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Abstract—Approximate pattern matching (APM) has been
widely used in big data applications, e.g., genome data analysis,
speech recognition, fraud detection, computer vision, etc. Al-
though an automata-based approach is an efficient way to realize
APM, the inherent sequentiality of automata deters its implemen-
tation on general-purpose parallel platforms, e.g., multicore CPUs
and many-core GPUs. Recently, however, Micron has proposed
its Automata Processor (AP), a processing-in-memory (PIM)
architecture dedicated for non-deterministic automata (NFA)
simulation. It has nominally achieved thousands-fold speedup
over a multicore CPU for many big data applications. Alas, the
AP ecosystem suffers from two major problems. First, the current
APIs of AP require manual manipulations of all computational
elements. Second, multiple rounds of time-consuming compilation
are needed for large datasets. Both problems hinder programmer
productivity and end-to-end performance.

Therefore, we propose a paradigm-based approach to hierar-
chically generate automata on AP and use this approach to create
Robotomata, a framework for APM on AP. By taking in the
following inputs — the types of APM paradigms, desired pattern
length, and allowed number of errors as input — our framework
can generate the optimized APM-automata codes on AP, so as
to improve programmer productivity. The generated codes can
also maximize the reuse of pre-compiled macros and significantly
reduce the time for reconfiguration. We evaluate Robotomata by
comparing it to two state-of-the-art APM implementations on AP
with real-world datasets. Our experimental results show that our
generated codes can achieve up to 30.5x and 12.8x speedup with
respect to configuration while maintaining the computational
performance. Compared to the counterparts on CPU, our codes
achieve up to 393x overall speedup, even when including the
reconfiguration costs. We highlight the importance of counting
the configuration time towards the overall performance on
AP, which would provide better insight in identifying essential
hardware features, specifically for large-scale problem sizes.

Keywords-Approximate Pattern Matching; Nondeterministic
Finite Automata; Automata Processor

I. INTRODUCTION

Approximate pattern matching (APM), also known as fuzzy
search, is essential to many applications, e.g., genome data
analysis, speech recognition, fraud detection, etc. It gets more
attentions in big data era since it is the key to retrieve
information from a sea of dirty data, where data is not only
dynamic and high volume but with human errors. An typical
example is the Google search. Our inputs may frequently have
misspelled or abbreviated words, and the search engine has to
locate the strings approximately. One solution is to index data
to support fuzzy search like Google does [1]. But it demands a
huge cost to prepare data in a database that is barely affordable

to most businesses. Automata-based mechanism is another
solution for the online APM search. It uses Finite Automata
(FA) as the core and has much less time and space complexity
of data preprocessing than the index-based method [2]. On the
other hand, FA is inherently sequential [3], hence extremely
hard to be parallelized on HPC platforms to achieve the fast
speed.

Recently, a new hardware Automata Processor (AP) [4] is
introduced by Micron for the non-deterministic FA (NFA) sim-
ulations. AP can perform parallel automata processing within
memory arrays on SDRAM dies by leveraging memory cells
to store trigger symbols and simulate NFA state transitions.
However, it requires programmers to manipulate computa-
tional elements, called State Transition Elements (STEs), and
inter-connections between them with a low-level language, i.e.,
Automata Network Markup Language (ANML). Although AP
SDK provides some high-level APIs for some kinds of applica-
tions, e.g., regular expression [5] and string matching [6], the
lack of customizable capability would force users to resort to
ANML for their own applications. Programming on AP is still
a cumbersome task, requiring considerable developer expertise
on both automata theory and AP architecture.

A more severe problem is the scalability. For reconfigurable
devices like AP, a series of costly processes are needed
to generate the load-ready binary images. These processes
include synthesis, map, place-&-route, post-route physical
optimizations, etc., leading to the non-negligible configuration
time. For a large-scale problem, the situation becomes worse
because the multi-round reconfiguration might be involved.
Most previous research on AP [7], [8], [9], [10], [11], [12],
[13], [14] ignores and excludes the configuration cost and
focuses on the computation. Although these studies reported
hundreds or even thousands of fold speedups over multicore
CPUs, the end-to-end time comparison, including configura-
tion and computation, is not well understood.

We believe a fair comparison has to involve the configura-
tion time, especially when the problem size is extremely large
and exceeds the capacity of a single AP board. In such a case,
the overhead of configuration could be very high for three
reasons: (1) A large-scale problem may need multiple rounds
of binary image load and flush. (2) Once a new binary image
is generated, it will use a full compilation process, which time
is as high as several hours. (3) During these processes, the AP
device is forced to stall in an idle status and wait for the new
images. Therefore, we highlight the importance of counting
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the reconfiguration time towards the overall performance on
AP, which would provide a better angle for researchers and
developers to identify essential hardware architecture features.
For example, the claimed speedups of AP-based DNA string
search [15] and motif search [8] can get up to 3978x and
201x speedups over their CPU counterparts, respectively. In
contrast, if their pattern sets scale out and the reconfiguration
overhead is included, the speedups are reported down to 3.8x
and 24.7x [16].

