 

forecasted according to the equation 

 𝒖𝝉+𝟏⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝒃𝒐
⃗⃗ ⃗⃗ (𝝉) +  𝒃𝟏

⃗⃗ ⃗⃗  ⃗(𝝉 + 𝟏)            ( 10 ) 

where 

𝒃𝟏
⃗⃗ ⃗⃗ (𝝉) =

𝜶

(𝟏−𝜶)
(𝑺𝒖𝝉
⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑺𝒖𝝉

⃗⃗ ⃗⃗ ⃗⃗  ⃗
[𝟐]

)           ( 11 ) 

 𝒃𝟎
⃗⃗ ⃗⃗  ⃗(𝝉) = 𝟐𝑺𝒖𝝉

⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑺𝒖𝝉
⃗⃗ ⃗⃗ ⃗⃗  ⃗

[𝟐]
− 𝝉 𝒃𝟏

⃗⃗ ⃗⃗  ⃗(𝝉)          ( 12 ) 

The values calculated here, 𝑏1
⃗⃗  ⃗(𝜏) and  𝑏0

⃗⃗⃗⃗  ⃗(𝜏) , represent the 

estimated slope and y-intercept respectively of the linear regression 

fitting the given tracker’s position over time. Since these values 

vary over time, the 𝛼3  parameter controls the extent to which new 

points affect the linear regression fit to the tracker’s position. As a 

result, very small values on the order of 1 × 10−4 are chosen due 

to the large number of events involved in tracker updates.  Finally, 

the smoothed trajectory of the tracked object is then interpolated 

between time steps with a cubic Bezier curve fit with the equation 

𝑩(𝒕) = (𝟏 − 𝒕)𝟑𝑼𝟎 + 𝟑(𝟏 − 𝒕)𝟐𝒕𝑼𝟏 + 𝟑(𝟏 − 𝒕)𝒕𝟐𝑼𝟐 + 𝒕𝟑𝑼𝟑  ( 13 ) 

where 𝑈𝑖 indicates the [𝑥, 𝑦]𝑇  position of points obtained from the 

smoothed tracker trajectory. In this equation, 𝑈3 refers to the most 

recent tracker position in time obtained via smoothing, while the 

remaining points 𝑈𝑖 refer to previous points in its trajectory. 

Since new trackers are constantly spawned when an event has no 

tracker with 𝑝 score above the given threshold, it is possible, and in 

practice quite likely, that multiple trackers will begin to overlap on 

the same object being tracked. To remedy this occurrence, the 

distances between and activities of active trackers are compared at 

each discrete timestep before curve-fitting takes place. Trackers 

that overlap with adjacent trackers of relatively higher activity are 

deactivated and omitted from curve-fitting. 

3.2 Noise and Tracker Suppression 
The noise-suppression techniques employed differ between the 

asynchronous and frame-based approaches. For the frame-based 

approach, a conventional image frame is built by tallying the 

presence of events at each pixel location regardless of polarity or 

frequency. Once an event is received with timestamp greater than 

or equal to a multiple of the integration time chosen, a simple 

summation kernel is convolved with the integrated image according 

to 

𝒈(𝒙, 𝒚) = ∑ ∑ 𝑲(𝒖, 𝒗)𝑰(𝒙 − 𝒖, 𝒚 − 𝒗)𝒃
𝒗=−𝒃

𝒂
𝒖=−𝒂   ( 14 ) 

where 𝐼(𝑥, 𝑦) is the integrated event frame and 𝐾 is the kernel 

𝑲 =
𝟏

𝟑
[
𝟏 𝟏 𝟏
𝟏 𝟎 𝟏
𝟏 𝟏 𝟏

] .                   ( 15 ) 

Given that the outputs of this operation are fixed to integer values, 

𝑔(𝑥, 𝑦) will only have values greater than zero when an event has 

at least three neighboring events within the integrated frame. This 

function therefore serves to mask any pixel location with fewer than 

three neighboring events occurring within the integration time 𝜏.  

