
A Scalable, Low-Overhead Finite-State Machine
Overlay for Rapid FPGA Application Development

David Wilson, Greg Stitt
Department of Electrical and Computer Engineering

University of Florida
Gainesville, FL 32611

Email: d.wilson@ufl.edu, gstitt@ece.ufl.edu

Abstract—Productivity issues such as lengthy compilation and
limited code reuse have restricted usage of field-programmable
gate arrays (FPGAs), despite significant technical advantages.
Recent work into overlays—virtual coarse-grained architectures
implemented atop FPGAs—has aimed to address these concerns
through abstraction, but have mostly focused on pipelined ap-
plications with minimal control requirements. Although research
has introduced overlays for finite-state machines, those archi-
tectures suffer from limited scalability and flexibility, which we
address with a new overlay architecture using memory decompo-
sition on transitional logic. Although our overlay provides modest
average improvements of 15% to 29% fewer lookup tables for
individual finite-state machines, for the more common usage of
an overlay supporting different finite-state machines, our overlay
achieves a 77% to 99% reduction in lookup tables. In addition,
our overlay reduces compilation time to tenths of a second to
enable rapid iterative-development methodologies.

I. INTRODUCTION

In various application domains, field-programmable gate
arrays (FPGAs) have significant performance and energy ad-
vantages over other devices [19], but often go unused due to
low application-design productivity. For example, depending
on the device and application, FPGA compilation can take on
the order of hours or days [12]. Similarly, FPGA applications
are generally unable to leverage large amounts of existing
code, due to the need for device-specific code [11], or due
to unattractive tradeoffs in IP core libraries [20].

Research in coarse-grained virtual architectures (overlays)
has focused on overcoming these productivity limitations by
providing an abstraction over the FPGA’s fine-grained re-
sources. By mapping design logic onto application-specialized
resources, an overlay can achieve both portability and orders
of magnitude faster compilation by avoiding decomposition of
logic into thousands of FPGA lookup tables. Recent overlay
research has shown place-and-route speedup of over 10,000×
compared to vendor tools [7].

One key limitation of existing overlays is limited support for
control logic. Most existing overlays instead primarily focus
on computationally intensive datapath logic using pipeline-
centric [7] and/or processor-centric overlays [13]. Although
datapath logic is generally responsible for lengthy compile
times and the majority of a design’s resources, by them-
selves, datapath-centric overlays do not provide a significant
improvement to productivity for realistic use cases. Although
creating a specialized datapath may initially require more time

if x==1

app()

while x==0

app()

Iteration 1 Iteration N

Finite State Machine

FFT

×

FFT

×

-

IFFT

Datapath

FFT FFT

IFFT

× × × ×

+ + + +

× ×

FPGA 2FPGA 1 FPGA 3

Iterative

Development

High-Level

Synthesis

Fast Virtual

Place & Route

…

Fast compilation 

via abstraction

Design portability 

on FPGAs that 

support overlay

(New) Virtual FSM 

Architecture

Virtual Datapath

Architecture

High productivity 

via high level code

Overlay

Library

…

Iteration 1 Iteration N

Overlay Instance

Fig. 1. High-level synthesis using overlays to enable fast compilation,
portability, and rapid iterative-design methodologies

than a controller, based on our observations, the controller is
much more likely to change during development (e.g., iterative
design, testing, and debugging) [18]. Control overlays can
therefore provide the design flexibility to meet unpredictable
requirements during these situations.

Therefore, for productivity improvements to be realized in
common design methodologies, existing overlays need to be
complemented by appropriate control overlays that allow for
rapid changes in control without full-detail FPGA compiles.

Several existing approaches have introduced such overlays,
but those architectures have limited scalability for large ap-
plications and changing control requirements [5]. Similarly,
those overlays support only single FSM applications, which
can be impractical for parallel applications that experience
“state explosion” in their single FSM implementations [4].



In this paper, we introduce a new control overlay—the
Multi-RAM architecture (M-RAM for short)—that addresses
these limitations. Using memory decomposition, this overlay
enables enhanced scalability and flexibility, while also sup-
porting parallel finite-state machines (FSMs). As shown in
Figure 1, one envisioned use for this new control overlay
is to complement existing datapath overlays in a high-level
synthesis approach that compiles high-level code to an overlay
instance tailored to an application’s requirements (e.g., [7]).
Such an approach enables high productivity via the use of
high-level code, and fast compilation for rapid iterative devel-
opment methodologies, while also enabling portability across
different FPGAs. For the common use case of supporting
multiple FSMs in a single instance, the M-RAM achieves a
77% to 99% reduction of Virtex 7 lookup tables compared
to previous architectures. On average, the M-RAM has an
average clock frequency of 203 MHz and reduces compilation
times to tenths of a second.

