
Efficient and Autonomous Processing and
Classification of Images on Small Spacecraft

Antony Gillette, Chris Wilson, Dr. Alan D. George
Department of Electrical and Computer Engineering

NSF CHREC Center, University of Pittsburgh
Pittsburgh, Pennsylvania
antony.gillette@chrec.org

Abstract— Small satellites and CubeSats are becoming an
indispensable platform in space-industry development, however,
these systems are severely resource-limited. Depending upon
mission requirements and available communication bandwidth,
it can take hours to days to downlink an image from a spacecraft
to the ground. Improvements in sensors tend to generate
increasingly larger data products. Since small spacecraft have
limited storage space, it is crucial to filter and delete images that
do not meet minimum science criteria. Depending on the mission,
criteria may vary. Images can be prioritized based on having
features such as high land percentage or a specific land color.
Certain images are rarely useful, such as pitch-black images and
cloud-filled images, and can be readily deleted. This research
describes an autonomous image-classification framework to
efficiently use downlink bandwidth by prioritizing image
products with high science value for download while deleting
others, as well as a training framework for classifier calibration.

I. INTRODUCTION
 Space is a challenging environment for engineers and
designers to develop systems for due to severe constraints for
size, weight, power, and cost. Additionally, designers must
consider the hazardous nature of radiation effects on electronic
components which can prematurely end mission operations [1].

 Recent trends in the space industry show that many
organizations are turning to small satellites and CubeSats over
traditional large satellites [2]. CubeSats are small spacecraft
shaped in the form of one or more (10cm)3 cubes typically
weighing less than 1-kg [3]. This development platform has
risen in popularity lately to help designers more affordably
meet next-generation mission requirements as a low-cost entry
point for space-science missions and research [4].

 Depending upon mission requirements, CubeSat
electronics, available power, and communication bandwidth, it
can take hours to days to downlink an image from the system.
Additionally, the spacecraft platform may need to capture and
store a substantial number of images for analysis. Along with
improved sensor developments generating increasingly larger
data products, this situation can lead to raw sensor images
reaching cumbersome sizes which can quickly fill onboard
storage. Small spacecraft have limited storage space, therefore
filtering and deleting images that do not meet minimum
science criteria can make efficient use of this space.

 An effective way to correctly classify images is to use
supervised classification, a well-known process in computer

vision and image processing. With supervised classification,
the user selects pixel values or patterns in advance that help
distinguish key features or qualities. Identifying desirable
patterns or traits in the imagery is called “training” the system,
allowing the system to identify other images with similar
characteristics. If the training is effective, classification will be
more accurate, and the system will filter images based on the
original training set [5].

 Depending on the mission, science criteria may vary.
Images can be prioritized based on having features such as
high land percentage or a specific land color. When a CubeSat
takes many images, unless there is an intelligent scheduler or
advanced planner, it is likely the spacecraft will take images
that have no scientific value. Certain types of images are rarely
useful, such as pitch-black images and cloud-filled images, and
may be deleted to reserve onboard storage, maximizing the
possible number of quality stored images.

 Classification can predict priority and determine the
relevance of an image to a particular mission. However, for
classifiers to be accurate, the system must undergo training.
Without an efficient training procedure, the training process
can be a time-consuming process of iteratively modifying
settings. Different missions may have different cameras and
lenses that will affect classifier settings. The same set of
training data will not apply to every mission so training should
be revisited for each mission. Images can fit into multiple
classification categories which can make manually maintaining
the categories burdensome.

 Lastly, CubeSat image processing algorithms should not
require too much power or memory overhead in order to
increase their viability for the system. Algorithms should be
simplified to reduce resource requirements and increase
processing speed, especially if performing additional
calculations does not significantly improve the accuracy of the
classifier.

 In this paper, we present an autonomous image-
classification framework to efficiently use downlink
bandwidth, by prioritizing image products with high science
value for download while deleting others. Additionally, we
describe a GUI as part of a training framework to quickly
perform classifier calibration, which allows this framework and
corresponding set of applications to be easily reused for other
missions.

978-1-5386-3200-0/17/$31.00 ©2017 IEEE 135

II. BACKGROUND
 This section provides a basic overview on general space
technology targeted by this research. Additionally, this section
describes the key mission that motivated primary challenges
and considerations for the approach.