The asynchronous approach uses a version of the event-based 

dynamic background suppression introduced in [19], except that 

every pixel is associated with its own cell rather than a large 

number of pixels falling into the same cell. Reducing the number 

of events grouped for noise suppression is necessary for tracking 

targets that may be exceptionally small in size and induce small 

amounts of activity. In addition, cells are suppressed using a two-

sided activity threshold rather than the average of all current cell 

activity. This change to the suppression technique serves to filter 

events occurring at pixels of both low and high activity.  As an 

event is received, the corresponding cell is updated in a similar 

fashion as the activity associated with trackers as  

𝑨𝒖(𝒕) = 𝑨𝒖(𝒕 − 𝚫𝒕)𝒆−𝚫𝒕/𝝉𝟐 + 𝟏        ( 16 ) 

where ∆𝑡 is the time elapsed since the last pixel update, 𝐴𝑢 is the 

activity associated with the pixel at 𝑢 = [𝑥, 𝑦]𝑇 and 𝜏2  is a 

constant chosen to tune pixel activity decay. Thresholds 𝛿1 and 𝛿2 

are chosen such that only events occurring at pixels with activity 𝛿1 

< 𝐴𝑢(𝑡)  <  𝛿2  will be processed by the Gaussian blob tracking 

algorithm. Negative polarity events are ignored in this filtering 

since motion of exceptionally small objects is expected to generate 

positive polarity events immediately followed by negative polarity 

events on their trailing edges. This programmatic filtering of noise 

events also serves to filter large regions of change in the sensor’s 

view such as sections of the Earth that might lie in the sensor’s 

view. Since the sensitivity of the hardware itself would need to be 

maximized in order to track distant, dim objects, portions of the 

Earth would generate a significant number of spatially and 

temporally close events. These events will be filtered by the 

asynchronous approach and therefore significantly reduce 

computational load and potential false positives in tracking.  

Since the intent of this research is to track objects that may be as 

small as a single pixel in the DVS’s view, parameters are chosen 

for the Gaussian blob tracker algorithm such that trackers will even 

be spawned for regions of low activity. Setting the activation 

threshold so low can in turn lead to some noise events behaving 

similarly to objects of interest and therefore escaping noise 

suppression. As a result, the trackers themselves are also filtered by 

two separate metrics. First, the Gaussian tracker algorithm is 

modified such that negative polarity events are accumulated 

separately from negative polarity events as  

𝑵𝒊(𝒕) = {
𝑵𝒊(𝒕 − 𝚫𝒕)𝒆−𝚫𝒕/𝝉𝟏 + 𝟏, 𝒊𝒇 𝒑𝒊(𝒖) > 𝜹𝒑

𝑵𝒊(𝒕 − 𝚫𝒕)𝒆−𝚫𝒕/𝝉𝟏 , 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
  ( 17 ) 

where 𝑁𝑖(𝑡) is the negative polarity activity of tracker 𝑖 at time 𝑡. A 

threshold is chosen at runtime such that trackers with negative 

polarity activity below this threshold will not be subject to DESP 

or trajectory curve fitting. These trackers are essentially omitted as 

not corresponding to an object of interest. This suppression serves 

to omit both trackers that may be associated with noise events as 

well as trackers that may be attracted by larger objects, such as 

sections of the Earth, which are not the intended target of this 

research. Second, a forward-backward error statistic is calculated 

at each multiple of the integration time 𝜏 when performing DESP. 

The Euclidean distance between the next predicted location 𝑢𝜏+1of 

the smoothed trajectory and the last update location of the tracker 

is calculated and added to a running average of the tracker’s 

forward-backward error as shown below.  

𝑬𝒕  = 𝑬𝒕−𝟏 + √(𝒙𝝉+𝟏 − 𝒙𝒕)
𝟐 + (𝒚𝝉+𝟏 − 𝒚𝒕)

𝟐 ( 18 ) 

�̅�𝒕  =  
𝑬𝒕

𝒏𝒆𝒗𝒆𝒏𝒕𝒔
            ( 19 ) 

As with the negative polarity activity, an error threshold is chosen 

such that, if a tracker’s forward-backward error exceeds the 

threshold, it will be deactivated and hidden from trajectory fitting. 
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It should be noted that the frame-based approach does not employ 

tracker suppression due to spatially solitary events always being 

filtered. As a result, the frame-based method’s ability to track point-

source objects is limited, but the number of trackers instantiated is 

greatly reduced in comparison to the asynchronous method. The 

entirety of both algorithms is described with the pseudocode 

detailed in Algorithm 1 and 2. 

