
Fast Stochastic Block Partitioning via Sampling
Frank Wanye

Dept. of Computer Science
Virginia Tech

Blacksburg, VA, USA
wanyef@vt.edu

Vitaliy Gleyzer
MIT Lincoln Laboratory

Lexington, MA, USA
vgleyzer@ll.mit.edu

Wu-chun Feng
Dept. of Computer Science

Virginia Tech
Blacksburg, VA, USA

wfeng@vt.edu

Abstract—Community detection in graphs, also known as
graph partitioning, is a well-studied NP-hard problem. Various
heuristic approaches have been adopted to tackle this problem
in polynomial time. One such approach, as outlined in the IEEE
HPEC Graph Challenge, is Bayesian statistics-based stochastic
block partitioning. This method delivers high-quality partitions in
sub-quadratic runtime, but it fails to scale to very large graphs. In
this paper, we present sampling as an avenue for speeding up the
algorithm on large graphs. We first show that existing sampling
techniques can preserve a graph’s community structure. We then
show that sampling for stochastic block partitioning can be used
to produce a speedup of between 2.18× and 7.26× for graph
sizes between 5, 000 and 50, 000 vertices without a significant
loss in the accuracy of community detection.

Index Terms—community detection, GraphChallenge, sam-
pling, stochastic block partitioning

I. INTRODUCTION

Many real-world datasets from sources like social media,
the world wide web, communication networks, and biological
systems can be represented as graphs [1], where related items
in the datasets are connected through edges. In such datasets,
items can generally be grouped, where items in a group are
more strongly connected to each other than to items in other
groups [2]. The process of identifying such groups is known as
community detection, graph partitioning, or graph clustering.

Graph partitioning has a multitude of applications in the real
world. For example, clustering graphs of web clients can help
inform the placement of servers [3]. Identifying communities
of customers with similar purchasing habits is used in product
recommendation systems [4]. Analyzing the community struc-
ture of a graph has also been shown to benefit classification
tasks [5], [6]. In parallel computing, graph partitioning is
used to minimize the communication overhead when assigning
workloads to computing resources [7].

DISTRIBUTION STATEMENT A. Approved for public release.
Distribution is unlimited.

This material is based upon work supported by the Under Secretary
of Defense for Research and Engineering under Air Force Contract No.
FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily
reflect the views of the Under Secretary of Defense for Research and
Engineering.

This work was supported in part by NSF I/UCRC CNS-1822080 via
the NSF Center for Space, High-performance, and Resilient Computing
(SHREC).

Optimal graph partitioning is an NP-hard problem [2],
making it feasible for only small graphs. In order to perform
graph partitioning on real-world graphs, which often contain
millions of vertices and edges, several sub-optimal approaches
have been developed. These approaches are based on heuristics
such as the minimum-cut, similarity measures, modularity
maximization, and statistical inference [2].

Recently, much of the work involving community detec-
tion has used modularity maximization. However, modularity
maximization has a resolution limit on the size of detectable
communities and requires prior knowledge of the number of
communities in the graph [8]. To address these drawbacks,
we focus on stochastic block partitioning, as proposed in [8]–
[10]. This approach is based on statistical inference, rather than
modularity maximization, and incorporates a model selection
algorithm. Thus, it does not suffer from the drawbacks of
modularity maximization; but its algorithmic complexity of
O(Elog2E), where E is the number of edges [8], makes it
infeasible for use in processing huge graphs.

Several approaches have been developed to improve the
runtime of stochastic block partitioning, including streaming
the graph [11] and parallelizing it on multi-core and multi-
node clusters [12]. However, the first approach requires that
the graph be stored in multiple parts, while the second re-
quires computing resources that are not always available to
researchers and analysts.

In this paper, we introduce sampling as an alternative means
to improve the runtime of stochastic block partitioning on
multi-core (and multi-node) clusters; furthermore, it does not
require modification to the graph data structure and layout.
Sampling has been previously shown to preserve multiple
graph parameters, including degree distribution and clustering
coefficient [13]. It has also been applied to other graph parti-
tioning methods to decrease the algorithmic runtime in [14].

Our research contributions are as follows:

• We show that a randomly sampled subgraph can preserve
much of the original graph’s useful community structure, as
evidenced by the minimal difference in resulting accuracy
of partitioning and number of blocks found.