In this paper, we propose a hierarchical approach to build
application automata on AP to improve the programming
productivity and performance. Specifically, our approach in-
cludes four steps: First, we identify the basic paradigms of
an application and map them to a building block. Second, we
connect building blocks with an inter-block transition connect-
ing algorithm. Third, we extend a group of building blocks to
a cascadable AP macro by adding and merging input/output
ports. Fourth, we generate the automata codes on AP with a
macro-based construction algorithm. We use this approach to
develop a framework, Robotomata, for Approximate Pattern
Matching (APM) applications. Robotomata takes the types of
paradigms, pattern length, and allowed errors as input, and
generates the optimized ANML codes as output, so as to
improve the programming productivity. Our generated codes
can also maximize the reuse of pre-compiled macros, and
thus significantly reduce the reconfiguration time. We evaluate
Robotomata by comparing to two state-of-the-art approaches:
ANML APIs [17] and FU [18] with the real-world datasets.
The results show that our generated codes can achieve up to
39.6x and 17.5x speedup in the configuration and deliver the
performance closed to the manually-optimized implementa-
tion. Compared to the counterparts on the multicore CPU, our
codes can achieve up to 461x speedup, even including the
multi-round reconfiguration costs. The major contributions of
this paper include:

• We reveal the problems of programmability and perfor-
mance on Micron AP, especially the reconfiguration cost
for large-scale problem size.

• We use a hierarchical approach and a framework to gen-
erate optimized low-level codes for Approximate Pattern
Matching applications on AP.

• We evaluate the framework by comparing to state-of-
the-art research with the real-world datasets. The ex-
perimental results illustrate the improved programming
productivity and significantly reduced configuration time
in our method.

II. BACKGROUND AND MOTIVATIONS

A. Automata Processors

AP Architecture Overview: Micron’s AP is a DRAM-
based reconfigurable device dedicated for NFA traversal sim-
ulations. Its computational resources consist of three major
programmable components: STEs, Counters, and Boolean
gates. The STEs provide the capability of massive parallelism.
Each STE includes a memory cell and a next-state decoder to

simulate a NFA state with trigger symbols, i.e., 256-bit masks
for ASCII characters. The connections between STEs simulate
NFA state transitions, implemented by a programmable routing
matrix. In a cycle, all active STEs simultaneously compare
their trigger symbols to the input character, and those hit STEs
activate all their destination STEs via activation signals emitted
by next-state decoders. The counters and boolean gates are
special-purpose elements to extend the capacity of AP chips
beyond classical NFAs.

The current generation of AP board (AP-D480) contains
32 chips organized into 4 ranks. Two half-cores reside in an
AP chip, which includes a total 49,152 STEs, 768 counters,
and 2,304 boolean gates. These programmable elements are
organized as following: two STEs and one special-purpose
element (a counter or boolean gate) form a group; 8 groups
form a row; 16 rows form a block; and eventually, 192 blocks
are evenly distributed into the two half-cores.

AP Programming and Pre-compiling: ANML is a XML-
based language for programming on AP. Developers can define
their AP automata in ANML by describing the layout of
programmable elements, e.g., STEs and transitions. An AP
toolchain can parse such an ANML program and compile it
to binary images. At runtime, after the AP board loads a binary
image, it starts to search given patterns against input streams
of 8-bit characters by nominally processing one character per
clock cycle at the 133 MHz frequency. AP reports the events
to the host, if matches are detected.

Analogous to other reconfigurable devices, AP compilation
is a time-consuming process due to the complex place-&-route
calculations. To mitigate the overhead of compilation, the AP
SDK supports the pre-compile of automata as macros and
reuse macros to build larger automata in the future. That way,
any subsequent automata having existing macros can be built
directly on them with a lightweight relabeling, i.e., changing
trigger symbols as demand. This can avoid the recompilation
from the ground up.

B. Motivations of This Work

Embarrassingly Sequential: Finite State Automata is
known as one of the “embarrassingly sequential” applica-
tions [3]. Two major reasons make them difficult to be paral-
lelized. First, there are tight data dependences between con-
secutive steps. Second, the access patterns are input-dependent
and unpredictable [19]. There are a lot of studies refactoring
and optimizing the automata on CPUs and GPUs [19], [20],
[21], [22]; however, as Tab. I shows, their achievements [23],
[24], [25] are still far below the full or even typical throughput
and utilization of the hardware [26], [27], [28], [29], [30], [31],
[32], [33], [34], [35]. This is a major reason why we consider
to use the new AP hardware.

TABLE I: FA traversal throughput (Gbps)

Devices Model Full capacity FA throughput
CPU Intel X5650 ⇠ 260 ⇠ 2.4 [19]
GPU NVIDIA GTX480 ⇠ 1.4k ⇠ 0.3 [36]
FPGA Virtex-6 family ⇠ 600 ⇠ 20 [24]
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Fig. 1: A simple case of AP automaton.

Reconfiguration Issues on AP: For a large-scale problem
size which exceeds the capacity of a single AP board, multi-
round configurations are required. For example, the alua
dataset used in Bioinformatics sequence search requires 20
rounds of reconfiguration. As shown in Sec. V, a single-round
takes as high as 130 seconds, and around 2600 seconds should
be spent on the reconfiguring in total. Obviously, excluding
such cost leads to unfair performance comparison between
AP and counterpart platforms. Although AP SDK provides the
pre-compiling technique to alleviate the overhead of reconfig-
uration, it is restricted to handle an exactly same automaton
structure with a pre-compiled macro. If the structure changes, a
full compilation process is still required. For example, the pre-
compiled macros unfortunately would fall short from reducing
the cost of aforementioned Bioinformatics case, because the
change of the pattern lengths leads to various automata struc-
tures. Hence, a new approach is of great necessity to help
users fully explore the AP capacity, by maximizing the reuse
of existing macros even if automata structures differ.