 

 

3.3 Experimental Setup 
In order to compare the asynchronous and frame-based approaches 

and assess their ability to track point source objects, experimental 

testing was conducted with varied velocity, luminance contrast, and 

distance to a point-source of interest. In this experiment, the point-

source of interest consisted of a laser pointer projected onto a 

background illuminated by two direct current (DC), variable-

intensity LED lamps. The lighting intensity of the lamps was varied 

at several discrete levels in order to assess tracking with different 

contrast levels.  DC lighting was necessary, in addition to the room 

being darkened, due to the DVS’s tendency to detect flickering 

from alternating current (AC) lighting. The laser pointer was 

mounted onto a stepper motor controlled via microcontroller board 

in order to control the angular velocity of the target at discrete 

microstepping levels.  

Tables 1 and 2 list the contrast ratios and speeds measured for each 

of the discrete levels used in testing. Tests were conducted using 

each combination of contrast ratio and speed mode for a total of 30 

trials under base conditions. To study the effect of having a smaller 

target area, the distance from the camera to the target was then 

increased and additional tests were conducted with all contrast 

ratios and the Full, Quarter, and Slowest speed modes to cover the 

breath of speeds chosen. These 15 additional trials are denoted 

among the results with the corresponding contrast level and “Incr. 

Distance” in order to distinguish them.  Tests were conducted at 2.5 

meters and 5.0 meters to target respectively due to the constraints 

of the testing area. Since the targets in the 45 preceding trials follow 

a simple, horizontal and linear path, an additional 11 tests were 

conducted that included sudden and/or persistent changes in the 

direction of motion as well as multiple targets of interest. These 

additional tests are described in Table 3, several of which were 

repeated multiple times with different patterns of movement.  

Table 1: Contrast Conditions          Table 2: Speed Conditions 

Contrast # Contrast Ratio 

1 ∞ 

2 25.87 

3 6.23 

4 3.01 

5 1.09 
 

 

Table 3: Additional Tests 

Experiment (# of Trials) Description 

Multiple Targets (3) 

Several targets with sudden 

movements and collisions 

between them 

High Contrast Non-Linear 

(3) 

Non-linear, varying-speed targets 

at the highest contrast, i.e. no 

backlighting 

Low Contrast Non-Linear 

(3) 

Non-linear, varying-speed targets 

at contrast level 4 (chosen due to 

accuracy loss at the lowest 

contrast level) 

Changing Direction (1) 

Target with persistent changes in 

motion, a spiraling motion, at 

highest contrast level 

Increased Distance (1) 

Non-linear, varying-speed target 

with 5m distance to target and 

highest contrast level 

Speed Mode 

Angular 

Velocity 

(Deg/s) 

“Full” 455.7 

“Half” 232.26 

“Quarter” 136.88 

“Eighth” 63.16 

“Sixteenth” 25.68 

“Slowest” 7.4 
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The ground-truth for each test was generated using built-in 

OpenCV functions to locate contours and calculate minimum 

enclosing circles on noise-suppressed event frames [26]. 

Intersection-over-union and active tracking time metrics were then 

calculated by comparing the intersection of the event-based 

Gaussian blob trackers with the set of minimum enclosed circles. It 

should be noted that although the Gaussian trackers are elliptical in 

shape, the IoU metric was calculated using a circle circumscribed 

with the tracker’s larger axis as its diameter. This approach results 

in a decrease in the IoU scores calculated but should not impact the 

active tracking time measured in each experiment since active 

tracking is determined by the tracker simply intersecting with the 

ground-truth circles across frames. Contrast levels were calculated 

as the ratio of laser pointer luminance to background lighting 

luminance as measured via a luxmeter. 