II. RELATED WORK

Existing overlay research has focused largely on identifying
appropriate tradeoffs between resource specialization, flexibil-
ity, and overhead. An overly specialized overlay may have
low overhead, but will not improve productivity due to the
need to fallback on full-detail FPGA compilation to support
a changing application. Similarly, an overly general overlay
may be flexible, but may incur prohibitive overheads [13].

Most existing overlays have focused on applying these
tradeoffs on pipelined datapaths with minimal control re-
quirements through the interconnection structure (e.g., [6],
[7], [10], [17]). Previous work in control-specialized overlays
primarily focused on memory-based FSM implementations
[5] using general techniques for FSM synthesis [15] and
decomposition techniques from reconfigurable FSM studies
(e.g., [3], [8], [9]). The Multi-RAM overlay expands from
the 3-RAM overlay [5] with memory decomposition to reduce
memory requirements and comparatively requires 15% to 28%
fewer lookup tables for individual FSMs, and 77% to 99%
fewer lookup tables for more common overlay use cases.

Vendor tools have introduced different techniques to min-
imize compilation time, such as partial reconfiguration (PR)
[2] and incremental compilation [1]. Although both techniques
may grant modest reductions in compile time, both notably
require additional effort on the designer and produce device-
specific files. For an overlay implementation, the FSM con-
troller is compiled to an overlay bitstream that is portable to
any FPGA that supports that overlay instance.

III. BACKGROUND

This section describes three FSM overlays from previous
works [5], which we extend with the M-RAM overlay.

The 1-RAM architecture is a common reconfigurable FSM
architecture that consists of a state-transition RAM and a state
register. Using the current state from the state register and
input values, the state-transition RAM acts as a lookup table to
find the corresponding next state and respective output values.

The 2-RAM architecture is conceptually similar to a number
of works [8] [18]. The key difference from the 1-RAM is the
use of effective inputs, which are the subset of total inputs
that affect a state transition in a particular state. Ideally, the
state-transition RAM should only store input combinations for
inputs that can cause a transition. Compared to the 1-RAM, the
2-RAM architecture also uses an input-selection RAM and a
series of input multiplexers to select the effective inputs of the
current state, given by the state register. Using these effective
inputs and the current state, the state-transition RAM looks up
the corresponding next state and respective output values.

The 3-RAM architecture [5] extends from the 2-RAM with
transition references. The main source of overhead in the 2-
RAM is that the state-transition RAM stores transition data
for every combination of inputs, even for the same transition.
Ideally, the state-transition RAM could instead store references
to a transition, which avoids redundant replications of the
transition’s output. Compared to the 2-RAM, the 3-RAM
architecture uses the state-transition RAM to store a transition
index rather than transition outputs. Using this transition index
and the current state, a new transition-code RAM looks up the
respective next state and output values.

Both the 2-RAM and 3-RAM are notably limited when the
maximum number of effective inputs that governs the size of
the state-transition RAM is much larger than the number of
effective inputs across a majority of the FSM’s states.

IV. MULTI-RAM ARCHITECTURE

In this section, we present the new M-RAM architecture,
which extends from the 3-RAM architecture [5] with the use of
memory decomposition on the state-transition RAM to avoid
excessive overhead when an FSM has a wide range in the
amount of effective inputs across its states.

A. Motivation

Previous FSM overlays implement transition logic using
memory as a lookup table. Mapping transition logic to memory
is conceptually similar to mapping an n-input function to a m-
input lookup table, where m ≥ n. When the function and the
lookup table have the same number of inputs (m = n), the
lookup table encodes the exact truth table of the function. A
major source of redundancy occurs when the lookup table has
a larger number of inputs than the function (m > n). In this
scenario, the excess inputs of the lookup table have no effect
on the output of the function (i.e., don’t care inputs), but the
encoded truth table must produce the correct values for any
combination of excess input values. As such, the encoded truth
table resembles the function’s truth table replicated for each
combination of excess input values.