Programmability Issues on AP: Fig. 1 shows an example
of Approximate Pattern Matching, which searches the pattern
“abc” and allows one error at most. The STEs take characters
“a”, “b”, “c”, and “*” as the input symbols. Such a simple
automaton surprisingly needs 44 lines of ANML code to be
constructed: developers need to create an element for each
STE and define its attributes, and then transform the errors
to edges between STEs. Both the expertises of Approximate
Pattern Matching and ANML programming model of AP are
required. Furthermore, if the pre-compiling technique is used
to optimize the configuration, the case will become more
complicated and error-prone.

III. PARADIGMS AND BUILDING BLOCKS IN APM

In this section, we start from the manual implementation and
optimization of mapping APM on AP to further illustrate the
complexity of using ANML. Then, we identify the paradigms
in APM applications, organize paradigms to a building block,
and then discuss the inter-block transition connecting mecha-
nism to construct automata from blocks.

A. Approximate Pattern Matching on AP

APM is to find the strings matching a pattern with limited
number of errors (insertion, deletion, and substitution). There
are four most common distance types allowing various subsets
of the errors, including Levenshtein, Hamming, Episode, and
Longest Common Subsequence [2]. Because the Levenshtein
Distance (aka. edit distance) allows all three kinds of APM
errors, we use it to discuss our design. Fig. 2 shows an
automaton with the edit distance that detects the pattern

“object” and allows up to two errors. The "-transitions allow
the traverse reaching destination states immediately without
consuming any input character in Levenshtein automaton. The
⇤-transitions allow the traverse to be triggered by any input
character. In this case, an asterisk-transition represents an
insertion or substitution when the traverse goes vertically or
diagonally. We apply two optimizations [37] on the Leven-
shtein automata to reduce the usage of STEs by skipping the
states above the first full diagonal and below the last full
diagonal (i.e. the two dotted triangles A and B in Fig. 2).
They are important for mapping the Levenshtein automata on
AP, considering the limited numbers of STEs of AP.

We then map the optimized automaton onto AP using
ANML. The automaton in Fig. 2 will be transformed to the
recognizable format on AP, as shown in Fig. 3. Two major
problems have to be resolved in the mapping. First, the ANML
programming model requires moving NFA trigger-character
associations from transitions to states, because it can’t support
multiple outgoing transitions with different character sets from
a single state, e.g. the transitions s2 !s3, s2!s9, and s2!s10
in Fig. 2. The solution is to split a state to multiple STEs. For
example, the state s2 in Fig. 2 is split to STE1 with the trigger
character o, and the auxiliary STE2 with an asterisk. The
second problem is that AP hardware can’t reach the destination
states in the current clock-cycle, leading to the lack of support
to "-transitions. The alternative is to add a transition from a
source STE to its upper-diagonal adjacent STE. For example,
the "-transition from s2 to s10 in Fig. 2 is transformed to
the transition from STE1 to STE8 in Fig. 3. With these two
transformations, the Levenshtein automaton in Fig. 3 can be
described in ANML and mapped on AP.

B. Paradigms and Blocks Construction

The transformation of Levenshtein automata illustrates pro-
gramming with ANML requires advanced knowledge of both
automata and AP architecture. Any parameter change, e.g.,
the pattern length, error type, max error number, etc., may
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Fig. 2: Levenshtein automaton for pattern “object”, allowing up to two errors.
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Fig. 4: (a) Four paradigms in APM applications. (b) A building block for
Levenshtein automata having all four paradigms.

TABLE II: Paradigm sets for common distances

Distance Paradigm
Levenshtein M, S, I, D
Hamming M, S
Episode M, I

Longest Common Subsequence M, I, D

lead to the code adjustment with tedious programming efforts.
Hence, we introduce a hierarchical approach: it first exploits
the paradigms of applications to form building blocks, then
constructs block matrix and adds inter-block connections.

Paradigms and Building Blocks: APM has three types of
errors: insertion, deletion, and substitution (denoted as I, D,
and S). These three kinds of errors with the match, denoted as
M, can be treated as the paradigms of any APM problem.
They can be represented in an AP recognizable format as
shown in Fig. 4a. An APM automaton takes one or more
paradigms depending on the distance type as shown in Tab. II.
For the Levenshtein automata that can take all three error
types, a building block including two STEs and four types of
transitions is shown in Fig. 4b. The STE with the asterisk is
the design alternative to support multiple outgoing transitions
with different character sets.

Block Matrix: With the building block, once the length of
desired pattern n and the maximum number of errors m are
given, building an AP automaton can be simplified to duplicate
building blocks by organizing them into a (m + 1) ⇤ (n �
m) block matrix. The m rows correspond to the number of
allowed errors (row 0 is for the exact match), and the (n�m)
columns correspond to the pattern length (cutting down m is
from the optimizations discussed in Sec. III-A). For example,
a Levenshtein automaton allowing up to two errors for the
pattern “object” having 6 characters can be built to have (2+
1) ⇤ (6� 2) = 12 blocks by organizing them to a 3 ⇤ 4 block
matrix as shown in Fig. 3.

Inter-Block connections: The cross-row transitions be-
tween building blocks are demanded to handle consecutive
errors. Three paradigms of errors: I, D, and S can result in 9
two-consecutive-error pairs in the Levenshtein automata. Since
the order of errors doesn’t affect the matching results and some
pairs are functionally equivalent (e.g. DI and ID are equal to
a single S), we discuss five distinguished pairs: SS, II, DD,
SI, and SD.