4. RESULTS 

The performance of the frame-based and asynchronous approaches 

was assessed with each combination of contrast, speed, and 

distance conditions previously presented as well as the additional 

11 non-linear movement trials. Before evaluating accuracy across 

the experiments, threshold values used for noise-filtering in the 

asynchronous method were first tuned by inspection for each 

experiment. Filtering thresholds were chosen in order to maximize 

tracking accuracy in terms of percentage of actively tracked frames 

and with regard to the different speeds of the target. In general, 

slower targets necessitate a larger upper-bound threshold, δ2, since 

they will repeatedly trigger events in a small range of pixels. In the 

same respect, the lower-bound threshold, δ1, can be raised as well 

in order to filter additional non-target events without interfering 

with accurate target tracking. Due to the frame-based method 

filtering events according to the number of spatial and temporal 

neighbors, no tuning for the frame-based methods was required. 

4.1 Noise Filtration 
Figure 1 depicts the percentage of events that were filtered as noise 

by the asynchronous and frame-based approaches in each of the 

experiments. As target speed does not affect the number of events 

registered overall, filtered event percentages are averaged across all 

speed modes in experiments with the same contrast ratio. 

 

        Figure 1: Noise Filtration by Experiment 

Across most experiments, the asynchronous approach showed 

much larger percentages of filtered events than the frame-based 

approach. In some of the additional trials, the asynchronous 

approach reached up to approximately 80% average events filtered, 

such as in the case of the Changing Direction trial. Conversely, the 

frame-based approach had a maximum of only about 60% filtered 

events occurring in the trial with second contrast level and 

increased distance. The fact that the two approaches percentage of 

filtered events differed greatly between the different types of 

experiments also indicates that the two approaches differ in the 

context in which events are filtered. Since the frame-based 

approach filters events with few neighbors over time, this behavior 

suggests that the trials with increased distance exhibited far more 

solitary events as reflected in the much larger percentage of filtered 

events. By contrast, the multiple target trials had many repetitive 

events occurring spatially and temporally close, resulting in 

extremely low filtering rates for the frame-based method but much 

higher rates with the asynchronous method.   While the total 

number of events observed in each experiment is largely 

determined by the length of the recording, variations in event 

numbers were observed with differing contrast levels as well. 

Although the 11 separate trials had varying recording lengths, the 

original contrast and velocity-controlled trials had roughly the same 

recording time across each. This fact indicates that lower contrast 

between the target area and background resulted in larger numbers 

of events that can be attributed to erroneous events occurring in the 

background. In ground applications, this phenomenon could be 

mitigated by significantly raising the sensitivity thresholds of the 

sensor itself, but this would not be possible on a space platform 

where maximum sensitivity is required to detect exceedingly dim 

and distant objects. 

4.2 Performance 
Figure 2 depicts the performance in average frames per second 

(FPS) for the two approaches as a function of the number of events 

generated. These performance numbers are drawn from each of the 

experiments previously detailed. It should be noted that the number 

of events shown is before noise filtration, which partially explains 

the difference in FPS for trials with approximately the same number 
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of events. All trials were run using a four-core Intel Core i5-8250U 

1.6 GHz processor. The Bezier curve-fitting, frame drawing and 

frame-based noise-suppression portions of the algorithm were all 

parallelized using the C++ OpenMP API. Since the frame-based 

method involves applying a kernel convolution to the entirety of 

reconstructed frames, the same number of calculations must be 

made regardless of the number of events in the event stream. As a 

result, the performance would be expected to be relatively constant 

across all experiments.  Although execution times do appear to be 

consistent in the frame-based approach, some trials that exhibited 

larger or smaller numbers of unfiltered events, as well more 

trackers being instantiated, resulted in small disparities in average 

execution time. Conversely, the asynchronous approach shows 

much greater variation in FPS versus the number of events, which 

is a result of the larger number of events filtered before tracking is 

performed. The number of inactive trackers instantiated also affects 

asynchronous performance, further adding to the FPS variation for 

experiments with approximately the same number of events. 