A. CHREC Space Processor v1 (CSPv1)
 The CSPv1 is a 1U CubeSat form-factor space computer
developed by researchers at the National Science Foundation
(NSF) Center for High-Performance Reconfigurable
Computing (CHREC) as a flexible platform to meet a variety
of mission needs. The CSPv1 is a high-performance and
radiation-tolerant Single Board Computer (SBC) that features a
hybrid-architecture design suitable for the hazardous
environment of space. CSPv1 uses a combination of both
commercial and radiation-hardened components as well as
fault-tolerant computing concepts to mitigate the effects of
space radiation while maintaining low SWaP-C (size, weight,
power, cost), and it achieves high performance through a mix
of fixed and reconfigurable logic processing [6]. The
commercial variant of the design is featured in Fig. 1a.

Fig. 1. CSPv1 plugged into Evaluation Board (left) and two CSPv1s in
CubeSat form factor (right)

B. STP-H5/CSP
 In order to rapidly develop space-system technologies for
operational use, the Department of Defense established the
Space Test Program (STP) as a means of testing systems in
space preceding full-mission operations. STP provides
spaceflight opportunities to the International Space Station
(ISS) through its Houston office [7]. The STP-H5/CSP
experiment was included as a sub-experiment to the ISS
SpaceCube Experiment Mini (STP-H5/ISEM), as part of a
collaboration with NASA Goddard.

 The first mission for the CSPv1 was STP-H5/CSP, which
was launched with several other experiments as part of STP-H5
in February 2017 via SpaceX’s CRS-10. This experiment
features twin CSPv1 processing cards, a power/interface card,
and a backplane, all in a 1U chassis. The mission hardware is
featured in Fig. 1b. STP-H5/CSP includes a high-resolution
visual-spectrum imager which faces towards Earth to capture
images for processing and Earth Observation. The STP-H5
payload was mounted on the ISS, and now STP-H5/CSP is
processing, compressing, and downlinking terrestrial-scene
images using the applications described in this paper.

Examples of image products taken by STP-H5/CSP are
featured in Fig. 2.

Fig. 2. Example images taken by STP-H5/CSP

C. STP-H4/ISE2.0
 STP-H5/CSP mission ideas and design were influenced by
previous experiments from close collaborators at NASA
Goddard’s SpaceCube Team. The primary mission example
was the ISS SpaceCube Experiment 2.0 (ISE2.0). The purpose
of STP-H4/ISE2.0 was to demonstrate flight operation of
NASA Goddard’s SpaceCube 2.0 flight computer. The
experiment included a power unit, SpaceCube v2.0
instrumentation to detect and measure terrestrial gamma-ray
flashes from lightning, and a set of Earth-viewing high-
resolution cameras. The ISE 2.0 experiment was the follow-up
experiment to the SpaceCube team’s previous experiment on
MISSE-7 (Materials International Space Station Experiment-7)
[9]. Fig. 3 shows example images provided by STP-H4/ISE2.0.
Fig. 4 displays the location of STP-H4/ISE2.0 in relation to the
location of STP-H5/CSP. The image-processing research and
application development for STP-H5/CSP was based on
images captured by STP-H4/ISE 2.0 as an example test suite,
since STP-H5 would feature images with similar orientation
and image size.

136

Fig. 3. Example images taken by STP-H4/ISE2.01

Fig. 4. Locations of STP payloads2

III. RELATED WORK
There are a wide number of CubeSat missions that feature

Earth imaging, however, there are only a few examples of
missions with readily accessible imagery to the public, and
even fewer missions that describe image classification in
general. The most significant example mission featuring image
classification is the Intelligent Payload EXperiment (IPEX)
CubeSat mission based at Cal Poly San Luis Obispo in
collaboration with California Institute of Technology’s Jet

1 https://www.flickr.com/photos/nasa_goddard/albums/72157638323032963/with/11192970873/

2 Image courtesy of DoD Space Test Program and NASA GSFC

Propulsion Laboratory [10]. For its image analysis, IPEX used
the TextureCam image-processing suite, which uses a random
forest classifier made up of decision trees which uses
branching and a sequence of threshold tests to assign a
classification probability upon reaching a terminal leaf node. A
decision forest runs trees in parallel while analyzing spacial
neighborhoods for incorporating texture. Hand-labeled training
images were used to teach the classifier to categorize an image
into four categories: clear surface (land or water), planetary
limb (edge of the earth), clouds, and outer space. Compared to
the classification techniques in this project, TextureCam has
the benefit of machine learning and is reported to have high
accuracy. However, as discussed in [10], their approach does
not distinguish between land and water and can take more than
half a minute to compute. They also noted problems updating
the classifier, due to the training executable not being onboard,
and because retrained forests were too large to uplink [11].