Fig. 5 is a part of Levenshtein automaton in Fig. 3
with added inter-block transitions. We denote two STEs
in a block with the exact character and the asterisk
as Bi,j .c and Bi,j .a, respectively. The inter-block transi-
tion have two attributes: direction (upward, forward, and
backward) and STE-pair type (character!asterisk(c!a),
asterisk!character(a!c), character!character(c!c), and
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Fig. 5: Inter-block transition connection mechanism for two-consecutive
errors: The right part shows five cases we consider. The left part shows a
part of Levenshtein automata having six blocks and corresponding inter-block
connections.

TABLE III: Inter-block transitions connecting rules

Paradigm Transition STE ConnectionAttributes
M None
SS/SI upward

a!a
Bi,j .a!Bi+1,j .a

II backward
a!a

Bi,j .a!Bi+1,j�1.a

DD forward for k=2 to m:
c!c Bi,j .c!Bi+k,j+1.c

SD forward for k=2 to m:
a!c Bi,j .a!Bi+k,j+1.c

asterisk!asterisk(a!a)). Some combinations of these two
attributes are invalid or functionally duplicated; as shown in
Fig. 5, only four combinations are needed: forward a!c),
forward c!c, upward a!a, and backward a!a; they can
cover all five cases of two-consecutive errors. Note that the
inter-block transitions with asterisks as the destination are
always for two different cases, because the traverse cannot
stop at an asterisk. Tab. III summarizes the rules of adding
inter-block transitions for two-consecutive errors. Any case
having more than two consecutive errors can be handled as a
combination of two-consecutive errors without any additional
transitions.

IV. FRAMEWORK DESIGN

In this section, we introduce our formalized building blocks
and macros to build automata. Then, we present the complete
framework–Robotomata that can automatically generate au-
tomata in an optimized way (i.e., from reusable macros) to
reduce the recompilation overhead.

A. From Building Blocks to Automata
Alg. 1 presents how to build automata on AP from building

blocks. This algorithm accepts the types of paradigms, desired
pattern length, and maximum number of allowed errors. Then,
it can automatically fabricate complex AP automata. Note that
this process is independent with specific APM applications
so that it can work for any type of distances with paradigm
combinations, as shown in Tab. II.

In Alg. 1, we use classes of BuildingBlock (ln. 4)
and Automation (ln. 3) to represent building blocks and
AP automata, respectively. First, we create the building
blocks via ln. 5-6, where the member function add() in
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BuildingBlock places and connects STEs following the
rules depicted in Fig. 4b. Second, we build up the automaton
with the block matrix determined by maximum error (m) and
target pattern length (n) (ln. 7-8). After duplicating the blocks
to fill the dimensions in ln. 9, we weave them together through
the ADD_TRANSITIONS() to add inter-block transitions
defined in Sec. III-B. Third, the starting and reporting STEs are
set in ln. 13 and all STEs are labels in ln. 22-24. To this point,
an AP automaton is constructed and ready to be compiled to
a binary image. Note that the macro-based optimization in
ln. 14-21 is an optional process, which will be discussed in
Sec. IV-B and Sec. IV-C.

Algorithm 1: Paradigm-based AP Automata Construction

/* Alg 1 constructs the automaton from basic building
blocks, based on the user-defined paradigm sets,
target pattern, and max error number. */

1 CasMacroLib lib ; // Cascadable macro library
2 Procedure PRDM Atma Con (ParadigmSet ps, Pattern pat, int err num)
3 Automaton atma;
4 BuildingBlock block;
5 for Paradigm p in ps do
6 block.add(p);
7 int m = err num, n = pat.length;
8 atma.row num = m + 1; atma.col num = n - m;
9 atma � block.duplicate(m⇥n);

10 for int i  0 to m + 1 do
11 for int j  0 to n - m do
12 ADD TRANSITIONS(atma, i,j, ps);
13 atma.set start(); atma.set report();
14 #ifdef ENABLE MACRO /* Cascadable macro constr. */
15 CasMacro cmacro;
16 for Paradigm p in ps do
17 ADD PORTS(atma, p);
18 MERGE PORTS(atma);
19 cmacro � AP CompileMacros(atma);
20 lib.add(cmacro);
21 #endif
22 for int i  0 to m + 1 do
23 for int j  0 to n - m do
24 atma.re label(i, j, pat.c(j+i));
25 return atma;

B. Design Cascadable Macros

Besides the execution time, AP has overhead for the time-
consuming recompilation including the place-&-route pro-
cess [16]. The pre-compiling technique can build macros in
advance to hide such overhead; however, it has quite limited
usage. For example, we assume the AP automaton in Fig. 3
(for the pattern “object”, allowing up to 2 errors) is pre-
compiled as a macro M1 with all STEs parameterized. For
any new patterns with the same number of characters and
maximum errors, e.g., “gadget” and up to 2 errors, we can
reuse M1 by relabeling STEs. However, an recompilation is
inevitable if any of these requirements is not met. Thus, the
pattern “gadgets” with up to 2 errors or “gadget” with up to 3
errors would all fail to directly take advantage of this macro
M1.

