
1

Event-Based Noise Filtration with Point-of-Interest
Detection and Tracking for Space Situational Awareness

Nikolaus Salvatore, Alan D. George

NSF SHREC Center
ECE Dept., University of Pittsburgh

4420 Bayard St., Suite 560,
Pittsburgh, PA 15213

{nds40, alan.george}@pitt.edu

ABSTRACT

This paper explores an asynchronous noise-suppression

technique to be used in conjunction with asynchronous

Gaussian blob tracking on dynamic vision sensor (DVS) data.

The high dynamic range and fast acquisition time of DVS

recordings enables the imaging of high-velocity targets despite

ordinarily problematic lighting conditions. The technique

presented here relies on treating each pixel of the sensor as a

spiking cell that keeps track of its own activity over time, which

in turn can be filtered out of the resulting sensor event stream

by user-configurable threshold values. In addition,

asynchronous blob tracking is supplemented with double-

exponential smoothing prediction and Bezier curve-fitting in

order to smooth tracker movement and interpolate target

trajectory respectively. This overall scheme is intended to

achieve asynchronous point-source tracking using a DVS for

space applications. In the space environment, radiation effects

are expected to introduce transient, and possibly persistent,

noise into the asynchronous event-stream of the DVS. Given the

large distances between objects in space, targets of interest may

be no larger than a single pixel and can therefore appear

similar to noise-induced events. In this paper, the asynchronous

approach is experimentally compared to a more traditional

approach applied to reconstructed frame data for both

performance and accuracy metrics. The results of this research

show that the asynchronous approach can produce comparable

or even better tracking accuracy while also drastically reducing

the execution time of the process by seven times on average.

Keywords

Dynamic vision sensor; event-based image processing; space

situational awareness; biomimetic vision

1. INTRODUCTION

Recent years have seen the development of a new class of imaging

sensors capable of replicating basic properties of biological vision,

namely its focus on detecting changes within scenes. The first of

these new neuromorphic vision systems was the DVS proposed in

[1], which details the sensor’s architecture and relation to biological

analogs. The DVS functions by detecting logarithmic intensity of

luminance changes through a series of photoreceptors and

integrating and comparative circuits associated with each

individual pixel. Luminance changes are detected via conventional

photodetectors such as those often found in active-pixel sensors.

Once the luminance change at a given pixel induces a voltage

beyond a certain predefined threshold, the cell will generate an

event that encodes the (x,y) coordinates, polarity, and timestamp.

Each of the pixel cells of the sensor monitors both positive and

negative changes in luminance intensity, which is in turn reported

in the positive or negative value of the polarity associated with each

pixel event. It is also important to note that the events generated are

not synchronized with the internal clock, creating the need for the

timestamp recorded with each event. These events are then

streamed to the onboard processor through a multiplexing

technique referred to as address-event representation (AER) that

serves to maintain the absolute order in which events occurred. This

system and addressing scheme have been shown to register events

on the microsecond scale, making the DVS ideal for applications

requiring extremely fast response times. The overall benefit of this

asynchronous, change-based architecture is superior power

efficiency, temporal resolution, and dynamic range as well as

drastically reduced data rate as compared to conventional cameras

[1,2]. After several iterations on similar biomimetic vision systems,

the asynchronous time-based image sensor (ATIS) has emerged as

one of the more well-developed variations on the base DVS design.

While it retains the strengths of the DVS architecture, the ATIS also

encodes the relative intensity of luminance in the timing of events,

enabling it to reconstruct full gray-scale images in addition to the

binary events generated by the DVS. The ability to reconstruct

variable-intensity images allows for more traditional image-

processing and computer-vision techniques, while still leveraging

the high-speed data acquisition of the asynchronous sensor [3].

The primary focus of this research is to exploit the capabilities of

DVSs for object tracking within the context of space-based

observation, particularly in a low-Earth orbit (LEO) environment.

The space environment imposes a unique set of challenges on

computer vision that impact both the software and underlying

hardware involved. First, and perhaps most fundamental, of these

challenges is the size, weight, power, and cost (SWaP-C)

constraints placed on hardware. DVSs excel in this regard as they

are both lightweight and power-efficient, while also requiring

fewer computing resources to perform event-based image

processing. These qualities make them ideal for deployment on

space platforms that make use of embedded architectures with strict

power constraints. Another challenge faced by object tracking in

space is the relative visibility of certain objects of interest. A

significant percentage of space debris is made up of objects mere

centimeters in size, and which have exceptionally low reflectance

while travelling at extremely high speeds. Despite their small size,

the high speed of debris poses a serious danger to space platforms,

2

which stand to benefit greatly from autonomous methods of

avoidance [4,5]. Although some large-scale, ground-based optical

solutions have been able to track exceptionally small space debris,

the high dynamic range (HDR) and temporal resolution of DVSs

may prove useful for autonomous collision avoidance onboard

space platforms. Furthermore, the change-based detection

properties of DVSs, coupled with their HDR and relatively low data

rate, could be ideal for detecting aerial objects on Earth. Recent

work using DVSs in conjunction with ground-based telescopes has

demonstrated the potential of event-based approaches to tracking

celestial objects. This research compared several bio-inspired

vision sensors, including a DVS and ATIS, for the purposes of

tracking objects in both low-Earth orbit and geosynchronous orbit

(GEO) during daytime lighting conditions, displaying the efficacy

of the HDR of bio-inspired sensors [6].

Another challenge of particular interest in this research is the effect

of radiation on spaceborne hardware. Radiation effects are typically

classified as either transient or cumulative, from which correct

operation may or may not be recoverable. Both types of radiation

effects can pose significant issues for space missions, though

transient single-event effects (SEEs) can often be managed by

simple power-cycling of hardware or through standard hardware

and software dependability techniques [7]. For imaging equipment,

SEEs can manifest as salt-and-pepper noise that can be mitigated

via common noise-filtering techniques when processing captured

images. However, not all SEEs are transient, and some can cause

permanent damage to sensing equipment that results in affected

pixels being latched in an excited or unexcited state. Cumulative

total ionizing dose (TID) effects are of relatively greater concern

due to the long-term deleterious effects on hardware [8]. TID

studies with CMOS cameras have shown that proton and heavy-ion

radiation common in space can significantly impact photodiode

responsivity and contribute to long-term degradation [9]. Other

studies conducted on bipolar transistors, such as those that compose

operational amplifiers, have shown significant impacts on voltage

response with increasing TID [10]. Given the reliance of DVS upon

CMOS components, they will likely experience many of the same

types of degradation as other types of conventional CMOS cameras

[11].

2. RELATED WORK

The asynchronous nature of DVS data introduces new avenues for

image processing given that the pixel data does not exist in

conventional image frames. It is possible to use conventional

image-processing and computer-vision techniques by integrating

the events over a predefined period of time and then reconstructing

conventional frames from these events. Recent work has also

shown that a hybrid approach can be taken where conventional

feature detection algorithms, such as the Harris corner detector, are

used to locate features which are then tracked in the asynchronous

event stream [12]. However, processing the events entirely in an

asynchronous manner can significantly reduce the execution time

of various operations as well as decrease the overall computational

load. To date, several common image processing algorithms have

been modified to work solely within an asynchronous context.