 

Figure 2: Performance in FPS vs. Number of Events 

4.3 Tracker Instantiation and Suppression 
Figures 3 and 4 display the number of trackers generated for each 

experiment and number of trackers suppressed in the asynchronous 

case respectively. In Figure 3, the number of trackers generated is 

reported as an average across all experiments with the same 

contrast level as the number of trackers instantiated is primarily 

dependent on the contrast. By contrast, Figure 4 shows the average 

number of trackers suppressed with experiments grouped by target 

speed since the asynchronous tracker suppression varies more with 

the speed of the target rather than brightness contrast.  It should be 

noted that the vast majority of the trackers instantiated are inactive 

throughout most of the experiments and do not necessarily indicate 

a false positive in tracking.  

 

Figure 3: Average Number of Trackers Generated per 

Experiment Group 

As expected, the asynchronous approach spawned considerably 

more trackers in each trial as a result of some noise events passing 

through filtration. However, there are a few notable exceptions, 

such as the multiple target trials, where the much higher percentage 

of events filtered by the asynchronous method resulted in 

comparatively fewer trackers being generated. Several trials at the 

slowest speed also exhibited no trackers instantiated by the frame-

based method, which represented a complete failure to track the 

target. This failure was due primarily to the exceedingly small 

number of events generated by the target, which were in turn 

filtered by the frame-based noise suppression. 

 

Figure 4: Number of Trackers Suppressed in Asynchronous 

Approach 

It is important to note that the number of tracker omissions is 

cumulative across each trial, hence the number of omissions being 

greater than the number of trackers originally initialized. 

Furthermore, negative polarity thresholding is applied prior to 

forward-backward error thresholding, leading to the larger number 
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of omissions being attributed to negative polarity. In some trials, 

the negative polarity threshold successfully suppressed all 

erroneous trackers, leaving none to be suppressed as a result of 

forward-backward error. Additionally, there were several instances 

in the trials with the slowest target speed and increased distance 

where no trackers were suppressed by negative polarity 

thresholding. During these trials, the exceptionally slow targets 

exhibited few or no negative polarity events during movement, 

which necessitated reducing the negative polarity threshold to zero.  

4.4 Experimental Tracking Accuracy 
Figures 5 and 6 show the general trends in tracking accuracy with 

averaged values across experiments with the same target speed. 

Tracking accuracy was measured as the intersection over union 

with the ground-truth position of the target per frame, while active 

tracking time refers to the percentage of frames where an active 

tracker intersected with the ground-truth target position. Note that 

active tracking time specifically means that the tracker was active 

and not suppressed, so frames that were not actively tracked may 

have still contained an inactive or suppressed tracker on target. This 

impact of tracker suppression on active tracking time can be 

observed in the relatively lower active tracking time of the 

asynchronous method for lower velocity targets. Although the 

target tracker was suppressed in some frames, the asynchronous 

method maintained relatively the same or better IoU than the frame-

based method with the same velocity targets. 

 

Figure 5: Intersection over Union vs. Target Speed 

 

Figure 6: Percentage of Actively Tracked Frames vs. Target 

Speed 

Figures 7 and 8 show the same accuracy metrics measured for the 

11 additional trials with multiple targets and changes of target 

direction. Since these trials did not have precise measurements of 

target velocity, they are presented per experiment. The additional 

trials showed similar trends with the asynchronous approach 

showing better IoU measures across almost all of the experiments, 

but with comparable or relatively smaller percentage of actively 

tracked frames. While the frame-based method exhibited some 

instances of slightly better IoU, the asynchronous approach showed 

greatly improved IoU for trials with multiple targets. 

 

 

Figure 7: Intersection Over Union per Experiment 

 

Figure 8: Percentage of Actively Tracked Frames per 

Experiment 

Although the algorithm parameters were tuned to maximize 

tracking accuracy in the previous experiment analysis, additional 

metrics were recorded to assess tracking effectiveness within a 

range of tracking parameters. The graphs displayed in Figures 9 and 

10 show averaged accuracy results with varied position update 

parameters for the trackers. The position update parameter refers to 

𝛼1 from Eqn. 4, which controls the magnitude of tracker 

displacement when a new event is associated with it. In general, 

larger 𝛼1 values cause trackers to require greater number of events 

to result in significant movement of the tracker. This additional 

analysis was conducted with trial recordings at the highest level of 

contrast, i.e. no background lighting, but with varied speed and 

distance, in order to determine the effect of the position update 

factor on tracker accuracy. Disregarding the base differences 

between the accuracies of the two approaches, both methods 

showed the same general trends as a result of increasing the value 

of the position update parameter. In general, the range of 0.4 to 0.7 

showed minor differences in both IoU and actively tracked frames, 

but both accuracy measures showed significant improvement 

beginning at a value of 0.8, with some exceptions. Interestingly, the 

increased distance trials showed comparable or even better 

accuracy with much smaller update values and diminishing 

accuracy with increased values. This trend can be explained by the 

much smaller number of events seen in these trials, and thus the 
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corresponding targets were composed of far fewer events as well. 