• We show that, with a reasonable sample size, we can com-
bine sampling with stochastic block partitioning to partition
a full graph with a speedup of up to 7.26× on a graph with
50, 000 vertices.

IEEE HPEC 2019. Waltham, MA. September 2019.



II. APPROACH

In this section, we provide background information on
stochastic block partitioning (SBP) and sampling from graphs,
followed by our sampling method, as applied to SBP.

A. Background
Stochastic Block Partitioning (SBP): SBP is a commu-
nity detection method that is based on the degree-corrected
stochastic blockmodel, as introduced in [15]. A stochastic
blockmodel is a representation of graph structure in the form
of connections between groups of vertices called blocks,
which correspond to communities in the community detection
context. The model assumes that all vertices in a given com-
munity are homogeneous in terms of their degree; however,
this assumption does not hold for many real-world graphs,
whose vertex degrees are very heterogeneous. The degree-
corrected stochastic blockmodel addresses this shortcoming by
incorporating this variation into the blockmodel.

The algorithm for stochastic block partitioning (SBP) per-
forms inference and model selection on the degree-corrected
stochastic blockmodel. The blockmodel is initialized with
every vertex as a separate block. A Fibonacci search is
then performed to find the optimal number of blocks in the
blockmodel, based on the overall description length of the
blockmodel [8], [16].

Each step of the Fibonacci search consists of two phases:
merging blocks together and fine tuning of the block mem-
bership for individual vertices. Both phases of the Fibonacci
search leverage the Metropolis-Hastings algorithm, wherein
a new block membership/block merge is proposed for every
vertex/block and is probabilistically accepted or rejected based
on the change in entropy of the degree-corrected blockmodel
upon application of the proposal [16]. There are three key
differences between the block merge and fine-tuning phases,
as presented in [8].
1) Granularity of the proposals. The block-merge phase oper-

ates on the block level, where each proposal could change
the block membership of all the vertices in a block. The
fine-tuning phase operates on the vertex level, where each
proposal affects a single vertex.

2) Time of application of accepted proposals. In the block-
merge phase, the change in entropy is calculated for all
proposals made and then the block merges are applied in
a greedy manner. In the fine-tuning phase, each proposal
is considered individually and applied immediately upon
acceptance.

3) Nature of the iterations. In the block-merge phase, a fixed
number of proposals are made per block, and a fixed
number of merges are performed in every step of the
Fibonacci search, resulting in a fairly deterministic runtime
for the block-merge phase. In the fine-tuning phase, the
number of iterations and the number of accepted proposals
in a given Fibonacci search step are non-deterministic,
though there are general trends that can be observed.

To better understand the bottlenecks in SBP, we analyzed
the algorithm’s runtime on a single core of an Intel Xeon

CPU with 63 GB of RAM, using the official GraphChallenge
datasets with 1k, 5k, 20k and 50k, vertices. Fig. 1 shows
that the initial three Fibonacci search steps of the algorithm
encompass a majority of the algorithm’s runtime and that the
percentage of the runtime that they encompass grows with the
graph size. This is due to the initial expensive block-merge
phases, where block-merge proposals are made and evaluated
for a total of 1.75V blocks in the first three block-merge
phases, where V is the number of vertices in the graph.

Fig. 1. Comparison of the time spent in each of the first three Fibonacci search
steps and the remaining Fibonacci search steps for graph sizes between 1,000
and 50,000 vertices.

Sampling from Graphs: Data reduction through sampling is
a well-known technique in data analytics. Considering the size
of real-world graphs, which can consist of billions of edges
and take up terabytes of disk space, the need for data reduction
is evident. The challenge of sampling graphs is that graphs
have many structural properties (e.g., vertex degree distribu-
tion, clustering coefficient, diameter, and weakly and strongly
connected components), and the ability of sampling techniques
to preserve each of these properties varies significantly, with
no single technique able to preserve them all [13], [17].

In this paper, we study the following sampling algorithms,
selected from those used in [13], [17] for their relatively short
runtime and/or good overall performance and for their ability
to retain the clustering coefficient of the full graph:
1) Uniform Random (UR). The sampled vertices are chosen

uniformly at random and without replacement. This algo-
rithm requires the least computation and space.