Event-based cluster trackers have proven to be quite effective at

tracking large objects such as vehicles, which have clear positive

and negative polarity edges, at extremely high framerate and with

low computational resource usage [13]. Algorithms for

asynchronous optical-flow calculation have exhibited superior

speed and processing usage, while also retaining comparable

performance to frame-based approaches [14]. An event-based

Hough circle transform demonstrated the ability to perform high-

speed, multi-object tracking within the context of microparticle

tracking [15]. Additionally, spiking neural networks (SNNs) have

been shown to naturally complement the spiking nature of DVS

pixels. In recent work, SNNs have been used to asynchronously

detect and track lines via clusters of spiking neurons representing

line parameters in the Hough space. However, this approach scales

poorly with increasing DVS pixel array size due to the large

increase in the number of neurons required [16].

One technique of particular relevance used in this research is the

event-based Gaussian blob tracker introduced in [17]. This

approach allows for both object detection and tracking by

instantiating a series of trackers whose position and shape in the

visual field are defined by the parameters of their bivariate

Gaussian distribution. Every new event generated by the sensor is

evaluated for its probability of belonging to each of the existing

trackers, spawning a new tracker if no tracker has a score beyond a

predefined threshold. An exponentially decaying activity score is

also associated with each tracker to differentiate between active and

inactive trackers.

Several means of noise filtration have also been adapted for use

with asynchronous event streams. One such method exploits the

temporal aspect of the event stream by requiring each incoming

event to be supported by neighboring events within a certain

predefined time threshold. A two-dimensional array of the

camera’s visual field records the timestamp of the most recently

generated event within a window. When a new event is generated,

the event is only passed on if the timestamp at the corresponding

pixel coordinate has a timestamp more recent than the chosen

support time [13]. An issue with using this method for space

applications is that objects of low reflectance may not always

induce enough luminance change to generate an event. As a result,

objects appearing as a single pixel may not necessarily excite every

pixel in its path of motion and thus true events could be eliminated

by the filter. Event-based optical flow has also been adapted for

noise filtration by approximating the “lifetime” of events defined

as the time required for adjacent pixels to be excited. Events with

lifetimes close to zero are considered noise and omitted from the

resulting event stream. While this method is effective, it requires

events to be stored within a temporal window and can be

computationally intensive with increasing window sizes [18].

Another technique relies on the supposition that actions and objects

of interest in the foreground will generate relatively more events

than the background. The visual field of the sensor is divided into

an arbitrary number of cells that then maintain an exponentially

decaying record of the activity occurring within them. Only cells

with activity scores higher than the average activity of all cells will

pass their corresponding events through the filter [19]. A modified

form of this noise suppression is employed in this research. An

alternative approach has been developed that generates a sparse

representation within the cells using the K-SVD algorithm, which

has been used to denoise both individual frames and videos

composed of reconstructed frames. Although this approach

thoroughly denoises tested frames, it is computationally time-

consuming and has not yet been shown to operate in real-time

[20][21].

Even with the inclusion of noise filtration, event-based blob

tracking solutions rely on position updates that pull the tracker in

opposing directions even when accurately tracking objects as a

whole. This non-uniform movement occurs because the events

associated with an object do not necessarily have timestamps

temporally ordered in the direction of the object’s physical motion.

These constant changes of direction necessitate some form of

3

predictive filter in order to smoothly track object trajectories.

Kalman and extended Kalman filters have been established as

extremely effective for object tracking, but the overhead imposed

can severely impact execution time [22]. Given the high-speed data

acquisition of the DVS, event-based algorithms must be able to

cope with potentially high-activity scenes. One alternative

approach to Kalman filtering makes use of double exponential

smoothing prediction (DESP), a common data-forecasting method,

to track head and hand movements. The experimental results

showed comparable accuracy to the Kalman filtering approach, but

with 135 times faster performance [23]. Assuming reduced or

eliminated noise events and the generally consistent motion

expected in space, this approach is well-suited for smoothing event-

based tracker trajectories.

In addition to smoothing tracker trajectories, the error of the tracker

position is assessed by several means adapted from previous works.

One metric used to predict tracking failure is the forward-backward

error typically employed with median flow tracking. This technique

involves comparing the future and past trajectories of a given

tracker and assigning an error value based on a chosen measure of

distance. In an event-based context, this error can be used to

suppress trackers activated by areas of constantly changing motion,

which most likely do not correspond to objects of interest [24].

Lastly, a common metric for measuring tracker precision is the

intersection over union (IoU) calculated between the given tracker

and a ground-truth representation of the object of interest. This

metric has been used extensively to compare the performance of

different tracking algorithms and is used in this work to compare

asynchronous and frame-based approaches with noise suppression

[25].

3. APPROACH

The following section details the algorithm used for object tracking

and noise suppression intended for space-based applications. The

blob-tracking aspect of this research relies on the event-based

Gaussian tracker technique established in [17] with specific

emphasis on tracking single-point sources. This emphasis is

necessitated by the large distances at which space objects are to be

tracked in relation to the comparatively low resolution of the DVS

(640×480). The event-based Gaussian trackers allow for both

efficient object detection and tracking but would be susceptible to

noise and attraction to non-target objects in space environments.

The asynchronous approach attempts to mitigate this behavior by

introducing tracker suppression in addition to noise suppression.

Both asynchronous and conventional frame-based approaches are

presented and then compared across a variety of metrics. The

frame-based approach differs in that it accumulates events over a

predefined interval of time and then constructs an image frame

from the resulting array. The reconstruction of frames allows more

conventional image-processing techniques to be applied, but it also

increases the execution time and computational resources required.