Another approach previously taken for small satellite image
classification was the development of a Content Based Image
Retrieval (CBIR) system. The CBIR approach was developed
to be able to retrieve from a satellite the image most similar to
an input image used as a query [12]. This system uses a
combination of color, shape, and texture features from the
image in order to calculate similarity. For color, a histogram
approach was used to keep track of the number of pixels of
each value. This approach does not account for ratios between
color-components. For texture, the features extracted were
contrast, correlation, energy, and homogeneity. For shape, the
features extracted were perimeter, area, and roundness. These
features are similar to the edge classifier features described in
this paper in that single values are extracted from the entire
image to represent an aspect of the image. Although this CBIR
approach is not suitable to autonomously prioritize or delete
images robustly and requires the user to have examples of high
priority images to use for retrieval, the advantage is that no
classifier training is necessary and arbitrary images that are
temporarily high priority can be retrieved at any time.

IV. APPROACH
The main motivation for this work was to have a method

that autonomously analyzes images before choosing to
downlink a full image which would need to be performed by
extracting image statistics to predict priority and relevance to
the mission. In preparation for STP-H5/CSP, a suite of image-
processing applications was developed for CSPv1 with the goal
of being lightweight and portable, and to facilitate acceleration
from parallelization. These applications include 2D
convolution, various image classifiers, and various support
applications to help with image-data manipulation. The typical
image sizes STP-H5/CSP manipulates are displayed in Table 1.

A GUI-based classifier training framework was also
designed, which allows for real-time, user-controlled image
labeling and classifier calibration. This training framework
needed to be flexible and easy-to-use to allow retraining for
new missions.

137

TABLE I. IMAGE SIZES OF STP-H5/CSP FORMATS

Image Type Storage Size Resolution

RAW Image 25.09 MB 40-bit 2448×2050

PPM 15.05 MB 24-bit 2448×2050

J2K Thumbnail 0-350 KB 24-bit 489×410

V. IMAGE CLASSIFIERS
To identify high-priority, terrestrial-scene images, a set of

image classifiers was built to detect various aspects of
desirable images. All the algorithms used either process each
image pixel individually or also take into account neighboring
pixels. Each image pixel contains 24 bits of color data, which
corresponds to a value of 0-255 for the red, green, and blue
component values. By analyzing these values with varying
methods, autonomous conclusions can be made about the
image contents. After developing various classifiers to handle
identifying the various categories of images, the classifiers
naturally fell into two categories: general classification and
specific classification.

A. General Classification
The main goal of the general classifiers was to

autonomously classify the terrestrial-scene image composition
with four categories: cloud, land, water, and dark/space. The
image pixel data is first loaded into a large array where it can
then be analyzed and processed by the classifiers. As shown in
Fig. 5, the array containing the processed image data can be
converted back to an image to show classification results
visually.

1) Color Classifier: The color classifier sets color
thresholds, where certain pixel color ranges are set to
correspond to the four categories. These ranges are scaled
dynamically based on the average brightness of the image. For
visualization purposes, the categories cloud, land, water, and
dark/space are represented with red, green, blue, and black
respectively. The color classifier was fairly accurate in
categorizing the cloud and space categories, but it was difficult
to distinguish land from water in darker images.

2) Texture Classifier: The texture classifier calculates the
standard deviation around each pixel to calculate a value for
roughness. Water generally has a low roughness level in
terrestrial-scene images, which allows it to be easily
distinguished even in darker images. Based on the roughness
level calculated for each pixel and the average brightness of the
image, the pixel is either classified as water or not water (blue
and green respectively). The result of the texture classifier is
only used to supplement the color classifier, by overriding
water pixels with land pixels.