2) Degree Weighted (DW). This algorithm is like UR, but
the vertices are not sampled with uniform probabilities.
Instead, the probability of a vertex being sampled is
proportional to the degree (i.e., number of incoming and
outgoing edges) of the vertex. The algorithm requires
O(number of vertices) additional space to store the sam-
pling probabilities of each vertex.

3) Random Node Neighbor (RNN). This algorithm is like UR,
but with the key difference being that vertices are sampled
together with all of their outgoing neighbors.

4) Random Walk (RW). This exploration-based sampling tech-
nique begins by choosing a starting vertex vstart and
follows its outgoing edges at random, adding the vertices
encountered to the sample. If the vertex has no outgoing
edges or probabilistically with a probability of 15% (for
comparison with [13]), we restart the sampling from vstart.

IEEE HPEC 2019. Waltham, MA. September 2019.



When the number of vertices visited equals the desired
sample size, we restart sampling from a new starting vertex.
This algorithm requires O(number of vertices) additional
space to prevent duplicate vertices from being added to
the sample.

5) Random Jump (RJ). This is nearly identical to RW, but
instead of restarting from vstart with a probability of 15%,
RJ restarts sampling from a new starting vertex.

6) Forest Fire (FF). This sampling algorithm combines RW
and RNN. We start with a vertex vstart. The outgoing edges
of vstart are chosen probabilistically using a geometric
distribution with a probability p = 0.7 (for comparison
with [13]). All vertices on the ends of edges that are not
selected are marked as visited. All other vertices are added
to the sample. The algorithm then proceeds recursively for
each of the newly sampled vertices until the sample size is
reached, there are no newly selected vertices (the algorithm
is stuck), or there are no vertices that have not been
visited yet. When there are no newly selected vertices, the
algorithm restarts from a new randomly selected starting
vertex. When all the vertices have been visited, then in
addition to restarting from a randomly selected vertex, the
list of visited vertices is reset, to allow the algorithm to
reach the desired sample size.

Other algorithms, like edge-based sampling, are not considered
here because they insufficiently capture most graph proper-
ties [13], while algorithms like PageRank-weighted random
sampling and ones based on the Metropolis-Hastings algorithm
are iterative, and therefore more computationally expensive.

B. Sampling Method

In our proposed sampling approach, we implement each
of the six (6) chosen sampling algorithms with sample sizes
between 10% and 50%, inclusive, in increments of 5%. For
each combination of sampling algorithm and sample size, we
create a subgraph containing the sampled vertices as well
as the edges between the chosen vertices. We then run the
stochastic block partitioning (SBP) algorithm on the subgraph
and report the results.

We argue that, intuitively, the best sampling algorithm for
community detection can do the following:

1) Capture vertices from every community present in the
graph.

2) Capture a proportionate number of vertices from the graph
communities. For example, a sample size of 15% should
capture approximately 15% of the vertices from every
community.

3) Result in accuracy that is similar to that of the full graph
(when community detection is performed on the sampled
subgraph).

Thus, for the purposes of verifying our approach, we use
datasets that include the true community membership for at
least a subset of vertices in the graph.

C. Community Propagation

Our goal is to perform community detection on the entire
graph, not just on the subset. To that end, the inferred
community membership of the vertices in the subgraph needs
to be extended to the remaining vertices in the full graph. To do
so, we employ stochastic block partitioning (SBP) without the
block-merge step. That is, we assume that the SBP performed
on the subgraph identified the correct number of communities
in the full graph, and therefore, perform only the fine-tuning
phase of SBP.

Before the fine-tuning phase can be conducted, all the
vertices in the graph must have an initial community member-
ship label. In order to seed the fine-tuning phase, we assign
to each of the remaining vertices, the community label of
the community to which they are most strongly connected,
in terms of the number of edges between the vertex and
the identified communities. This approach is computationally
cheap, and intuitively, provides a reasonably good estimate
of the true community membership. A disadvantage of this
approach is that the seeding heuristic has access to a limited
view of the model, and future membership assignments can
change the optimal assignment for previous vertices.

We evaluate our approach through comparisons of the
runtime and F1 score of our approach versus running SBP
on the entire graph.

III. EXPERIMENTS

Here we describe our experimental approach and the metrics
used to evaluate it, followed by the datasets and infrastructure
on which we perform our experiments.