3.1 Tracking Algorithm
As stated previously, each event generated by the DVS is

represented by a vector of the form 𝑒𝑖 = [𝑥𝑖 , 𝑦𝑖 , 𝑡𝑖 , 𝑝𝑖], where the x

and y values correspond to the pixel location, t to the timestamp of

the event and 𝑝 to the polarity of the event. The polarity may only

take on a value of 𝑝 ∈ {1,−1}, indicating an increase or decrease

in luminance respectively. The motion of objects can then be

visualized as a point-cloud of events modeled by a bivariate

Gaussian distribution , 𝛮(𝜇, 𝛴). The parameters of the Gaussian

distribution used to model the position and shape of a tracked object

are defined as

𝒖 = [𝒙, 𝒚]𝑻 (1)

 𝚺 = [
𝝈𝒙

𝟐 𝝈𝒙𝒚

𝝈𝒙𝒚 𝝈𝒚
𝟐]. (2)

As each new event is generated, the probability of the event being

associated with an active or inactive tracker is calculated as

 𝒑𝒊(𝒖) =
𝟏

𝟐𝝅
|𝚺𝒊|

−
𝟏

𝟐𝒆−
𝟏

𝟐
(𝒖−𝒖𝒊)

𝑻𝚺−𝟏(𝒖−𝒖𝒊) (3)

where ui denotes the corresponding locations of active and inactive

trackers. The event is then associated with the tracker with the

highest calculated p score and the parameters of the tracker are

updated according to the weighted update calculation

 𝒖𝒕 = 𝜶𝟏𝒖𝒕−𝟏 + (𝟏 − 𝜶𝟏)𝒖 (4)

 𝚺𝒕 = 𝜶𝟐𝚺𝒕−𝟏 + (𝟏 − 𝜶𝟐)𝚫𝚺 (5)

where

𝚫𝚺 = [
(𝒙 − 𝒖𝒕𝒙)

𝟐 (𝒙 − 𝒖𝒕𝒙)(𝒚 − 𝒖𝒕𝒚)

(𝒙 − 𝒖𝒕𝒙)(𝒚 − 𝒖𝒕𝒚) (𝒚 − 𝒖𝒕𝒚)
𝟐] . (6)

If no tracker has a calculated 𝑝 score above a certain predefined

threshold 𝛿𝑝, a new tracker is instantiated with mean centered on

the new event’s location and covariance matrix initialized to

predefined values. In this research, a 𝛿𝑝 of 0.001 was used while

the starting values of the covariance matrix were varied

experimentally. In addition to the parameters of the bivariate

Gaussian, each of the trackers has an activity score that is updated

according to the equation

𝑨𝒊(𝒕) = {
𝑨𝒊(𝒕 − 𝚫𝒕)𝒆−𝚫𝒕/𝝉𝟏 + 𝟏, 𝐢𝐟 𝒑𝒊(𝒖) > 𝜹𝒑

𝑨𝒊(𝒕 − 𝚫𝒕)𝒆−𝚫𝒕/𝝉𝟏 , 𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞
 (7)

where ∆𝑡 is the time elapsed since the last tracker update and 𝜏1 is

a constant chosen to tune the rate of tracker deactivation. If the

activity 𝐴𝑖 falls below a certain predefined threshold, the tracker

will become inactive. In the asynchronous tracking approach, every

event is processed as it is received. However, while the frame-based

approach retains the timestamps associated with each event, it

evaluates all events in order at discrete time steps after noise

suppression has taken place. In [17], two activity thresholds were

used to differentiate between deactivated and destroyed trackers.

However, given that trackers in this research are intended for

single-point sources that may have activities as low as one between

updates, the activity threshold is chosen such that any activity is

sufficient for the tracker to be considered active and no trackers are

permanently destroyed. This can lead to large numbers of inactive

trackers, but also ensures that small objects of interest will be

tracked effectively.

In order to monitor the trajectory of the Gaussian blob tracker, its

position is smoothed using DESP at regular intervals of time 𝜏,

which are chosen at runtime. With this method, the 𝑥 and 𝑦

positions of the blob tracker are treated as a time series of points

modeled with a linear regression equation whose y-intercept and

slope vary over time. At each multiple of time 𝜏, two smoothing

statistics are calculated as

𝑺𝒖𝝉
⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝜶𝟑𝒖𝝉⃗⃗⃗⃗ + (𝟏 − 𝜶𝟑)𝑺𝒖𝝉−𝟏

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (8)

𝑺𝒖𝝉
⃗⃗ ⃗⃗ ⃗⃗ ⃗

[𝟐]
= 𝜶𝟑𝒖𝝉⃗⃗⃗⃗ + (𝟏 − 𝜶𝟑)𝑺𝒖𝝉−𝟏

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
[𝟐]

 (9)

where α3 is an update parameter chosen to determine the degree of

exponential decay and 𝑢𝜏⃗⃗⃗⃗ is the vector representing the blob

4

tracker’s x and y location at time τ. The first smoothing statistic,

𝑆𝑢𝜏
⃗⃗ ⃗⃗ ⃗⃗ , represents the smoothed average value of event positions

associated with the tracker, while the second, 𝑆𝑢𝜏
⃗⃗ ⃗⃗ ⃗⃗

[2]
, captures the

smoothed trend in event positions, i.e. the tracker’s motion. With

these smoothing statistics, the tracker position at time 𝜏 + 1 is then

forecasted according to the equation

 𝒖𝝉+𝟏⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝒃𝒐
⃗⃗ ⃗⃗ (𝝉) + 𝒃𝟏

⃗⃗ ⃗⃗ ⃗(𝝉 + 𝟏) (10)

where

𝒃𝟏
⃗⃗ ⃗⃗ (𝝉) =

𝜶

(𝟏−𝜶)
(𝑺𝒖𝝉
⃗⃗ ⃗⃗ ⃗⃗ ⃗ − 𝑺𝒖𝝉

⃗⃗ ⃗⃗ ⃗⃗ ⃗
[𝟐]

) (11)

 𝒃𝟎
⃗⃗ ⃗⃗ ⃗(𝝉) = 𝟐𝑺𝒖𝝉

⃗⃗ ⃗⃗ ⃗⃗ ⃗ − 𝑺𝒖𝝉
⃗⃗ ⃗⃗ ⃗⃗ ⃗

[𝟐]
− 𝝉 𝒃𝟏

⃗⃗ ⃗⃗ ⃗(𝝉) (12)

The values calculated here, 𝑏1
⃗⃗ ⃗(𝜏) and 𝑏0

⃗⃗⃗⃗ ⃗(𝜏) , represent the

estimated slope and y-intercept respectively of the linear regression

fitting the given tracker’s position over time. Since these values

vary over time, the 𝛼3 parameter controls the extent to which new

points affect the linear regression fit to the tracker’s position. As a

result, very small values on the order of 1 × 10−4 are chosen due

to the large number of events involved in tracker updates. Finally,

the smoothed trajectory of the tracked object is then interpolated

between time steps with a cubic Bezier curve fit with the equation

𝑩(𝒕) = (𝟏 − 𝒕)𝟑𝑼𝟎 + 𝟑(𝟏 − 𝒕)𝟐𝒕𝑼𝟏 + 𝟑(𝟏 − 𝒕)𝒕𝟐𝑼𝟐 + 𝒕𝟑𝑼𝟑 (13)

where 𝑈𝑖 indicates the [𝑥, 𝑦]𝑇 position of points obtained from the

smoothed tracker trajectory. In this equation, 𝑈3 refers to the most

recent tracker position in time obtained via smoothing, while the

remaining points 𝑈𝑖 refer to previous points in its trajectory.

Since new trackers are constantly spawned when an event has no

tracker with 𝑝 score above the given threshold, it is possible, and in

practice quite likely, that multiple trackers will begin to overlap on

the same object being tracked. To remedy this occurrence, the

distances between and activities of active trackers are compared at

each discrete timestep before curve-fitting takes place. Trackers

that overlap with adjacent trackers of relatively higher activity are

deactivated and omitted from curve-fitting.