3) Image Combiner: The image combiner merges the
desired aspects of the two classifiers. Because the texture
classifier was developed solely to supplement the accuracy of
water/land classification, the image combiner uses the color-
classified image as the base, allowing the texture classifier
image to overlap only the blue regions. After the image
combiner stage, the percentages of cloud/land/water/space are

recorded in a log file. An example of these applications
working together can be seen in Fig. 5.

Fig. 5. General classification of terrestrial-scene images

B. Specific Classification
The main goal of the specific classifiers was to be able to

search an image for specific features or aspects that could be
isolated and quantified. Fig. 6 shows example outputs of these
classifiers.

1) Edge Classifier: The edge classifier analyzes the color
and quantity of pixels in an image after applying a blur filter
followed by an edge filter using 2D convolution. By looking at
the sample terrestrial-scene images, there were three features of
interest: mountains, snowcapped mountains, and sunglint
images showing sunlight reflection. After the image was edge
filtered, mountains were detectable by a high amount of blue
and green colored pixels, snowcapped mountains were
detectable by a high amount of blue, green, and red pixels, and
sunglint images were detectable by a high amount of green and
red colored pixels. The edge classifier records the average
brightness, number of pixels above a certain brightness
threshold, and color-component ratios in a log file.

2) Color-Search: The color-search application finds all
pixels in an image matching an input color and range. The red,
green, and blue component values of each pixel are compared
with the input color-component values and if the percentage
difference is under the input range, it is classified as a match.
In terrestrial-scene images, the color of the land can vary
depending on the region, with some examples shown in Fig. 6.
Aside from being able to detect certain land types, it can also
be used to detect city lights for images taken at night, and

138

specific colors representing unique cases, such as lens flare and
camera glitches.

Fig. 6. Specific classification of terrestrial-scene images

VI. CLASSIFIER TRAINING
The accuracy of the developed classifiers depends on the

calibration settings to be set properly. A classifier training
framework was built to obtain the current optimal classifier
settings and to easily adapt the classifier settings for other
missions with different cameras and lenses.

A. Image-Labeling GUI
OpenCV, which is an open-source computer-vision library,

includes a high-level GUI (HighGUI) for quickly building a
user interface without strict requirements. A classifier training
and image-labeling GUI was built with OpenCV’s HighGUI
module to train all of the classifiers concurrently while being
able to see the classifier outputs in real time, as well as, to be
able to easily navigate between images and keep track of the
calibration outputs. A labeled image of the image-labeling GUI
can be seen in Fig. 7.

On the left side of the GUI, the color and texture classifier
outputs can be seen in real time and can be adjusted using two
sliders each. The two sliders both adjust the same threshold
value and the goal is to find the minimum and maximum
threshold values that result in an acceptable output. The
purpose of this feature is to later find a best fit threshold that
satisfies the most number of images.

On the right side of the GUI, the original image can be seen
as well as the category checkboxes and the image navigator.

The category options are those that can be determined using
the edge classifier and color-search application. The original
image can be clicked to apply the color-search application
functionality using the selected pixel as an input. This feature
can be used to identify colors of interest to add to the
autonomous, image-prioritization logic.

After adjusting the sliders for the color and texture
classifiers, selecting all applicable checkboxes, and optionally
clicking the original image to apply the color-search
application functionality, the “save+next” button can be
pressed to write the filename, calibration data, and image
statistics such as average RGB component averages and other
extracted features to a log file. This process can be repeated to
rapidly label a large number of images.

Fig. 7. Image-Labeling GUI built with OpenCV’s HighGUI

B. Data Parsing and Gnuplot
After labeling the set of training images, the output log file

containing the labels is processed to obtain information to help
with classifier calibration. For the color and texture classifiers,
a threshold is selected that fits the most ranges set during
labeling. For the category checkboxes, correlations are found
between the extracted image features and the matched
categories. For the colors of interest using the color-search
application, similar colors can be combined and the rest can be
ranked and added to the image-priority calculation logic.