A. Experimental Approach

Due to the randomness inherent to the stochastic block
partitioning (SBP) algorithm and the chosen sampling meth-
ods, the community detection results obtained vary each time
the algorithm is run. As such, we run our sampling-based
SBP algorithm 10 times for every combination of dataset
{A..L}, sample size {10, 15, . . . , 50}, and sampling algorithm
{DW,FF,RJ,RNN,RW,UR}, resulting in 6, 480 experiments.
The average values over the 10 algorithm runs for each
combination of dataset, sample size, and sampling algorithm
are then reported for each of the collected metrics.

B. Metrics for Evaluation of Samples

To quantify the efficacy of our sampling, we propose three
new evaluation metrics.
1) Percentage of captured communities. This refers to the

percentage of communities from which at least one vertex
is included in the sample. Intuitively, the best sampling
algorithms for community detection will capture all the
communities present in the graph. However, this does not
guarantee that the vertices sampled are useful for the
community detection algorithm or even that there will be
enough of them for the algorithm to detect them as a
separate community.

IEEE HPEC 2019. Waltham, MA. September 2019.



2) Difference from the exact uniform sample. This is the
average difference between an “exact uniform” sample and
the sample actually obtained using each sampling method.
The number of vertices in an exact uniform sample for a
given community c, denoted as V exact uniform

c , is defined as
follows: given a graph where each community c is made
up of vc vertices and a sample size of s%,

V exact uniform
c = s% · vc. (1)

The actual number of vertices sampled from each com-
munity, V actual

c is obtained by counting the true community
membership of the vertices in the subgraph. The difference
between the actual and ideal number of vertices, V diff is
then calculated as follows:

V diff = Σc
|V exact uniform

c − V actual
c |

S
, (2)

where S is the size of the subgraph in terms of the number
of vertices and V exact uniform

c is the expected number of
vertices in community c if the sample was exactly uniform.
V diff is invariant to scale, which is useful for comparing
sampling performance across graphs of various sizes. Intu-
itively, the closer V diff is to 0, the more representative the
sample is of the communities in the full graph.

3) F1 score on the subgraph. Precision p and recall r are
two of the pairwise metrics suggested in [8] for evaluating
the performance of the SBP algorithm. The proposed F1
score is a function of both the precision and recall, where
F1 score = 2pr

p+r , and allows us to summarize both pairwise
metrics at once. This is the most direct measure of how well
a sampling algorithm captures the community structure of
a graph, but it does not explain why the sampling algorithm
does or does not do so.

C. Metrics for Evaluation of Sampling for Stochastic Block
Partitioning on the Full Graph

Here we propose two metrics to evaluate sampling for
stochastic block partitioning (SBP) on the full graph.
1) Speedup of partitioning. This defines the speedup of

partitioning the full graph using our sampling approach
over running SBP on the full graph. It is measured as
average partitioning time without sampling

average partitioning time with sampling .
2) F1 score on the full graph. This measures the performance

of our sampling approach on the full graph, after the
community labels have been propagated from the sample to
the full graph and then fine tuned. If a sampling algorithm
captures enough of the graph’s community structure, then
the F1 score on the full graph with our sampling approach
should be similar to the F1 score on the full graph when
SBP is performed without sampling.

D. Datasets and Infrastructure

The Streaming Graph Challenge [8] provides a set of official
synthetic graph datasets to evaluate the results of the SBP
algorithm, with true community membership included for
every vertex in the graphs. The graphs are unweighted and

generated based on the degree-corrected stochastic blockmodel
shown in [15]. The generative model allows the amount of
overlap between communities and the size variation of said
communities to be controlled via hyperparameter selection.
Table I outlines the key characteristics of the chosen datasets.

TABLE I
DATASETS USED FOR EVALUATION

ID Number Number Community Community Number
of of Overlap Size of

Vertices Edges Variation Communities
A 5000 50850 low low 19
B 5000 50544 low high 19
C 5000 51091 high low 19
D 5000 51157 high high 19
E 20000 473914 low low 32
F 20000 476386 low high 32
G 20000 475421 high low 32
H 20000 473329 high high 32
I 50000 1189382 low low 44
J 50000 1193994 low high 44
K 50000 1183975 high low 44
L 50000 1187682 high high 44

We conducted our performance evaluations on a 64-bit Intel
Xeon CPU with a clock frequency of 3.50 GHz and 256 GB of
memory, running the Debian GNU/Linux version 8 operating
system.