3.2 Noise and Tracker Suppression
The noise-suppression techniques employed differ between the

asynchronous and frame-based approaches. For the frame-based

approach, a conventional image frame is built by tallying the

presence of events at each pixel location regardless of polarity or

frequency. Once an event is received with timestamp greater than

or equal to a multiple of the integration time chosen, a simple

summation kernel is convolved with the integrated image according

to

𝒈(𝒙, 𝒚) = ∑ ∑ 𝑲(𝒖, 𝒗)𝑰(𝒙 − 𝒖, 𝒚 − 𝒗)𝒃
𝒗=−𝒃

𝒂
𝒖=−𝒂 (14)

where 𝐼(𝑥, 𝑦) is the integrated event frame and 𝐾 is the kernel

𝑲 =
𝟏

𝟑
[
𝟏 𝟏 𝟏
𝟏 𝟎 𝟏
𝟏 𝟏 𝟏

] . (15)

Given that the outputs of this operation are fixed to integer values,

𝑔(𝑥, 𝑦) will only have values greater than zero when an event has

at least three neighboring events within the integrated frame. This

function therefore serves to mask any pixel location with fewer than

three neighboring events occurring within the integration time 𝜏.

The asynchronous approach uses a version of the event-based

dynamic background suppression introduced in [19], except that

every pixel is associated with its own cell rather than a large

number of pixels falling into the same cell. Reducing the number

of events grouped for noise suppression is necessary for tracking

targets that may be exceptionally small in size and induce small

amounts of activity. In addition, cells are suppressed using a two-

sided activity threshold rather than the average of all current cell

activity. This change to the suppression technique serves to filter

events occurring at pixels of both low and high activity. As an

event is received, the corresponding cell is updated in a similar

fashion as the activity associated with trackers as

𝑨𝒖(𝒕) = 𝑨𝒖(𝒕 − 𝚫𝒕)𝒆−𝚫𝒕/𝝉𝟐 + 𝟏 (16)

where ∆𝑡 is the time elapsed since the last pixel update, 𝐴𝑢 is the

activity associated with the pixel at 𝑢 = [𝑥, 𝑦]𝑇 and 𝜏2 is a

constant chosen to tune pixel activity decay. Thresholds 𝛿1 and 𝛿2

are chosen such that only events occurring at pixels with activity 𝛿1

< 𝐴𝑢(𝑡) < 𝛿2 will be processed by the Gaussian blob tracking

algorithm. Negative polarity events are ignored in this filtering

since motion of exceptionally small objects is expected to generate

positive polarity events immediately followed by negative polarity

events on their trailing edges. This programmatic filtering of noise

events also serves to filter large regions of change in the sensor’s

view such as sections of the Earth that might lie in the sensor’s

view. Since the sensitivity of the hardware itself would need to be

maximized in order to track distant, dim objects, portions of the

Earth would generate a significant number of spatially and

temporally close events. These events will be filtered by the

asynchronous approach and therefore significantly reduce

computational load and potential false positives in tracking.

Since the intent of this research is to track objects that may be as

small as a single pixel in the DVS’s view, parameters are chosen

for the Gaussian blob tracker algorithm such that trackers will even

be spawned for regions of low activity. Setting the activation

threshold so low can in turn lead to some noise events behaving

similarly to objects of interest and therefore escaping noise

suppression. As a result, the trackers themselves are also filtered by

two separate metrics. First, the Gaussian tracker algorithm is

modified such that negative polarity events are accumulated

separately from negative polarity events as

𝑵𝒊(𝒕) = {
𝑵𝒊(𝒕 − 𝚫𝒕)𝒆−𝚫𝒕/𝝉𝟏 + 𝟏, 𝒊𝒇 𝒑𝒊(𝒖) > 𝜹𝒑

𝑵𝒊(𝒕 − 𝚫𝒕)𝒆−𝚫𝒕/𝝉𝟏 , 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
 (17)

where 𝑁𝑖(𝑡) is the negative polarity activity of tracker 𝑖 at time 𝑡. A

threshold is chosen at runtime such that trackers with negative

polarity activity below this threshold will not be subject to DESP

or trajectory curve fitting. These trackers are essentially omitted as

not corresponding to an object of interest. This suppression serves

to omit both trackers that may be associated with noise events as

well as trackers that may be attracted by larger objects, such as

sections of the Earth, which are not the intended target of this

research. Second, a forward-backward error statistic is calculated

at each multiple of the integration time 𝜏 when performing DESP.

The Euclidean distance between the next predicted location 𝑢𝜏+1of

the smoothed trajectory and the last update location of the tracker

is calculated and added to a running average of the tracker’s

forward-backward error as shown below.

𝑬𝒕 = 𝑬𝒕−𝟏 + √(𝒙𝝉+𝟏 − 𝒙𝒕)
𝟐 + (𝒚𝝉+𝟏 − 𝒚𝒕)

𝟐 (18)

�̅�𝒕 =
𝑬𝒕

𝒏𝒆𝒗𝒆𝒏𝒕𝒔
 (19)

As with the negative polarity activity, an error threshold is chosen

such that, if a tracker’s forward-backward error exceeds the

threshold, it will be deactivated and hidden from trajectory fitting.

5

It should be noted that the frame-based approach does not employ

tracker suppression due to spatially solitary events always being

filtered. As a result, the frame-based method’s ability to track point-

source objects is limited, but the number of trackers instantiated is

greatly reduced in comparison to the asynchronous method. The

entirety of both algorithms is described with the pseudocode

detailed in Algorithm 1 and 2.

3.3 Experimental Setup
In order to compare the asynchronous and frame-based approaches

and assess their ability to track point source objects, experimental

testing was conducted with varied velocity, luminance contrast, and

distance to a point-source of interest. In this experiment, the point-

source of interest consisted of a laser pointer projected onto a

background illuminated by two direct current (DC), variable-

intensity LED lamps. The lighting intensity of the lamps was varied

at several discrete levels in order to assess tracking with different

contrast levels. DC lighting was necessary, in addition to the room

being darkened, due to the DVS’s tendency to detect flickering

from alternating current (AC) lighting. The laser pointer was

mounted onto a stepper motor controlled via microcontroller board

in order to control the angular velocity of the target at discrete

microstepping levels.

Tables 1 and 2 list the contrast ratios and speeds measured for each

of the discrete levels used in testing. Tests were conducted using

each combination of contrast ratio and speed mode for a total of 30

trials under base conditions. To study the effect of having a smaller

target area, the distance from the camera to the target was then

increased and additional tests were conducted with all contrast

ratios and the Full, Quarter, and Slowest speed modes to cover the

breath of speeds chosen. These 15 additional trials are denoted

among the results with the corresponding contrast level and “Incr.

