National Science Foundation's

-NSF

Industry/University Cooperative Research (I/UCRC) Program

B1-24: Fault-Tolerant Techniques for Heterogenous Computing Architectures

Dr. Mike Wirthlin & Dr. Jeff Goeders

Nathan Baker, MS Tyler Ricks, MS <u>Garrett Smith, BS</u> Jacob Brown, BS Ethan Campbell, BS <u>Zach Driskill, BS</u> Julia Hansen, BS <u>Caleb Price, BS</u> Sam VanDenBerghe, BS Rami Arafah, BS <u>Collin Lambert, BS</u>

Number of requested memberships ≥ 4

B1

Project Tasks

Task 1: Versal ACAP Reliability

Task 3: High Performance Memory Reliability

Task 2: Reliable Deep Learning

Task 4: Radiation Testing of Heterogenous Devices

Task 1 – Versal ACAP Reliability

- AMD announced plans for Versal ACAP devices for space and military applications (XQR Versal)
 - Machine Learning Inference
 - On-board data processing
 - High-speed I/O interfaces
- Support reliability of Versal ACAP Platform
 - Provide documentation and member support for Versal
 - Support scrubbing modes
 - Versal SMAP scrubber
 - XilSEM scrubbing
 - Fault tolerant firmware
 - Support XRTC Versal radiation testing

	XQRVC1902	XQRVE2302
AI Engines	100	17
DSPs	1,968	464
Logic Cells (K)	1,968	329
DDR Controllers	4	1
PL Memory (Mb)	191	86
Gigabit Tx/Rx	44	8

Dual core A72, Dual core R5F, 256 KB OCM

Task 1: Versal ACAP Reliability 3

Fault Tolerant Versal PLM Firmware

- Versal PLM firmware essential to Versal reliability
 - Failures in PPU/PLM will bring down entire system
 - Fault tolerance features must be enabled and tested
- Versal Firmware Enhancements
 - Active scrubbing of PPU and PLM RAM and registers
 - Improved XilSEM scrubbing (SEFI handling)
 - Watchdog management of key PMC functions
 - Fault tolerant PSM firmware (using PPU approach)
- Fault Tolerant Linux for Versal
 - Integrate enhanced Versal firmware into Linux image
 - Provide Linux hooks to support reliability features
 - PL CRAM scrubbing and logging
 - Priority memory scrubbing

Versal PMC

- Booting
- Security
- Configuration
- Scrubbing

Firmware stack

- Scrubbing
- Memory ECC
- Watchdog

4

Versal JCM and Scrubbing Support

- Improved SMAP JCM scrubbing
 - Scrubbing of SMAP/SBI registers
 - Support PLM SMAP timeout and recovery
 - Improve SMAP operating speed
- JCM support for Versal DAP port access
 - Extract processor state much quicker than SmartLyngs
 - Efficient Versal memory extraction essential for radiation testing
 - Read internal memory, processor registers, and PLM state
 - Implement AMD/Xilinx "Hardware Server" in JCM
- High-seed PCIe Scrubbing
 - Perform PCIe scrubbing in bare metal on PolarFire
 - Previously required Linux on PolarFire
 - Integrate PCIe scrubbing on Versal XRTC board

Task 1: Versal ACAP Reliability

Task 2 - Reliable Deep Learning

In 2023 we began exploring using the Versal ACAP devices with AI Engines to run machine learning benchmarks. This year:

- Experiment with different DPU configurations
 - DPUCVDX8G has several parameters to determine utilization of AI engines and other hardware resources
 - Evaluate the effect of DPU configurations on throughput and latency of several Yolo models
- Fault Injection & Radiation testing
 - Investigate whether faults can be injected directly into AI engines
 - Use fault injection to investigate the impact on deep learning behaviors
 - Measure the impact to YOLO prediction accuracy
- Investigate custom HDL implementation of YOLO
 - So far we have been using Xilinx/AMD's DPU, which is a configurable hardware IP.
 - We plan to investigate whether we can obtain better performance with a custom hardware design.
- Generate predictions from live camera feed
 - To date, we have been running on static images in memory
 - Creating a full system with a live feed will allow us to perform reliability experiments on a more complete system.