IV. RESULTS

In this section, we present the results of our experiments,
first in terms of evaluating the capacity of the various sampling
techniques to capture the community structure of the provided
graphs and then in terms of evaluating the speedup and
accuracy of community detection when our sampling approach
is used to process the full graph.

A. Evaluation of Samples

1) Percentage of communities captured. We found the perfor-
mance of all six algorithms to be comparable with respect
to this metric. As expected, the harder the graph is to
partition, the larger the sample size needs to be in order to
capture all the communities in the full graph. The lowest
average percentage of communities found was 90.0%,
using RW sampling on dataset D. On dataset A, which is
similar in size to D, but with more distinct communities,
the lowest average percentage of communities found was
97.89%, using RW sampling. For all algorithms, a large
enough sample almost always captured all the communities
in the full graph. Additionally, most of the time, as the
graph size grew, the sample size needed to capture all the
communities decreased for all the sampling algorithms.
Fig. 2 shows how well the selected algorithms retain
communities from the full graph across datasets A-L, for
sample sizes between 10% and 50%.

2) Difference from exact uniform sample. Our experimental
results, summarized in Fig. 3, show that almost universally,

IEEE HPEC 2019. Waltham, MA. September 2019.



Fig. 2. The average percentage of blocks retained by each of the chosen
sampling algorithms over 10 runs, for each of the datasets A-L, at different
sample sizes.

the UR sampling algorithm produced samples that were
closest to the exact uniform sample. This is to be expected,
since a fully random algorithm is unbiased towards any of
the graph’s properties, while most of the other algorithms
are either biased towards high-degree vertices (DW, RNN)
or towards exploring larger, connected communities (FF,
RW, RJ). FF is found to be the second-best performer,
likely because vertices are added to the sample with a
constant probability and the fact that previously visited
vertices are not considered for addition to the sample,
which forces the algorithm to explore a wider area of the
graph than RW and RNN.

3) F1 score on the subgraph. Fig. 4 summarizes the F1 score
of stochastic block partitioning (SBP) of the subgraph on
graphs A-L. Our results show that, for smaller sample
sizes of less than 30%, algorithms like RW, DW and
RJ outperform UR and FF sampling. As the sample size
increases, however, UR and FF begin to outperform all
other sampling algorithms. The exceptions to this rule are
datasets A-D, where UR and FF are consistently the worst-
performing algorithms, and dataset K, where RNN is con-
sistently the best-performing sampling algorithm in terms
of F1 score on the subgraph. These results suggest that UR
and FF perform better on larger graph sizes. Additionally,
the performance of all five sampling algorithms on the
subgraph generally stabilizes around sample sizes between
30% and 40%.

B. Evaluation of Sampling for Stochastic Block Partitioning
on the Full Graph

1) Speedup of partitioning. The speedups obtained did not
vary greatly with the community overlap or community
size variation of the graphs, so we grouped our results (see
Fig. 5) by the size of the graph in terms of the number of

Fig. 3. The average difference from the exact uniform sample for each of
the chosen sampling algorithms over 10 runs, for each of the datasets A-L,
at different sample sizes.

Fig. 4. The average F1 score obtained after running the SBP algorithm on the
sampled subgraph over 10 runs, for each of the chosen sampling algorithms,
for each of the datasets A-L, at different sample sizes.

vertices in it. Our results show that speedup does not vary
greatly with respect to the sampling algorithm, except in
the case of the graphs with 5, 000 vertices. The average
speedups obtained range from 2.18× on the 5, 000 vertex
graphs with a sample size of 50%, to 34.04× on the 50, 000
vertex graphs with a sample size of 10%.

2) F1 score on the full graph. The F1 scores on the full graph,
shown in Fig. 6, varied greatly based on the community
overlap and community size variation configurations of the
graph, the sampling algorithm, the sample size, and the
size of the graph.

All six sampling algorithms performed poorly on
datasets C and D, showing a marked decrease in F1

IEEE HPEC 2019. Waltham, MA. September 2019.



Fig. 5. The average speedup obtained using our sampling for SBP approach
over 10 runs, for each of the chosen sampling algorithms, for datasets of size
5, 000, 20, 000 and 50, 000 vertices, at different sample sizes.