As a result, the position update parameter must be smaller such that 

fewer events are required for the trackers to accurately track the 

targets. Since these reported values are averaged across all trials, 

the average accuracy metrics are somewhat skewed due to the 

relatively low accuracies measured in the slowest target trials.  

 

Figure 9: Intersection Over Union vs. Position Update 

Parameter 

 

 

 

 

Figure 10: Percentage of Actively Tracked Frames vs. Position 

Update Parameter 

4.5 Visualized Tracking Results 
For demonstration purposes, Figure 11 (a-c) depicts the 

reconstructed frame output with ground-truth, frame-based, and 

asynchronous tracking results superimposed for several trials, 

while Figure 12 (a-c) shows the corresponding unfiltered frames. 

Positive- and negative- polarity events are indicated by black and 

grey pixels respectively. The ground-truth minimum enclosed 

circle is denoted by a red circle, while the frame-based and 

asynchronous trackers are overlaid with brown ellipses. Each of the 

trackers that is deemed to be tracking the target also displays a blue 

Bezier curve fit to its predicted trajectory obtained via DESP. As 

referenced earlier, both asynchronous and frame-based have many 

inactive trackers that are hidden in the reconstructed frames though 

only active trackers are displayed. The events displayed in the 

frames are the result of the asynchronous filtering technique and 

several erroneous active trackers can be seen in each. These 

erroneous trackers belong only to the asynchronous approach; 

however, these trackers have no estimated trajectory and promptly 

become inactive between frames. Trajectories are drawn for both 

the asynchronous and frame-based approaches, which can be seen 

to diverge most significantly in the trials containing multiple 

targets. 
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5. DISCUSSION 

Overall, the experimental results exhibited trends that were to be 

expected when comparing the asynchronous and frame-based 

approaches. In terms of average performance, the asynchronous 

approach had an average of 7× better performance but had a much 

larger variation in relation to the total number of events. The reason 

for this disparity is primarily the differing forms of noise 

suppression used by both algorithms. The frame-based approach 

will always perform approximately the same number of 

comparisons whereas the asynchronous approach leverages the 

sparsity of the event stream to dramatically reduce computation 

time as evidenced by the differing trends in Figure 3. The two forms 

of noise suppression also resulted in very different ratios of 

unfiltered to filtered events, with the asynchronous approach 

filtering out many more events across all experiments. The multiple 

targets trials are an outstanding example of this with the 

asynchronous approach exhibiting an average of about 60% of 

filtered events compared to the frame-based approach’s mere 6%. 

This large discrepancy is most likely due to the asynchronous 

approach also filtering events that may not necessarily be noise, but 

constituent events of potential targets. However, for the purposes 

of this research, filtering redundant events can reduce computation 

time without negatively impacting the tracking performance itself.  

In addition to large differences in the number of filtered events, the 

filtering techniques also differed greatly in terms of the number of 

trackers instantiated. The asynchronous algorithm exhibited many 

more trackers being instantiated across all trials as compared to the 

frame-based approach. According to both algorithms, new trackers 

will be created if no pre-existing tracker has a 𝑝 score above the 

predefined threshold. The asynchronous approach having more 

instantiated trackers would indicate more solitary events passing 

through the filter, though these trackers are largely hidden as they 

are correctly deemed to be associated with noise. In the 

asynchronous approach, the negative-polarity threshold served to 

suppress the majority of erroneous trackers. However, there were 

several trials in which the target had few or no negative-polarity 

events associated with it and which relied entirely on the forward-

backward error threshold to filter noise-attracted trackers. These 

occurrences highlighted the need for both forms of tracker 

suppression as well as the necessity of tuning the suppression 

thresholds to the behavior of the intended target. 