Bare Metal Al-Engine Designs

Goal: Create bare-metal designs that generate AI-engine traffic

- Provides more fine-tuned control over the AI Engines
- Useful for radiation testing

Approach:

- Incorporate AI Engines into designs with PL and ARM cores
- Use bare metal C/C++ toolchain in Vitis
- HLS is used for hardware kernels in the PL
- Generate designs with various access patterns, throughput, and latency.
- Data can be chained through multiple AI engines to create complex data movement patterns.

We have started testing small designs, and are working to scale to larger systems.

 Example: On the right is a set of two identical and parallel designs, each consisting of a hardware kernel (*pink*) and resources from 8 AI Engines (*blue*). Visuals generated by Vitis Analyzer.

Task 2: Reliable Deep Learning

B1

Task 3 – HBM Reliability and Performance

In 2023 we focused on techniques to warm up HBM FPGAs to use them in below freezing environments. This year:

- 1. Continue exploring HBM in harsh environments
 - Investigate data integrity at different temperatures
- 2. Benchmarking FPGA HBM performance
 - Investigate performance at different clock rates, sequential vs random accesses, access patterns through the crossbar, in the presence of contention, etc.
 - Test with benchmark applications
- Investigate HBM reliability
 - Perform fault injection on FPGA HBM controller
 - Radiation testing with high-throughput HBM benchmark
 - Capture error rates of HBM
 - Investigate impact of basic parameters (traffic level, number of channels used, etc)
 - Determine whether failure modes observed during fault injection are reproduced in radiation beam

Task 4 – Radiation Testing

- Radiation testing necessary for understanding complex device failures
 - Identify failure mechanisms and single-event functional interrupts
 - Measure improvement of fault tolerant techniques
- Novel radiation testing methodologies needed for complex heterogeneous devices
 - High-flux testing approaches
 - Simultaneous device testing strategies
 - Low cross-section technologies
- Dedicated tests for Versal
 - Improved Versal firmware
 - Versal AI bare metal testing
 - Linux Versal

Task 4: Radiation Testing

Complex Device Testing Strategies

- High-Flux Processor Testing
 - High-flux testing distorts reliability of "mitigated" systems
 - Relationship between failure rate and flux increases non-linearly
 - Mitigated systems with "repair" have flux limits
 - Increased "repair" rate needed for processor testing
 - High memory scrub rate
 - Fast TMR recovery approaches
- Parallel System Component Testing
 - Complex device have many components requiring testing
 - Multiple components need to be tested simultaneously
 - Processors, Programmable Logic, Al Engines, etc.
- Post Radiation Fault Injection
 - Extract additional information from radiation test through "replay"
 - Compare fault injection "replay" with test behavior

Task 4: Radiation Testing

Versal Radiation Test Experiments

- Versal Firmware Test
 - PLM memory scrubbing
 - Reduce/eliminate PPU hang/failures
 - Facilitate failure recovery
 - PLM Watchdog recovery testing
 - XilSEM "unrecoverable error" recovery
- Versal Processor Testing
 - Active on-chip memory scrubbing
 - DAP controller failure analysis
 - Reliable Linux testing
- Component Testing
 - Al engine reliability
 - NOC reliability
 - DDR controller reliability

Task 4: Radiation Testing

Anticipated Radiation Test Experiments

- Berkeley National Laboratory (Heavy Ion)
 - Versal Reliability (multiple components tested)
 - F/T PLM Firmware, F/T Processor support
 - Al engine reliability, NOC reliability
 - High-flux processor testing methodologies
 - Anticipated date: February (likely others)
- ChipIR, UK (Neutron)
 - HBM controller reliability
 - Versal Neutron testing
 - Processor testing methodologies
 - Post-radiation fault injection
 - Anticipated date: June (pending proposal)

Task 4: Radiation Testing

Lawrence Berkeley National Laboratory

Questions?