As previously mentioned, the 2-RAM and 3-RAM use
“effective inputs” in the state-transition RAM to implement
transition logic. In these overlays, the state-transition RAM is
sized by a maximum effective input and encodes transition
functions for all states, even those with a vastly smaller
number of effective inputs.



State 1 State 2 State 3 State 4

State 0

A A A

BCDEFA

Fig. 2. Example of a simple 5-state FSM

To better illustrate this problem, consider the simple 5-state
FSM in Figure 2. In states 0 to 3, the FSM transitions to the
next numbered state when input A is true. In state 4, the FSM
transitions to state 0 when inputs B, C, D, E, and F are true.
The maximum number of effective inputs is five since states 0
to 3 have one effective input (A), and state 4 has five effective
inputs (B, C, D, E, and F). For the previous overlays, the state-
transition RAM must encode each state’s transition function
in an array of five-input truth tables as shown in Figure 3,
where five is the max number of effective inputs (EI) across
all states. For the four states with a single effective input, their
transition function is encoded for every combination of the
four excess inputs, yielding 24 copies, even though only one
state has the same effective input number as the maximum.
In Section V, we show that these replications can become a
significant source of overhead.

T
ra
n
si
ti
o
n
-c
o
d
e
L
o
g
ic

State-transi�on RAM

State EI0(A) EI1(B) EI2(C) EI3(D) EI4(E) Transition

0
0 X X X X 0

1 X X X X 1

1
0 X X X X 0

1 X X X X 1

2
0 X X X X 0

1 X X X X 1

3
0 X X X X 0

1 X X X X 1

State EI0(B) EI1(C) EI2(D) EI3(E) EI4(F) Transition

4

0 X X X X

4

1 0 X X X

1 1 0 X X

1 1 1 0 X

1 1 1 1 0

1 1 1 1 1 0

Fig. 3. FSM mapping on 3-RAM’s state-transition RAM

B. Architecture

The M-RAM architecture addresses the unnecessary repli-
cation described in the previous section by extending the
3-RAM with memory decomposition on the state-transition
RAM. By using a collection of smaller-sized RAMs targeting
different numbers of effective inputs, the M-RAM can map
each state to a memory that encodes the state’s truth table
without replication. The M-RAM can therefore avoid a large
source of replication seen in larger FSMs.

In Figure 4, we illustrate a high-level block diagram of
the M-RAM. The main difference from the 3-RAM is the
decomposed memory elements which implement the state tran-
sition functions, which we refer to as state-transition elements
(STEs). Each STE is a grouping of input muxes and smaller-

input-

selection

RAM

state-

transition

RAM

input

muxes

inputs

transition-

code RAM

outputs

state map

RAM
STE 

mux

state

register
STE N

...

STE 0

Fig. 4. Multi-RAM Architecture

sized input-selection and state-transition RAMs targeting a
different effective input number. Using these elements, the
architecture maps each FSM state to a pseudo state in a
STE when that particular STE can directly encode the state’s
transition function without replication. Similar to the state
variable in the 3-RAM’s state-transition RAM, each STE has
a designated number of pseudo states that index distinct state
transition functions. Unlike previous architectures, the state-
transition RAM stores transition indexes relative to the entire
FSM rather than on a state-by-state basis. The state-transition
RAM’s size in a STE i is:

2dlog2(Si,total)e+EIi ∗ dlog2(Tmax)e (1)

whereas the input-selection RAM’s size in a STE i is:

2dlog2(Si,total)e ∗ EIi ∗ dlog2(Itotal)e (2)

where Si,total corresponds to the total number of pseudo states
supported by the STE i, EIi corresponds to the effective
input number targeted by the STE i, Tmax corresponds to
the maximum number of transitions in the FSM, and Itotal
corresponds to the total number of inputs in the FSM.