To help with range fitting and category correlation, the data
can be plotted with Gnuplot, a command line graphing utility
commonly available in most Linux distributions. For range
matching with the color and texture classifiers, the data for the
image labels is sorted based on the range medians before being
plotted as seen in Fig. 8. In the figure, it is visually represented
that a threshold value around 160 fits most of the ranges in the
upper left plot. This outcome means that, with a classifier
setting of 160, these test images would be satisfactorily
classified. A strictly increasing or decreasing trend in one of
the other plots signifies that the threshold could be modified by
one of the other values to result in a more uniform set of
ranges. Having ranges more uniform allows for the chosen
classifier threshold to be closer to the center of more threshold
ranges overall which means a more accurate classification
result overall. This plot shows the result after tuning thresholds
based on the color-component averages; therefore, there is no
major upward or downward trend corresponding with the
increasing threshold ranges. Nonetheless, there is still
correlation between images with narrow threshold ranges and
low color-component averages. These also correspond with

139

images with a high average brightness after applying 2D
convolution (plot in the bottom right). These correspondent
features can be used to detect images with very specific ranges.
For category correlation, a similar plot can be generated by
sorting the category match (0 or 1). The left side of all the plots
will correspond with images not matching the category while
the right side will match with images matching the category,
which allows for the user to see correlations between the
extracted image features and the category match.

Fig. 8. Image-Labeling GUI output plotted with Gnuplot

VII. EFFICIENT PROCESSING
Space-computing missions feature embedded devices with

limited resources. Therefore, minimizing computational
complexity and maximizing computational efficiency is
important to obtain results quickly and minimize power
consumption.

The image-classification and processing algorithms were
all written in ‘C’ with no external dependencies which allowed
the algorithms to be extremely efficient and portable. The most
computationally-intensive application used for the classifier
framework was 2D convolution, so this application was the
main target for acceleration.

 Several ARM processors, such as the Cortex-A9 processor
featured in the Zynq on CSPv1, includes the NEON Media
Processing Engine which provides a Single-Instruction
Multiple-Data (SIMD) instruction set for computing on large
sections of data in parallel. SIMD functions by loading NEON
registers with multiple values for calculation and applying
mathematical operations to these registers, effectively applying
them to all of the values in parallel. This decreases the amount
of time required for the calculation. This method can be used
by manually packing NEON registers in assembly code or by
using NEON intrinsic functions (function calls that the
compiler replaces with the appropriate NEON instruction, or
sequence of instructions) in ‘C’.

For this project, SIMD using NEON intrinsics was applied
to 2D convolution using 3×3 kernels. Table 2 shows execution
times for 2D convolution on a 2448×2050 image, which is the
dimension of images taken by STP-H5/CSP. The testing

platform used was the Zedboard, which uses the same System-
on-Chip (SoC) that the CSPv1 uses (Xilinx Zynq 7020). The
results showed 2x speedup achieved when using NEON q
registers (128-bit wide registers made up of two 64-bit regular
registers), which although require additional time for register
load, increases the number of elements processed per operation
from 4 to 8.

The times in Table 2 did not consider the time required for
image read and write, which took approximately 0.05s for read
and 0.16s for write. Additional time is also needed for data
deinterleaving if the camera outputs interleaved RGB.
Deinterleaving and re-interleaving the data took approximately
0.20s and 0.43s respectively.

These experiments were also conducted for grayscale
images. The output of grayscale 2D convolution for edge
detection can be just as useful as its color counterpart
depending on the application. For grayscale images, image
read and write took approximately 0.017s and 0.036s
respectively. These times and the times in Table 2 are not
limited to 3× more efficient (as would be expected) and
approach 4×. This outcome is attributed to processing one
array of data directly rather than an array of structs containing
red, green, and blue components. In order to load the NEON
registers, the grayscale data still had to be converted to 16-bit
data which took approximately 0.07s, and then 0.10s to convert
back to 8-bit data. Under these conditions, it is only more
efficient to use NEON when filtering an image more than once
and the effective speedup approaches the figures in Table 2 and
Table 3 as the number of iterations increases.

TABLE II. COLOR 2D CONVOLUTION EXECUTION TIMES

Type Execution Time (s) Speedup

Serial (without NEON) 1.21 1

NEON 64-bit registers 0.68 1.78

NEON 128-bit registers 0.51 2.37

TABLE III. GRAYSCALE 2D CONVOLUTION EXECUTION TIMES

Type Execution Time (s) Speedup

Serial (without NEON) 0.33 1

NEON 64-bit registers 0.22 1.50

NEON 128-bit registers 0.16 2.06

VIII. CONCLUSIONS
Due to severe resource restrictions on CubeSats and other

small spacecraft, it is critical that applications strive to be
efficient, lightweight, and portable. This paper presents an
application library that is designed with these key attributes
under consideration. By focusing on necessary functionality
(e.g., simple classifier algorithms and static convolution filter
sizes), application acceleration and portability considerations
are reduced in complexity.