Distance” in order to distinguish them. Tests were conducted at 2.5

meters and 5.0 meters to target respectively due to the constraints

of the testing area. Since the targets in the 45 preceding trials follow

a simple, horizontal and linear path, an additional 11 tests were

conducted that included sudden and/or persistent changes in the

direction of motion as well as multiple targets of interest. These

additional tests are described in Table 3, several of which were

repeated multiple times with different patterns of movement.

Table 1: Contrast Conditions Table 2: Speed Conditions

Contrast # Contrast Ratio

1 ∞

2 25.87

3 6.23

4 3.01

5 1.09

Table 3: Additional Tests

Experiment (# of Trials) Description

Multiple Targets (3)

Several targets with sudden

movements and collisions

between them

High Contrast Non-Linear

(3)

Non-linear, varying-speed targets

at the highest contrast, i.e. no

backlighting

Low Contrast Non-Linear

(3)

Non-linear, varying-speed targets

at contrast level 4 (chosen due to

accuracy loss at the lowest

contrast level)

Changing Direction (1)

Target with persistent changes in

motion, a spiraling motion, at

highest contrast level

Increased Distance (1)

Non-linear, varying-speed target

with 5m distance to target and

highest contrast level

Speed Mode

Angular

Velocity

(Deg/s)

“Full” 455.7

“Half” 232.26

“Quarter” 136.88

“Eighth” 63.16

“Sixteenth” 25.68

“Slowest” 7.4

6

The ground-truth for each test was generated using built-in

OpenCV functions to locate contours and calculate minimum

enclosing circles on noise-suppressed event frames [26].

Intersection-over-union and active tracking time metrics were then

calculated by comparing the intersection of the event-based

Gaussian blob trackers with the set of minimum enclosed circles. It

should be noted that although the Gaussian trackers are elliptical in

shape, the IoU metric was calculated using a circle circumscribed

with the tracker’s larger axis as its diameter. This approach results

in a decrease in the IoU scores calculated but should not impact the

active tracking time measured in each experiment since active

tracking is determined by the tracker simply intersecting with the

ground-truth circles across frames. Contrast levels were calculated

as the ratio of laser pointer luminance to background lighting

luminance as measured via a luxmeter.

4. RESULTS

The performance of the frame-based and asynchronous approaches

was assessed with each combination of contrast, speed, and

distance conditions previously presented as well as the additional

11 non-linear movement trials. Before evaluating accuracy across

the experiments, threshold values used for noise-filtering in the

asynchronous method were first tuned by inspection for each

experiment. Filtering thresholds were chosen in order to maximize

tracking accuracy in terms of percentage of actively tracked frames

and with regard to the different speeds of the target. In general,

slower targets necessitate a larger upper-bound threshold, δ2, since

they will repeatedly trigger events in a small range of pixels. In the

same respect, the lower-bound threshold, δ1, can be raised as well

in order to filter additional non-target events without interfering

with accurate target tracking. Due to the frame-based method

filtering events according to the number of spatial and temporal

neighbors, no tuning for the frame-based methods was required.

4.1 Noise Filtration
Figure 1 depicts the percentage of events that were filtered as noise

by the asynchronous and frame-based approaches in each of the

experiments. As target speed does not affect the number of events

registered overall, filtered event percentages are averaged across all

speed modes in experiments with the same contrast ratio.

 Figure 1: Noise Filtration by Experiment

Across most experiments, the asynchronous approach showed

much larger percentages of filtered events than the frame-based

approach. In some of the additional trials, the asynchronous

approach reached up to approximately 80% average events filtered,

such as in the case of the Changing Direction trial. Conversely, the

frame-based approach had a maximum of only about 60% filtered

events occurring in the trial with second contrast level and

increased distance. The fact that the two approaches percentage of

filtered events differed greatly between the different types of

experiments also indicates that the two approaches differ in the

context in which events are filtered. Since the frame-based

approach filters events with few neighbors over time, this behavior

suggests that the trials with increased distance exhibited far more

solitary events as reflected in the much larger percentage of filtered

events. By contrast, the multiple target trials had many repetitive

events occurring spatially and temporally close, resulting in

extremely low filtering rates for the frame-based method but much

higher rates with the asynchronous method. While the total

number of events observed in each experiment is largely

determined by the length of the recording, variations in event

numbers were observed with differing contrast levels as well.

Although the 11 separate trials had varying recording lengths, the

original contrast and velocity-controlled trials had roughly the same

recording time across each. This fact indicates that lower contrast

between the target area and background resulted in larger numbers

of events that can be attributed to erroneous events occurring in the

background. In ground applications, this phenomenon could be

mitigated by significantly raising the sensitivity thresholds of the

sensor itself, but this would not be possible on a space platform

where maximum sensitivity is required to detect exceedingly dim

and distant objects.

4.2 Performance
Figure 2 depicts the performance in average frames per second

(FPS) for the two approaches as a function of the number of events

generated. These performance numbers are drawn from each of the

experiments previously detailed. It should be noted that the number

of events shown is before noise filtration, which partially explains

the difference in FPS for trials with approximately the same number

0 10 20 30 40 50 60 70 80 90

Contrast 1

Contrast 2

Contrast 3

Contrast 4

Contrast 5

Contrast 1/ Incr. Distance

Contrast 2/ Incr. Distance

Contrast 3/ Incr. Distance

Contrast 4/ Incr. Distance

Contrast 5/ Incr. Distance

Multiple Targets

Low Contrast Non-Linear

High Contrast Non-Linear

Changing Direction

Increased Distance Non-Linear

Percentage of Events Filtered

Asynchronous
Frame-based

7

of events. All trials were run using a four-core Intel Core i5-8250U

1.6 GHz processor. The Bezier curve-fitting, frame drawing and

frame-based noise-suppression portions of the algorithm were all

parallelized using the C++ OpenMP API. Since the frame-based

method involves applying a kernel convolution to the entirety of

reconstructed frames, the same number of calculations must be

made regardless of the number of events in the event stream. As a

result, the performance would be expected to be relatively constant

across all experiments. Although execution times do appear to be

consistent in the frame-based approach, some trials that exhibited

larger or smaller numbers of unfiltered events, as well more

trackers being instantiated, resulted in small disparities in average

execution time. Conversely, the asynchronous approach shows

much greater variation in FPS versus the number of events, which

is a result of the larger number of events filtered before tracking is

performed. The number of inactive trackers instantiated also affects

asynchronous performance, further adding to the FPS variation for

experiments with approximately the same number of events.

Figure 2: Performance in FPS vs. Number of Events

4.3 Tracker Instantiation and Suppression
Figures 3 and 4 display the number of trackers generated for each

experiment and number of trackers suppressed in the asynchronous

case respectively. In Figure 3, the number of trackers generated is

reported as an average across all experiments with the same

contrast level as the number of trackers instantiated is primarily

dependent on the contrast. By contrast, Figure 4 shows the average

number of trackers suppressed with experiments grouped by target

speed since the asynchronous tracker suppression varies more with

the speed of the target rather than brightness contrast. It should be

noted that the vast majority of the trackers instantiated are inactive

throughout most of the experiments and do not necessarily indicate

a false positive in tracking.