Fig. 6. The average F1 score obtained after using our sampling for SBP
approach over 10 runs, for each of the chosen sampling algorithms, for
datasets A-L, at different sample sizes. The horizontal lines represent the
average baseline F1 scores over 10 runs, obtained by running the SBP
algorithm without sampling on each dataset.

score even for large sample sizes. Datasets A and B show
very little difference between F1 scores with and without
sampling after sample sizes of 30% and 40%, respectively.

For the larger datasets E-L, the F1 score with UR and
FF sampling is often higher than without sampling. The
threshold at which this occurs varies with the community
overlap and community size variation and the graph size.
While this is not always the case, our sampling approach
is always at least comparable to the baseline F1 score for
samples of size 35% and above on datasets E-L.

Furthermore, our results show that UR and FF tend to
outperform the other sampling algorithms on the larger
sample sizes. FF tends to outperform UR, especially on
dataset F, but in most cases the difference is not significant.
For smaller sample sizes of less than 20%, RW, RJ, and
in some cases, RNN, generally have better F1 scores than

UR and FF. However, at such low sample sizes, none of
the sampling techniques produce F1 scores comparable to
the baseline.

V. CONCLUSION

Community detection is a graph analysis task with applica-
tions in areas ranging from cybersecurity to product recom-
mendation systems. Due to the size of modern graphs and the
inherent algorithmic complexity of the task, performing com-
munity detection on modern graphs without resorting to over-
simplistic heuristics can be time consuming. In this paper, we
focus on sampling as a means to bypass the computationally
expensive initial block-merge phases of the stochastic block
partitioning (SBP) algorithm, to perform community detection
on the full graph. We perform our experiments on 12 synthetic
datasets with varying characteristics and compare six sampling
algorithms at sample sizes ranging from 10% to 50%.

We first show that sampling can preserve the community
structure of large graphs. Our results show that uniform
random (UR) sampling and forest fire (FF) sampling deliver
the best performance out of the tested sampling algorithms
with respect to preserving community structure, based on
three different evaluation metrics. For smaller sample sizes,
however, random node neighbor (RNN) sampling outperforms
the UR and FF algorithms.

We then show that, using the Metropolis-Hastings algorithm
and a simple seeding heuristic, we can propagate the com-
munity detection results from the sample to the full graph.
Our approach leads to comparable, and in some cases, better
community detection results than simply performing stochastic
block partitioning (SBP) on the full graph. Furthermore, we
identify the UR and FF sampling algorithms as the best
performers out of the algorithms tested, further confirming
our evaluations of the sampling algorithms. Our experiments
suggest that a sample size of 30% is typically enough to
achieve near-optimal community detection results, with a
speedup between 5.56× and 6.20× on 20, 000 vertex graphs,
and a speedup between 6.67× and 7.28× on 50, 000 vertex
graphs. This further suggests that the speedup obtained grows
with the graph size.

Future work involves applying our sampling approach to
larger synthetic and real-world graphs to study the relationship
between sample size and final community detection results at
scale. We also seek to study the relationship between various
sample evaluation metrics and the final community detection
results to arrive at a definitive measure for evaluating samples
for community detection purposes. Finally, more expensive
sampling techniques like the Markov Chain Monte Carlo
(MCMC) approach used in [18] could be tested, as an attempt
to decrease the sample size needed to preserve community
structure.

ACKNOWLEDGMENT

We thank Mohammed Hassan of the Synergy Lab at Vir-
ginia Tech for the many insightful discussions on this work.

IEEE HPEC 2019. Waltham, MA. September 2019.



REFERENCES

[1] M. Newman, “The structure and function of net-
works,” Computer Physics Communications, vol. 147,
no. 1-2, pp. 40–45, 2003. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0010465502002011

[2] S. Fortunato, “Community detection in graphs,” Physics Reports,
vol. 486, no. 3-5, pp. 75–174, 2010. [Online]. Available:
https://doi.org/10.1016/j.physrep.2009.11.002

[3] B. Krishnamurthy, J. Wang, B. Krishnamurthy, and J. Wang,
“On network-aware clustering of Web clients,” in ACM
SIGCOMM Computer Communication Review, vol. 30, no. 4.
Stockholm, Sweden: ACM, 2000, pp. 97–110. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=347057.347412

[4] P. Krishna Reddy, M. Kitsuregawa, P. Sreekanth, and S. Srinivasa Rao,
“A Graph Based Approach to Extract a Neighborhood Customer
Community for Collaborative Filtering,” in Databases in Networked
Information Systems. Springer, Berlin, Heidelberg, 2002, pp. 188–200.
[Online]. Available: http://link.springer.com/10.1007/3-540-36233-9 15