This paper also presents a classifier training framework to
complement the image applications. A flexible framework is
essential in facilitating the use of these applications when

140

transitioning to future missions and other cameras. By
employing these applications, images on CSPv1 on the
International Space Station can be analyzed and subsequently
deleted or prioritized for download autonomously, thereby
minimizing onboard non-volatile memory usage and increasing
the quality of images received. This feature is desirable and
essential for sustained mission operation because of the
inherent complexity in sending commands to the CSPv1
operating through the ISS operation center.

ACKNOWLEDGMENTS
This research was funded by industry and government

members of the NSF CHREC center, and the National Science
Foundation I/UCRC Program under Grant No. IIP-1161022.
The authors would like to thank Tom Flatley, branch head of
NASA Goddard’s Science Data Processing Branch, for
providing the large suite of reference images from STP-
H4/ISE2.0 to use as a training and example dataset.

REFERENCES
[1] K. LaBel, “Radiation Effects on Electronics 101: Simple Concepts and

New Challenges,” NASA Electronics Parts and Packaging Program,
Apr. 21, 2004.

[2] National Academies of Sciences, Engineering, and Medicine,
“Achieving Science with CubeSats: Thinking Inside the Box,” The
National Academies Press, Washington, DC, 2016.

[3] S. Waydo, D. Henry, and M. Campbell, “CubeSat Design for LEO-
Based Earth Science Missions,” IEEE Aerospace Conference, Big Sky,
MT, Mar. 9-16 2002.

[4] M. A. Swartwout, "CubeSats and Mission Success: A Look at the
Numbers", 2016 CubeSat Developers Workshop, San Luis Obispo,
April 2016.

[5] T. Parece, J. Campbell, and J. McGee, Remote Sensing Analysis in an
ArcMap Environment, Blacksburg, VA: VAView, 2015.

[6] D. Rudolph, C. Wilson, J. Stewart, P. Gauvin, G. Crum, A. D. George,
M. Wirthlin, and H. Lam. 2014. CSP: A multifaceted hybrid system for
space computing. In Proceedings of the 28th Annual AIAA/USU
Conference on Small Satellites, Logan, UT, Aug. 2-7, 2014.

[7] E. Sims, “The Department of Defense Space Test Program: Come Fly
with Us,” IEEE Aerospace Conference, March 2009.

[8] C. Wilson, A. George, et al., “CSP Hybrid Space Computing for STP-
H5/ISEM on ISS”, Proc. of AIAA/USU Conference on Small Satellites
(SmallSat), Logan, UT, Aug. 8-13, 2015.

[9] A. Schmidt, M. French, and T. Flatley, “Radiation hardening by
software techniques on FPGAs: Flight experiment evaluation and
results,” IEEE Aerospace Conference, Big Sky, MT, Mar. 4-11, 2017.

[10] S. Chien, J. Doubleday, D. Thompson, K. Wagstaff, J. Bellardo, C.
Francis, E. Baumgarten, A. Williams, Edmund Yee, D. Fluitt, E.
Stanton, J. Piug-Suari, Onboard Autonomy on the Intelligent Payload
EXperiment (IPEX) Cubesat Mission: A pathfinder for the proposed
HyspIRI Mission Intelligent Payload Module, Proc 12th International
Symposium in Artificial Intelligence, Robotics and Automation in
Space, Montreal, Canada.

[11] J. Doubleday, S. Chien, C. Norton, K. Wagstaff, D. Thompson, J.
Bellardo, C. Francis and E. Baumgarten, "Autonomy for remote sensing
- Experiences from the IPEX CubeSat", 2015 IEEE International
Geoscience and Remote Sensing Symposium (IGARSS), 2015.

[12] J.M. Gashayija and A. Bierman, “Development of Nanosatellite based
Image Retrieval System”, International Journal of Computer
Applications, vol. 99-No.11, pp. 25-31, Aug. 2014.

141

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