In the Robotomata, we propose cascadable macros to
support reuse of macros for large-scaled AP automata. In
particular, we connect one or more macro instances to
compose a larger and different AP automaton through our
carefully-designed interconnection algorithm. With the cascad-
able macros, the overhead of reconfiguration can be signifi-

cantly reduced, since only the connections between instances
need to be placed-&-routed. Our method generates the desired
automata by connecting macros if the target block matrix
can be composed by multiple smaller block matrices. For
example, the AP automata in Fig. 3 is stored as a cascadable
macro M2 having a (3 ⇤ 4) block matrix. Assume we will
build an automata for a larger pattern “international” with 13
characters and up to 5 errors. The target block matrix is a
(5 + 1) ⇤ (13� 5) = 6 ⇤ 8 matrix, and thus, the AP automata
can be built by connecting 4 M2 macro instances.

Builidng Cascadable Macros: The first step to create
cascadable macros is to add input/output ports. The optimal
design of adding ports should minimize (1) the number of total
ports, and (2) the in-degree of each input port, because both
the number of ports and the number of signals that go into an
input port are limited in AP hardware [38]. We define the port
struct that has three attributes:

• Port role identifies the port is used to either input or
output signals (in=input, out=output).

• Cascade direction indicates the direction of allowed
cascade, and the side of two paired macros (h=horizontal,
v=vertical, d=diagonal, ad=anti-diagonal).

• Transition scope represents whether connections can
cross the edges of neighboring macro to link non-adjacent
STEs (e=edge of neighbors, ce=cross-edge of neighbors,
e/ce=both).

As mentioned in the previous section, multiple consecutive
errors can be generated from two-consecutive errors. There-
fore, we use Tab. IV to list out all STE$port connection rules
in an AP automata having (m + 1) ⇤ (n � m) block matrix
(corresponding to m errors at most and n pattern length). A
building block is represented by Bi,j . The input/output ports
always appear in pairs, representing the two sides of each
connection. The STE$port connections can be categorized
into two groups. The first one is the one-to-one connection.
This category is relatively straightforward: for example, for
the paradigm Match, the output of one macro can be the
input of the following macro, and one character can only
be connected to the following character in the given pattern.
Therefore, the Robotomata adds the input and output ports to
the exact-character STEs of blocks in the first column (Bi,0.c)
and last column (Bi,n�1.c), respectively. The rule is shown in
the table as Iy ! Bi,0.c and Bi,n�1.c ! Ox. The second
group is the N-to-one connection. To meet the ANML macro
building requirements and optimize the port usage [38], we
introduce or Boolean gates to this category. For example, in
the case of the fifth port design of paradigm Insert, rather than
adding a new port as Bk,0.a ! Ox for each row k, we use
an or Boolean gate to allow a combination of connections as
Bk,0.a ! or ! Ox, so as to reduce the number of used port
to be only one. This design also bypasses a restriction of AP
routing, i.e., no more than one transition is allowed to directly
go to a single output port [38].

In the final step of the port design for a macro, we search
for and merge the ports with inclusive STE$port connections.
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Fig. 6: Port design layout for a three layers four columns macro.

TABLE IV: Port design rules according to paradigm

Paradigm Port Attribute STE$port ConnectionDir. Scope Role

M h e out Bi,n�m.c!Ox
h e in Iy!Bi,0.c

S, SS/SI

v e out Bm+1,j�1.a!Ox; Bm+1,j .a!Ox
v e in Iy!B0,j+1.c; Iy!B0,j .a
d e out Bm+1,n�m.a!Ox
d e in Iy!B0,0.c
h e out Bi,n�m.a!Ox
h e in Iy!Bi,0.c

I, II

v e out Bm+1,j .a!Ox; Bm+1,j+1.a!Ox
v e in Iy!B0,j .c; Iy!B0,j�1.a
ad e out Bm+1,0.a!Ox
ad e in Iy!B0,n�m.a
h e out for k=0 to i� 1

Bk,0.a!or!Ox
h e in Iy!Bi+1,n�m.a

D, DD

v e/ce out for k=0 to m+ 1
Bk,j�1.c!or!Ox

v e/ce in for k=0 to m+ 1
Iy!Bk,j+1.c

d e/ce out for k=0 to m+ 1
Bk,n�m.c!or!Ox

d e/ce in Iy!Bi,0.c
h e out for k=0 to i� 1

Bk,n�m.c!or!Ox
h e in Iy!Bi+1,0.c

SD

v e/ce out for k=0 to m+ 1
(Bk,j�1.c,Bk,j�1.a)!or!Ox

v e/ce in for k=0 to m+ 1
Iy!Bk,j+1.c

d e/ce out for k=0 to m+ 1
(Bk,n�m.c,Bk,n�m.a)!or!Ox

d e/ce in Iy!Bi,0.c

Then, the attribute sets of merged port equal to the union of
all participant ports. This can further optimize the port usage.
The procedure of constructing cascadable macros is integrated
into Alg. 1 from ln. 14 to ln. 21. Two predefined functions are
implemented: (1) ADD_PORTS() adds input/output ports to
given automata based on each paradigm (ln. 16-17), followed
by STE$port connections as described in Tab. IV; and (2)
MERGE_PORTS() optimizes the ports layout by merging
equivalent and inclusive ports (ln. 18). Fig. 6 exhibits the
completed ports layout for the cascadable macro M2

1.