In regard to tracker accuracy, the asynchronous approach displayed 

either comparable or, in some cases, superior results in the IoU 

measurements. While the IoU scores for both approaches did fall 

below what might be considered an acceptable level of 50% in 

several trials, these results can be explained by a number of factors. 

As mentioned earlier, the IoU metric was calculated using the circle 

circumscribed around the larger axis of each elliptical Gaussian 

tracker. This approximation was made to ease the calculation 

involved in the metric as well as due to the assumption that the 

target is circular and would not cause significant change in tracker 

shape. However, this assumption was not always necessarily the 

case, especially with the additional non-linear and multiple target 

trials. As a result, the area of the tracker would be overestimated 

and cause the IoU metric to be much smaller than expected.  

Another issue with the IoU metric is the use of reconstructed frames 

to form the ground-truth comparison. Since the ground-truth 

position of the target is evaluated per frame, events must be 

accumulated over the chosen integration time in order to 

reconstruct a conventional image frame. However, sufficiently fast-

moving targets, such as those in the highest speed trials, would 

exhibit motion blur due to events from multiple positions of the 

target falling into the same reconstructed frame. While the event-

based tracking would track these targets accurately due to the serial 

nature of the tracker update, the ground-truth comparison would fit 

a larger than necessary circle around the target and thus artificially 

decrease the IoU metric. Nonetheless, the IoU metric still shows 

that the asynchronous noise suppression did not result in a loss of 

tracker accuracy compared to the frame-based approach. 

Conversely, the percentage of actively tracked frames does seem to 

favor the frame-based approach across many of the experiments. 

This general trend is largely due to the tracker suppression 

employed by the asynchronous approach, where the target tracker 

may be made hidden if the negative-polarity activity falls below 

threshold or the forward-backward error rises above threshold. 

However, the tracker is not destroyed and positions that may not be 

actively tracked are in most cases correctly interpolated by the 

smoothing and curve-fitting operations. Even so, the asynchronous 

approach showed comparable active tracking time across most 

experiments. 

With respect to varying the Gaussian tracker position update 

parameter, both approaches showed similar trends with respect to 

the resulting tracking accuracy. As previously mentioned, the 

position update weight tunes the number of events that are required 

to shift the center of the tracker. As a result, the noise suppression 

employed and size and speed of the target influence the optimal 

parameter value required to maximize tracking accuracy. During 

testing, the frame-based approach showed peak accuracy with 

position update parameters, 𝛼1 , between 0.9 and 0.95, while the 

asynchronous approach exhibited better accuracy with value 0.8 for 

several trials. This disparity is most likely due to the asynchronous 

noise suppression, which as previously mentioned likely removed 

target events in addition to noise. As a result, the update factor 

would need to be lower in order to weight each event of the target 

greater when updating position and maintain accuracy. This 

behavior indicates that the asynchronous approach is more sensitive 

to changes in algorithm parameters and would likely need to be 

tuned according to the expected targets of interest.  

Figure 12: Original Unfiltered Frames (a) High Contrast 3 

Exp. (b) Multiple Targets 1 Exp. (c) Changing Direction Exp 

(a) (b) 
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6. CONCLUSIONS 

This research has introduced an asynchronous noise and tracker 

suppression scheme for Gaussian blob point-source tracking in a 

space environment. Experimental results show comparable or 

superior tracking accuracy with the asynchronous approach, while 

also exhibiting dramatically better performance as compared to the 

frame-based approach. Furthermore, unlike the frame-based and 

other previous event-based noise-suppression techniques, the 

asynchronous approach has the ability to track objects that may 

only appear as a single pixel in the DVS’s view. Given the 

asynchronous method’s reliance on multiple parameters, it is 

necessary for the algorithm to be tuned for detecting and tracking 

specific types of objects in terms of speed, size and relative 

luminance. Additionally, future modifications to the asynchronous 

method could be made that suppress trackers based on velocity, 

number of events, tracking time, etc. in order to track specific types 

of objects in space or on Earth. 
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