Figure 3: Average Number of Trackers Generated per

Experiment Group

As expected, the asynchronous approach spawned considerably

more trackers in each trial as a result of some noise events passing

through filtration. However, there are a few notable exceptions,

such as the multiple target trials, where the much higher percentage

of events filtered by the asynchronous method resulted in

comparatively fewer trackers being generated. Several trials at the

slowest speed also exhibited no trackers instantiated by the frame-

based method, which represented a complete failure to track the

target. This failure was due primarily to the exceedingly small

number of events generated by the target, which were in turn

filtered by the frame-based noise suppression.

Figure 4: Number of Trackers Suppressed in Asynchronous

Approach

It is important to note that the number of tracker omissions is

cumulative across each trial, hence the number of omissions being

greater than the number of trackers originally initialized.

Furthermore, negative polarity thresholding is applied prior to

forward-backward error thresholding, leading to the larger number

0

100

200

300

400

500

600

700

800

900

10000 100000 1000000 10000000

FP
S

of Events

Asynchronous

Frame-based

1 10 100 1000

Contrast 1

Contrast 2

Contrast 3

Contrast 4

Contrast 5

Contrast 1/Incr. Distance

Contrast 2/Incr. Distance

Contrast 3/Incr. Distance

Contrast 4/Incr. Distance

Contrast 5/Incr. Distance

Multiple Targets

High Contrast Non-Linear

Low Contrast Non-Linear

Changing Direction

Increased Distance Non-Linear

Frame-based

Asynchronous

1 10 100 1000 10000 100000

Full

Half

Quarter

Eighth

Sixteenth

Slowest

Full/Incr. Distance

Quarter/Incr. Distance

Slowest/Incr. Distance

Multiple Targets

High Contrast Non-Linear

Low Contrast Non-Linear

Changing Direction

Increased Distance Non-Linear

Average Trackers Omitted
Forward-Backward Error

 Negative Polarity

8

of omissions being attributed to negative polarity. In some trials,

the negative polarity threshold successfully suppressed all

erroneous trackers, leaving none to be suppressed as a result of

forward-backward error. Additionally, there were several instances

in the trials with the slowest target speed and increased distance

where no trackers were suppressed by negative polarity

thresholding. During these trials, the exceptionally slow targets

exhibited few or no negative polarity events during movement,

which necessitated reducing the negative polarity threshold to zero.

4.4 Experimental Tracking Accuracy
Figures 5 and 6 show the general trends in tracking accuracy with

averaged values across experiments with the same target speed.

Tracking accuracy was measured as the intersection over union

with the ground-truth position of the target per frame, while active

tracking time refers to the percentage of frames where an active

tracker intersected with the ground-truth target position. Note that

active tracking time specifically means that the tracker was active

and not suppressed, so frames that were not actively tracked may

have still contained an inactive or suppressed tracker on target. This

impact of tracker suppression on active tracking time can be

observed in the relatively lower active tracking time of the

asynchronous method for lower velocity targets. Although the

target tracker was suppressed in some frames, the asynchronous

method maintained relatively the same or better IoU than the frame-

based method with the same velocity targets.

Figure 5: Intersection over Union vs. Target Speed

Figure 6: Percentage of Actively Tracked Frames vs. Target

Speed

Figures 7 and 8 show the same accuracy metrics measured for the

11 additional trials with multiple targets and changes of target

direction. Since these trials did not have precise measurements of

target velocity, they are presented per experiment. The additional

trials showed similar trends with the asynchronous approach

showing better IoU measures across almost all of the experiments,

but with comparable or relatively smaller percentage of actively

tracked frames. While the frame-based method exhibited some

instances of slightly better IoU, the asynchronous approach showed

greatly improved IoU for trials with multiple targets.

Figure 7: Intersection Over Union per Experiment

Figure 8: Percentage of Actively Tracked Frames per

Experiment

Although the algorithm parameters were tuned to maximize

tracking accuracy in the previous experiment analysis, additional

metrics were recorded to assess tracking effectiveness within a

range of tracking parameters. The graphs displayed in Figures 9 and

10 show averaged accuracy results with varied position update

parameters for the trackers. The position update parameter refers to

𝛼1 from Eqn. 4, which controls the magnitude of tracker

displacement when a new event is associated with it. In general,

larger 𝛼1 values cause trackers to require greater number of events

to result in significant movement of the tracker. This additional

analysis was conducted with trial recordings at the highest level of

contrast, i.e. no background lighting, but with varied speed and

distance, in order to determine the effect of the position update

factor on tracker accuracy. Disregarding the base differences

between the accuracies of the two approaches, both methods

showed the same general trends as a result of increasing the value

of the position update parameter. In general, the range of 0.4 to 0.7

showed minor differences in both IoU and actively tracked frames,

but both accuracy measures showed significant improvement

beginning at a value of 0.8, with some exceptions. Interestingly, the

increased distance trials showed comparable or even better

accuracy with much smaller update values and diminishing

accuracy with increased values. This trend can be explained by the

much smaller number of events seen in these trials, and thus the

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 100 200 300 400 500

In
te

rs
ec

ti
o

n
 o

ve
r

U
n

io
n

Angular Velocity of Target (Deg/s)

Async. IoU

Framed IoU

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500

P
er

ce
n

ta
ge

 o
f

Fr
am

es
 A

ct
iv

el
y

Tr
ac

ke
d

Angular Velocity of Target (Deg/s)

Async. Tracking
%
Framed
Tracking %

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

High Contrast Non-Linear

Low Contrast Non-Linear

Multiple Targets

Increased Distance

Changing Direction

Intersection over Union

Frame-based
IoU
Asynchronous
IoU

0 10 20 30 40 50 60 70 80 90 100

High Contrast Non-Linear

Low Contrast Non-Linear

Multiple Targets

Increased Distance

Changing Direction

Percentage of Frames Actively Tracked

Frame-based

Asynchronous

9

corresponding targets were composed of far fewer events as well.

As a result, the position update parameter must be smaller such that

fewer events are required for the trackers to accurately track the

targets. Since these reported values are averaged across all trials,

the average accuracy metrics are somewhat skewed due to the

relatively low accuracies measured in the slowest target trials.

Figure 9: Intersection Over Union vs. Position Update

Parameter

Figure 10: Percentage of Actively Tracked Frames vs. Position

Update Parameter

4.5 Visualized Tracking Results
For demonstration purposes, Figure 11 (a-c) depicts the

reconstructed frame output with ground-truth, frame-based, and

asynchronous tracking results superimposed for several trials,

while Figure 12 (a-c) shows the corresponding unfiltered frames.