C. Cascadable Macro based Construction Algorithm

After the pre-compilation, the cascadable macros are in-
serted into a macro library for reuse (ln. 19-20). In our current

1Transitions between STEs inside a macro are skipped to highlight the port
connections.

design, the library contains macros whose pattern lengths
(columns) are in three groups of {1,2, ..., 9} {10, 20, ..., 90}
{100, 200, ..., 900} with each one allowing up to 3 errors
(layers). The reasons of choosing these 27⇥3 = 81 macros are
two-fold: (1) It is inefficient and even impractical to save all
possible situations for different combinations of pattern sizes
and errors. (2) Many real-world cases focus on pattern sizes
<1000 characters and errors 63 (see Sec. V). For the rare
cases with longer patterns or larger error allowance, we can
handle them by using more macro instances.

Based on the cascadable macro library, we can effectively
reduce the construction and compilation overhead and effi-
ciently build AP automata. Alg. 2 shows our macro-based
AP automata construction. In this algorithm, we search the
library for a hit macro, which has the same structure with
the desired automaton. If found, the macro can be directly
instantiated (ln. 5-6). Otherwise, we use multiple macros to
form the desired automaton. First, we select and instantiate
proper macros according to the dimensions of the desired
automaton (ln. 8-11). Second, these macro instances are
organized to a lattice (ln. 12-16). Third, we link these in-
stances to generate the complete AP automaton (ln. 17-27).
The function CONN_INST(ParadigmSet, src, dst,
dir, scope) is predefined to make cascade links of input-
output port pairs from the source instance src to the desti-
nation instance dst. The arguments of dir and scope are
used as a filter, meaning only the ports with provided attribute
values are qualified for linking. Finally, the AP automaton can
be constructed after the relabeling process (ln. 29-31).

V. EVALUATION

We evaluate our Robotomata by using the Levenshtein
automata construction since it includes a full paradigm set
of M, S, I, D. In contrast, the other distances (e.g., Hamming)
only need to use a subset of the paradigms and simpler routing,
so that have less compilation overhead than Levenshtein.
Notice that changing distance type for a given dataset in the
Robotomata is lightweight since it can automatically generate
AP automata for a given dataset with different distance types
through the simple paradigm set change. We run our experi-
ments on a platform equipped with Intel Xeon E5-2637 CPU
@ 3.5 GHz and 256 GB main host memory. The installed
AP SDK is in version 1.6.5. Currently, the Micron AP is not
ready for production; thus, we use an emulator2 to estimate the
runtime performance. We enable the cascadable macro library
in our Robotomata and generate AP automata using Alg. 2.
The size of the library follows the scheme in Sec. IV-C. We
also set the macros in the library to accept up to three errors.
That way, the higher error number (e.g., > 3) will need not
only horizontal instance cascading but also vertical cascading.

A. Synthetic Patterns

To evaluate the Robotomata on processing different patterns
and error allowances, we use a set of six synthetic patterns of

2http://www.micronautomata.com
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Algorithm 2: Cascadable Macro-based AP Automata Construction

/* Alg. 2 constructs automata based on our cascadable
macro library, whose macros are built by ln. 14-21 in
Alg. 1. */

1 MacroLib lib;
2 Procedure CASM Atma Con(ParadigmSet ps, Pattern pat, int err num)
3 Automaton atma;
4 int m = err num, n = pat.length;
5 if lib.search(ps, m+1, n�m) = true then
6 Instantiate(ps, atma, m+1, n�m, true, true);
7 else
8 int digits[] = {(n�m) /100, (n�m) %100/10, (n�m) %10};
9 int quo = (m+1) / lib.max err, rem = (m+1) % lib.max err;

10 int ins col = (bool)digits[0] + (bool)digits[1] + (bool)digits[2];
11 Automaton inst[quo+(bool)rem][ins col ];
12 if quo then
13 for int i  0 to (quo�1) do
14 Gen inst row(ps, inst[i ], lib.max err, digits);
15 if rem then
16 Gen ins row(ps, inst[quo], rem, digits);
17 for int i  0 to (quo+(bool)rem�1) do
18 for int j  0 to (ins col�1) do
19 if j then CONN INST(ps, inst[i ][j�1], inst[i ][j ], h, e);
20 for int k  0 to (i�1) do
21 TransitionRange scope;
22 if k=(i�1) then scope=e else scope=ce;
23 CONN INST(ps, inst[k ][j ], inst[i ][j ], v, scope);
24 if j 6=(ins col�1) then
25 CONN INST(ps, inst[k ][j ], inst[i ][j+1], d,

scope);
26 if j 6=0 then
27 CONN INST(ps, inst[k ][j�1], inst[i ][j ], ad,

scope);
28 atma � inst;
29 for int i  0 to m+1 do
30 for int j  0 to n�m do
31 atma.re label(i, j, pat.c(j+i�1));
32 return atma;
33 Function Instantiate(ParadigmSet ps, Automaton am, int row, int col, bool

start, bool report)
34 CasMacro cmacro;
35 cmacro � lib.pick(ps, row, col, start, report);
36 am � cmacro.instantiate();
37 Function Gen inst row(ParadigmSet ps, Automaton ams[], int err, int

digits[])
38 int j = 0;
39 for int i  0 to (ams.size�1) do
40 while j<digits.size do
41 if digits[j ] then
42 Instantiate(ps, ams[i ], err, digits[j ], !i, !(digits.size�1�j));
43 j++; break;
44 j++;

lengths from 25 to 155 in steps of 25. The error allowances
range from one to four. In Fig. 7, the construction and
compilation time of our framework is compared with other
three AP automata construction approaches: Functional Units
(FU) [18], String Matching APIs (SM API) [6], and basic
ANML APIs (ANML). The first one uses partially optimized
macros, while the latter two use conventional macros. The AP
runtime performance is not considered in this section, due to
its lock-step execution mode leading to linear relation between
runtime cost and input length and independence to automata
construction approaches.