[5] G. Rizos, S. Papadopoulos, and Y. Kompatsiaris, “Multilabel user
classification using the community structure of online networks,”
PLOS ONE, vol. 12, no. 3, p. e0173347, 2017. [Online]. Available:
https://dx.plos.org/10.1371/journal.pone.0173347

[6] G. Li, D. Zhang, and Y. Li, “Packet Classification Using Community
Detection,” in 2017 IEEE International Symposium on Parallel and
Distributed Processing with Applications and 2017 IEEE International
Conference on Ubiquitous Computing and Communications
(ISPA/IUCC). Guangzhou, China: IEEE, 2017, pp. 94–100. [Online].
Available: https://ieeexplore.ieee.org/document/8367253/

[7] G. M. Levchuk and J. Colonna-Romano, “Optimizing collaborative
computations for scalable distributed inference in large graphs,” in
Signal Processing, Sensor/Information Fusion, and Target Recognition
XXVII, I. Kadar, Ed., vol. 10646. SPIE, 2018, p. 23. [Online].
Available: https://doi.org/10.1117/12.2305872

[8] E. Kao, V. Gadepally, M. Hurley, M. Jones, J. Kepner, S. Mohindra,
P. Monticciolo, A. Reuther, S. Samsi, W. Song, D. Staheli,
and S. Smith, “Streaming graph challenge: Stochastic block
partition,” in 2017 IEEE High Performance Extreme Computing
Conference (HPEC). IEEE, 2017, pp. 1–12. [Online]. Available:
http://ieeexplore.ieee.org/document/8091040/

[9] T. P. Peixoto, “Parsimonious Module Inference in Large Networks,”
Physical Review Letters, vol. 110, no. 14, 2013. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevLett.110.148701

[10] ——, “Efficient Monte Carlo and greedy heuristic for the
inference of stochastic block models,” Physical Review E,
vol. 89, no. 1, p. 012804, 2014. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevE.89.012804

[11] A. J. Uppal and H. H. Huang, “Fast Stochastic Block Partition
for Streaming Graphs,” in 2018 IEEE High Performance extreme
Computing Conference (HPEC). IEEE, 2018, pp. 1–6. [Online].
Available: https://ieeexplore.ieee.org/document/8547523/

[12] A. J. Uppal, G. Swope, and H. H. Huang, “Scalable stochastic
block partition,” in 2017 IEEE High Performance Extreme Computing
Conference (HPEC). IEEE, 2017, pp. 1–5. [Online]. Available:
http://ieeexplore.ieee.org/document/8091050/

[13] J. Leskovec and C. Faloutsos, “Sampling from large graphs,” in
Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining - KDD ’06. New York,
New York, USA: ACM Press, 2006, p. 631. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1150402.1150479

[14] S. Yun and A. Proutière, “Community Detection via Random and
Adaptive Sampling,” in Conference on Learning Theory. Barcelona,
Spain: Association for Computational Learning, 2014. [Online].
Available: http://proceedings.mlr.press/v35/yun14.pdf

[15] B. Karrer and M. E. J. Newman, “Stochastic blockmodels and
community structure in networks,” Physical Review E, vol. 83, no. 1,
p. 016107, 2011. [Online]. Available: http://arxiv.org/abs/1008.3926

[16] T. P. Peixoto, “Parsimonious module inference in large networks,”
Physical Review Letters, vol. 110, no. 14, 2013. [Online]. Available:
http://arxiv.org/abs/1212.4794

[17] T. Wang, Y. Chen, Z. Zhang, T. Xu, L. Jin, P. Hui, B. Deng, and
X. Li, “Understanding Graph Sampling Algorithms for Social Network
Analysis,” in 2011 31st International Conference on Distributed
Computing Systems Workshops. IEEE, 2011, pp. 123–128. [Online].
Available: http://ieeexplore.ieee.org/document/5961350/

[18] A. S. Maiya and T. Y. Berger-Wolf, “Sampling community
structure,” in Proceedings of the 19th international conference
on World wide web - WWW ’10. New York, New
York, USA: ACM Press, 2010, p. 701. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1772690.1772762

IEEE HPEC 2019. Waltham, MA. September 2019.