Positive- and negative- polarity events are indicated by black and

grey pixels respectively. The ground-truth minimum enclosed

circle is denoted by a red circle, while the frame-based and

asynchronous trackers are overlaid with brown ellipses. Each of the

trackers that is deemed to be tracking the target also displays a blue

Bezier curve fit to its predicted trajectory obtained via DESP. As

referenced earlier, both asynchronous and frame-based have many

inactive trackers that are hidden in the reconstructed frames though

only active trackers are displayed. The events displayed in the

frames are the result of the asynchronous filtering technique and

several erroneous active trackers can be seen in each. These

erroneous trackers belong only to the asynchronous approach;

however, these trackers have no estimated trajectory and promptly

become inactive between frames. Trajectories are drawn for both

the asynchronous and frame-based approaches, which can be seen

to diverge most significantly in the trials containing multiple

targets.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.99 0.95 0.9 0.8 0.7 0.6 0.5 0.4

A
ve

ra
ge

 In
te

rs
ec

ti
o

n
 o

ve
r

U
n

io
n

Position Update Parameter

Asynchronous

Frame-based

0

10

20

30

40

50

60

70

80

0.99 0.95 0.9 0.8 0.7 0.6 0.5 0.4

A
ve

ra
ge

 P
er

ce
n

ta
ge

 o
f

Fr
am

es
 A

ct
ie

ly

Tr
ac

ke
d

Position Update Parameter

Asynchronous

Frame-based

Figure 11: Filtered and Tracked Frames (a) High Contrast 3

Exp. (b) Multiple Targets 1 Exp. (c) Changing Direction Exp.

(c)

(a) (b)

10

5. DISCUSSION

Overall, the experimental results exhibited trends that were to be

expected when comparing the asynchronous and frame-based

approaches. In terms of average performance, the asynchronous

approach had an average of 7× better performance but had a much

larger variation in relation to the total number of events. The reason

for this disparity is primarily the differing forms of noise

suppression used by both algorithms. The frame-based approach

will always perform approximately the same number of

comparisons whereas the asynchronous approach leverages the

sparsity of the event stream to dramatically reduce computation

time as evidenced by the differing trends in Figure 3. The two forms

of noise suppression also resulted in very different ratios of

unfiltered to filtered events, with the asynchronous approach

filtering out many more events across all experiments. The multiple

targets trials are an outstanding example of this with the

asynchronous approach exhibiting an average of about 60% of

filtered events compared to the frame-based approach’s mere 6%.

This large discrepancy is most likely due to the asynchronous

approach also filtering events that may not necessarily be noise, but

constituent events of potential targets. However, for the purposes

of this research, filtering redundant events can reduce computation

time without negatively impacting the tracking performance itself.

In addition to large differences in the number of filtered events, the

filtering techniques also differed greatly in terms of the number of

trackers instantiated. The asynchronous algorithm exhibited many

more trackers being instantiated across all trials as compared to the

frame-based approach. According to both algorithms, new trackers

will be created if no pre-existing tracker has a 𝑝 score above the

predefined threshold. The asynchronous approach having more

instantiated trackers would indicate more solitary events passing

through the filter, though these trackers are largely hidden as they

are correctly deemed to be associated with noise. In the

asynchronous approach, the negative-polarity threshold served to

suppress the majority of erroneous trackers. However, there were

several trials in which the target had few or no negative-polarity

events associated with it and which relied entirely on the forward-

backward error threshold to filter noise-attracted trackers. These

occurrences highlighted the need for both forms of tracker

suppression as well as the necessity of tuning the suppression

thresholds to the behavior of the intended target.

In regard to tracker accuracy, the asynchronous approach displayed

either comparable or, in some cases, superior results in the IoU

measurements. While the IoU scores for both approaches did fall

below what might be considered an acceptable level of 50% in

several trials, these results can be explained by a number of factors.

As mentioned earlier, the IoU metric was calculated using the circle

circumscribed around the larger axis of each elliptical Gaussian

tracker. This approximation was made to ease the calculation

involved in the metric as well as due to the assumption that the

target is circular and would not cause significant change in tracker

shape. However, this assumption was not always necessarily the

case, especially with the additional non-linear and multiple target

trials. As a result, the area of the tracker would be overestimated

and cause the IoU metric to be much smaller than expected.

Another issue with the IoU metric is the use of reconstructed frames

to form the ground-truth comparison. Since the ground-truth

position of the target is evaluated per frame, events must be

accumulated over the chosen integration time in order to

reconstruct a conventional image frame. However, sufficiently fast-

moving targets, such as those in the highest speed trials, would

exhibit motion blur due to events from multiple positions of the

target falling into the same reconstructed frame. While the event-

based tracking would track these targets accurately due to the serial

nature of the tracker update, the ground-truth comparison would fit

a larger than necessary circle around the target and thus artificially

decrease the IoU metric. Nonetheless, the IoU metric still shows

that the asynchronous noise suppression did not result in a loss of

tracker accuracy compared to the frame-based approach.

Conversely, the percentage of actively tracked frames does seem to

favor the frame-based approach across many of the experiments.

This general trend is largely due to the tracker suppression

employed by the asynchronous approach, where the target tracker

may be made hidden if the negative-polarity activity falls below

threshold or the forward-backward error rises above threshold.

However, the tracker is not destroyed and positions that may not be

actively tracked are in most cases correctly interpolated by the

smoothing and curve-fitting operations. Even so, the asynchronous

approach showed comparable active tracking time across most

experiments.

With respect to varying the Gaussian tracker position update

parameter, both approaches showed similar trends with respect to

the resulting tracking accuracy. As previously mentioned, the

position update weight tunes the number of events that are required

to shift the center of the tracker. As a result, the noise suppression

employed and size and speed of the target influence the optimal

parameter value required to maximize tracking accuracy. During

testing, the frame-based approach showed peak accuracy with

position update parameters, 𝛼1 , between 0.9 and 0.95, while the

asynchronous approach exhibited better accuracy with value 0.8 for

several trials. This disparity is most likely due to the asynchronous

noise suppression, which as previously mentioned likely removed

target events in addition to noise. As a result, the update factor

would need to be lower in order to weight each event of the target

greater when updating position and maintain accuracy. This

behavior indicates that the asynchronous approach is more sensitive

to changes in algorithm parameters and would likely need to be

tuned according to the expected targets of interest.

Figure 12: Original Unfiltered Frames (a) High Contrast 3

Exp. (b) Multiple Targets 1 Exp. (c) Changing Direction Exp

(a) (b)

11

6. CONCLUSIONS

This research has introduced an asynchronous noise and tracker

suppression scheme for Gaussian blob point-source tracking in a

space environment. Experimental results show comparable or

superior tracking accuracy with the asynchronous approach, while

also exhibiting dramatically better performance as compared to the

frame-based approach. Furthermore, unlike the frame-based and

other previous event-based noise-suppression techniques, the

asynchronous approach has the ability to track objects that may

only appear as a single pixel in the DVS’s view. Given the

asynchronous method’s reliance on multiple parameters, it is

necessary for the algorithm to be tuned for detecting and tracking

specific types of objects in terms of speed, size and relative

luminance. Additionally, future modifications to the asynchronous

method could be made that suppress trackers based on velocity,

number of events, tracking time, etc. in order to track specific types

of objects in space or on Earth.