The compilation data of FU is not available for four er-
rors [18]. In Fig. 7, we first observe that the compilation costs
of all approaches increase exponentially as the error number
rises. This is because more errors require higher STE usage
and more complicated placement-&-routing. SM API is a
“black-box” approach provided by Micron and its performance
is insensitive to the pattern length, meaning high compilation
time is needed even for small patterns. The FU and ANML

approaches show positively correlated pattern length and com-
pilation cost, for the similar reason with aforementioned error-
cost relationship. In contrast, the compilation cost of our
framework is more relates to the instance number than the
pattern length. Notice that the instantiation of a larger pre-
compiled macro usually causes higher cost.

Overall, the SM API approach provides higher abstraction
and is easier for developers to use with the compromised
more expensive construction and compilation. FU approach
can achieve up to 3.7x speedups against the ANML approach.
On the other hand, our Robotomata can achieve up to 46.5x
speedups over the ANML. For four error case, since the
error number exceeds library’s threshold, we should apply
both vertical and horizontal instance cascades that cause
higher compilation overhead; even so the Robotomata can still
provide up to 16.3x speedups over the ANML baseline. In
other word, our Robotomata with cascadable macros can better
explore the AP capacity than other designs.

ANML APIs SM APIs FU Our Framework
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Fig. 7: Construction and compilation time vs. pattern lengths. The highest
speedups of Robotomata over FU, ANML APIs, SM APIs are highlighted.

B. Real-world Dataset
We also evaluate the Robotomata with two real-world

datasets. The “Bio” is the BLAST igseqprot dataset3 for
sequence alignment, and “IR” is the NHTSA Complaints
dataset4 for information retrieval. Tab. VI describes the charac-
teristics of the two datasets. The “Bio” contains ˜85K patterns
ranging from 32 to 686 characters, while the “IR” has ˜100K
patterns from 10 to 959 characters. Apparently, the overall
demand for STEs of either dataset exceeds the capacity of a
single AP board. For example, the “Bio” dataset with one error
requires over 4M STEs while single AP board supplies only
1.5M STEs. This supply-demand imbalance forces us to use
multiple flush/load reconfigurations to completely process the

3https://www-odi.nhtsa.dot.gov/downloads/flatfiles.cfm
4ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/
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TABLE V: Compilation Profile

#Err Approach Bioinformatics (Bio) Information Retrieval (IR)
Recompile
round

Relabel
round

Mean
STE us-
age(%)

Mean BR
alloc(%)

Total
compile
time (s)

Recompile
round

Relabel
round

Mean
STE us-
age(%)

Mean BR
alloc (%)

Total
compile
time (s)

1 err
ANML 1 34 71.2 73.5 103 2 79 70.3 75.8 329
FU 1 56 44.7 80.1 53.8 3 131 42.4 80.7 162
Robotomata 1 36 68.3 79.2 5.83 2 89 62.6 80.4 12.8

2 errs
ANML 1 61 61.2 80.9 665 3 148 56.3 81.4 3763
FU 2 95 39.6 89.3 335 4 228 36.8 92.2 996
Robotomata 1 71 52.8 82.7 48.1 3 174 48.3 86.4 110

3 errs
ANML 2 105 47.5 81.7 7585 4 242 46.2 84.2 42340
FU 3 149 33.5 91.4 3634 6 323 34.6 95.1 18780
Robotomata 2 119 42.2 85.9 381 5 281 39.5 89.4 1070

4 errs
ANML 3 141 44.2 86.3 43201 6 353 39.6 87.9 135437
FU Beyond the capacity
Robotomata 3 168 37.4 88.6 3607 8 460 30.4 90.5 12760

dataset. Since the constructed automata can be dynamically
stored as a macro in the library, we can directly reuse them
for all the patterns with the same length and errors. Therefore,
we only consider the patterns with different lengths.

TABLE VI: Dataset Characteristics

Pattern Sets Pattern# Length (min.) Length (max.) Diff lengths#
Bio 85389 32 686 375
IR 100K 10 959 846

Compilation Profiling:
We compare our Robotomata to two other AP construction

approaches: FU and ANML-APIs. The SM APIs method is
not used because it hides the compiling profile (e.g., STE
usage) so that the rounds of reconfiguration are uncomputable.
Tab. V shows the profiles of the three approaches. We test the
two datasets “Bio” and “IR” with up to 4 maximum error
allowances. Notice the FU supports up to three errors. In the
table, the “STE usage” is used to estimate the number of
reconfiguration rounds. Generally, higher STE usage indicates
less reconfiguration rounds. On the other hand, the STE
usage is negatively correlated to the placement-&-routing com-
plexity, which is represented by “BR allocation”. Obviously,
longer patterns and more errors will result in larger automata,
thereby giving rise to higher BR allocation (i.e. more complex
compilation) and lower STE usage.