7. ACKNOWLEDGMENTS

This work was supported by the NSF SHREC Center members and

by the IUCRC Program of the National Science Foundation under

Grant No. CNS-1738783. The authors would like to thank Dr. Ryad

Benosman and Prophesee for providing the DVS used in this work.

8. REFERENCES

[1] M. Mahowald, "VLSI analogs of neuronal visual processing:

a synthesis of form and function," 1992.

[2] T. Delbruck, B. Linares-Barranco, E. Culurciello, and C.

Posch, “Activity-driven, event-based vision sensors,”

Proceedings of 2010 IEEE International Symposium on

Circuits and Systems, 2010.

[3] C. Posch, D. Matolin, and R. Wohlgenannt, “An

asynchronous time-based image sensor,” 2008 IEEE

International Symposium on Circuits and Systems, 2008.

[4] F. Bennet, C. D’Orgeville, Y. Gao, W. Gardhouse, N. Paulin,

I. Price, F. Rigaut, I. T. Ritchie, C. H. Smith, K. Uhlendorf,

and Y. Wang, “Adaptive optics for space debris tracking,”

Adaptive Optics Systems IV, 2014.

[5] J. Sharma, “Space-Based Visible Space Surveillance

Performance,” Journal of Guidance, Control, and Dynamics,

vol. 23, no. 1, pp. 153–158, 2000.

[6] G. Cohen, S. Afshar, B. Morreale, T. Bessell, A. Wabnitz,

M. Rutten, and A. V. Schaik, “Event-based Sensing for

Space Situational Awareness,” The Journal of the

Astronautical Sciences, vol. 66, no. 2, pp. 125–141, Mar.

2019.

[7] F. Wang and V. D. Agrawal, “Single Event Upset: An

Embedded Tutorial,” 21st International Conference on VLSI

Design (VLSID 2008), 2008.

[8] G. Hopkinson, “Radiation effects in a CMOS active pixel

sensor,” IEEE Transactions on Nuclear Science, vol. 47, no.

6, pp. 2480–2484, 2000.

[9] V. Goiffon, M. Estribeau, O. Marcelot, P. Cervantes, P.

Magnan, M. Gaillardin, C. Virmontois, P. Martin-Gonthier,

R. Molina, F. Corbiere, S. Girard, P. Paillet, and C.

Marcandella, “Radiation Effects in Pinned Photodiode

CMOS Image Sensors: Pixel Performance Degradation Due

to Total Ionizing Dose,” IEEE Transactions on Nuclear

Science, vol. 59, no. 6, pp. 2878–2887, 2012.

[10] S. Buchner, D. McMorrow, N. Roche, L. Dusseau, and R. L.

Pease, “The Effects of Low Dose-Rate Ionizing Radiation on

the Shapes of Transients in the LM124 Operational

Amplifier,” IEEE Transactions on Nuclear Science, vol. 55,

no. 6, pp. 3314–3320, 2008.

[11] G. Reitz, R. Beaujean, E. Benton, S. Burmeister, T. Dachev,

S. Deme, M. Luszik-Bhadra, and P. Olko, “Space radiation

measurements on-board ISS—the DOSMAP experiment,”

Radiation Protection Dosimetry, vol. 116, no. 1-4, pp. 374–

379, 2005.

[12] D. Tedaldi, et. al. “Feature detection and tracking with the

dynamic and active-pixel vision sensor (DAVIS).” Second

International Conference on Event-based Control,

Communication, and Signal Processing (EBCCSP). 2016.

[13] T. Delbruck, “Frame-free dynamic digital vision,” in

International Symposium on Secure-Life Electronics

Advanced Electronics for Quality Life and Society, 2008.

[14] R. Benosman, S.-H. Ieng, C. Clercq, C. Bartolozzi, and M.

Srinivasan, “Asynchronous frameless event-based optical

flow,” Neural Networks, vol. 27, pp. 32–37, 2012.

[15] Z. Ni, C. Pacoret, R. Benosman, S. Ieng, and S. Régnier,

“Asynchronous event-based high speed vision for

microparticle tracking,” Journal of Microscopy, vol. 245, no.

3, pp. 236–244, 2011.

[16] S. Seifozzakerini, et. al. “Event-Based Hough Transform in a

Spiking Neural Network for Multiple Line Detection and

Tracking Using a Dynamic Vision Sensor.” BMVC. 2016.

[17] X. Lagorce, C. Meyer, S.-H. Ieng, D. Filliat, and R.

Benosman, “Asynchronous Event-Based Multikernel

Algorithm for High-Speed Visual Features Tracking,” IEEE

Transactions on Neural Networks and Learning Systems, vol.

26, no. 8, pp. 1710–1720, 2015.

[18] Mueggler, Elias, et al. "Lifetime estimation of events from

dynamic vision sensors." IEEE international conference on

Robotics and Automation (ICRA). IEEE, 2015.

[19] J.-M. Maro, G. Lenz, C. Reeves, and R. Benosman, “Event-

based Visual Gesture Recognition with Background

Suppression running on a smart-phone,” 2019 14th IEEE

International Conference on Automatic Face & Gesture

Recognition (FG 2019), 2019.

[20] X. Xie, et al. "DVS image noise removal using K-SVD

method." Ninth International Conference on Graphic and

Image Processing (ICGIP 2017). Vol. 10615. International

Society for Optics and Photonics, 2018.

[21] X. Xie, J. Du, G. Shi, H. Hu, and W. Li. “An Improved

Approach for Visualizing Dynamic Vision Sensor and its

Video Denoising,” Proceedings of the International

Conference on Video and Image Processing (ICVIP 2017).

Association for Computing Machinery. pp. 176–180, 2017.

[22] D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-based

object tracking,” IEEE Transactions on Pattern Analysis \&

Machine Intelligence, no. 5, pp. 564–575, 2003.

[23] J. J. Laviola, “Double exponential smoothing: an alternative

to Kalman filter-based predictive tracking,” Proceedings of

the workshop on Virtual environments 2003 - EGVE 03,

2003.

12

[24] Z. Kalal, K. Mikolajczyk, and J. Matas, “Forward-Backward

Error: Automatic Detection of Tracking Failures,” 2010 20th

International Conference on Pattern Recognition, 2010.

[25] T. Böttger, P. Follmann, and M. Fauser, “Measuring the

Accuracy of Object Detectors and Trackers,” Lecture Notes

in Computer Science Pattern Recognition, pp. 415–426,

2017.

[26] G. Bradski, “The OpenCV Library,” Dr. Dobb's Journal of

Software Tools, 2000.