For reconfiguration rounds, we distinguish the “recompile”
rounds from the light-weight “relabel” rounds. Relabeling the
entire AP board costs 45 ms [7], while the recompiling time
depends on AP automata complexity. The “total compile time”
columns include the cost from both recompile and relabel
rounds. ANML-APIs show the best STE usage and thus the
least reconfiguration rounds because they use the low-level in-
terfaces to accurately manipulate AP computational resources.
However, the ANML-APIs take the longest overall compile
time since they use only conventional macros resulting in
highest reconfiguration costs. In contrast, the FU approach
oftentimes presents the lowest STE usage with the highest
reconfiguration rounds, due to its large number of functional
unit copies and associated complex inter-connections. Nev-
ertheless, the total compile time of FU approach can be still
shorter than ANML-APIs since the functional units can reduce

more placement-&-routing costs than conventional macros. On
the other hand, our Robotomata shows slightly lower STE
usage than ANML-APIs but achieves the fastest total compile
time thanks to our cascadable macro design. In particular, it
can achieve up to 39.6x and 17.5x speedups against ANML-
APIs and FU approaches respectively.

Performance Comparison:
In Fig. 8 and Fig. 9, we compare the performance of AP

approaches to an automata-based CPU implementation Pat-
MaN [39] over the two datasets. PatMaN allows all error types
with no upper-bound error number. We first compare the pure
computational time between AP and CPU. As we discussed,
after loading the binary image to AP board, AP executes in
a lock-step style making the runtime performance linear to
input length and reconfiguration rounds and independent of
automata construction approach. Fig. 8 shows our APM codes
on AP can achieve up to 4370x speedups, which are within the
same order of magnitude with the other AP-related work [7],
[10].

In Fig. 9, we conduct a more fair comparison using the
overall execution time (i.e., runtime and compiling time) of
AP. We can observe that these AP approaches can generally
outperform the CPU implementation in the cases of large
error number. However, ANML-APIs may be slower than
CPU version for small error number (e.g. in “One Error
Bio”). The FU approach can provide better performance than
ANML-APIs but still fails to outperform the PatMaN in some
cases (e.g., in “One Error IR”). This shows the significance
of the reconfiguration overhead when processing large-scale
datasets. On the other hand, our Robotomata can outperform
the CPU implementations and other AP approaches in all
cases. Specifically, it is able to give an improvement of 2x to
461x speedups over CPU PatMaN and up to 33.1x and 14.8x
speedup over ANML-APIs and FU respectively. In summary,
with the Robotomata, we can conduct performance comparison
being fair to both CPU and AP by including the ultimately
optimized AP reconfiguration costs.

VI. RELATED WORK

Large effort has been invested to map automata on var-
ious parallel architectures, including CPUs [40], [41], [42],
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Fig. 8: Computational time comparison between AP (with three different construction approaches) and the CPU counterpart. Notice that FU approach can’t
support more than three errors.
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Fig. 9: Overall time comparison between AP (with three different construction approaches) and CPU implementation. Notice that FU approach can’t support
more than three errors.

GPUs [23], [43], FPGAs [25], and ASICs [44]. Various
speedups against implementations on single-threaded proces-
sors, however, are either not fully leverage the merits of
employed hardware or based on an architecture that still in
design stage.

Recent studies have revealed Micron AP can improve per-
formance for many applications from data mining [7], [45],
machine learning [9], bioinformatics [8], [15], [46], intrusion
detection [10], graph analysis [11], and so on[12], [13], [14].
Among them, FU [18], SM APIs [6], RAPID [16], and
ANMLZoo [47] are highly related with this work.

Tracy et al. [18] propose a functional unit (FU) approach
to accelerate APM problems. They decompose a Levenshtein
automata to 8 FUs, then represent FUs in ANML and pre-
compile&save them as macros. This approach can benefit all
Levenshtein automata by reducing placement&routing over-
head to some extent. However, it still requires significant inter-
instance routing and compiling time for large-scale automata
as shown in our experiments.

String Matching (SM) APIs [6] are included in AP SDK

recently to provide high-level abstracts for APM. Taking user-
provided patterns and distances, SM APIs can generate binary
images accordingly. However, if either the given distance or
the pattern length doesn’t fit any template in the library of
SM APIs, it is necessary to construct automata and place-and-
route them from scratch during the compilation. As shown in
our experiments, SM APIs cannot support some large-scale
problem sizes.

Angstadt et al. [16] propose RAPID, a high-level pro-
gramming model for AP. RAPID bypasses the pre-compiled
macros; instead, RAPID places and routes a small repetitive
portion of the whole program, saves it as a small binary image,
and loads this portion as many times as need on the AP
board. However, this scheme may underperform pre-compiling
strategy in the case that the desired pattern is large and its
pattern lengths vary, because the repetitive portion of program
is usually smaller than a macro. Another drawback of this
method is losing the flexibility of cascadable macros once the
portion of program is saved as a binary image which can be
only loaded and executed.
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Wadden et al . [47] propose ANMLZoo, a benchmark suite
for automata processors. It has a subset targeting on APM,
and explores how different distance types, error numbers
and pattern lengths affect fan-in/fan-out of each STE then
further affect configuration complexity. However, it doesn’t
fully explore the AP’s capacity since doesn’t leverage any pre-
compiled information. Moreover, users still need to manually
manipulate the AP automata when extending the benchmarks.

VII. CONCLUSIONS

In this work, we reveal the problems of programmability
and performance on AP, especially the reconfiguration cost
for large-scale problem sizes. We use a hierarchical approach
to design and implement Robotomata, a framework that can
generate optimized low-level codes for Approximate Pattern
Matching applications on AP. We evaluate Robotomata by
comparing to state-of-the-art research with the real-world
datasets. The experimental results illustrate the improved pro-
gramming productivity and significantly reduced configuration
time.
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