To use these decomposed elements, the architecture adds
another layer of indirection before the state-transition logic
through the state-map RAM. The state-map RAM stores
mappings of FSM states to STE indexes and STE pseudo-
states which allows the architecture to implement state tran-
sition functions across different STEs. The state-map RAM’s
required memory bits are as follows:

2dlog2(Stotal)e ∗ (dlog2(SSTE,max)e+ dlog2(numSTE)e) (3)



where Stotal is the number of FSM states, SSTE,max is the
max number of pseudo-states across all STEs, and numSTE

is the number of STEs.
Using the current STE index from the state-map RAM, the

STE mux directs the correct STE output to the transition-
code RAM. The transition-code RAM then looks up the
transition’s respective next state and output values. Since the
transition indexes no longer pertain to a state-by-state basis,
the transition-code RAM’s size in bits is as follows:

2dlog2(Tmax)e ∗ (dlog2(Stotal)e+Ototal) (4)

To better illustrate the advantage of this architecture, con-
sider the same example 5-state FSM discussed in Section
IV-A. In Figure 5, we illustrate the FSM mapping on the M-
RAM architecture. Unlike the 3-RAM, the transition functions
of states with single effective inputs are encoded directly onto
STE 0’s state-transition RAM at pseudo states 0 to 3, and the
transition function of the single state with 5 effective inputs is
directly encoded onto STE 1’s state-transition RAM at pseudo
state 0. Similar to the 3-RAM’s mapping, not all possible state
values are used in the binary encoding, leaving STE 1’s pseudo
state 1 unused. By mapping these states to different STEs in
the state-map RAM, the architecture has avoided redundant
replications due to states using fewer than the max number
of effective inputs. This simple example shows a M-RAM
architecture instance requiring 306 RAM bits, which is a 27%
reduction compared to the 3-RAM architecture’s 424 RAM
bits.

Similar to past FSM overlays, the M-RAM overlay only
maintains these advantages for scenarios that benefit its de-
composed structure, which are large FSMs with a wide range
of effective input numbers. Other usage scenarios favor past
overlays, such as very small FSMs for 1-RAM, larger FSMs
with small numbers of outputs for 2-RAM, and larger FSMs
with a small range of effective input numbers for 3-RAM.

State-map RAM

State STE ID Pseudo State

0 0 0

1 0 1

2 0 2

3 0 3

4 1 0

STE state-transi�on RAM 0

Pseudo State EI0(A) Transi�on

0
0 0

1 1

1
0 1

1 2

2
0 2

1 3

3
0 3

1 4

STE state-transi�on RAM 1

Pseudo State EI0(B) EI1(C) EI2(D) EI3(E) EI4(F) Transition

0

0 X X X X

4

1 0 X X X

1 1 0 X X

1 1 1 0 X

1 1 1 1 0

1 1 1 1 1 0

1 X X X X X X

T
ra
n
si
ti
o
n
-c
o
d
e
L
o
g
ic

Fig. 5. FSM mapping on M-RAM architecture

C. Implementation

The M-RAM is parameterized by the numbers of states,
unique FSM transitions, inputs, outputs, and STEs, as well as
each STE’s number of states and effective inputs. Although

an instance is limited to supporting FSMs with compatible
numbers of states, transitions, inputs, and outputs, there is
flexibility in the FSM mapping on STEs during overlay recon-
figuration, where a STE with a larger supported effective input
number may map states with a lower effective input number
through redundant replications. Although past overlays used
fewer yet more flexible parameters, the significant area savings
in the Multi-RAM may be used to increase the size of the M-
RAM parameters to significantly improve flexibility.

Conveniently, using multiple STEs grants opportunities for
mapping parallel FSMs onto unused STEs in a single overlay
instance. Whereas previous FSM overlays must replicate the
architecture for each parallel FSM, the M-RAM architecture
can add support by replicating the non-STE components for
each FSM and by adding additional glue logic. In these
instances, the glue logic will act as an overlay-configured
interconnect that will “assign” STEs and outputs to specific
FSMs through overlay configuration bits. Since the STEs can
be tailored to more efficiently fit an FSM’s transition logic
than a single memory, an appropriately configured M-RAM
instance may support parallel FSMs at a much lower area
overhead than previous FSM overlays. We plan to explore this
feature as future work.

D. FSM Mapping
A compatible FSM can be mapped to an overlay instance

by writing the appropriate memory contents to the RAM
structures. Due to the overlay’s decomposed nature, the FSM
must be similarly decomposed. First, the mapper creates a
list of unique transitions (next state and output value pairs)
which will be written to the transition-code RAM. Second,
the mapper assigns each state to a STE pseudo-state targeting
an effective input number equal to or greater than the state’s
effective input number. From these assignments, the mapper
will create a mapping of pseudo-state and every combination
of STE input values to a transition-code RAM address that
matches the assigned state’s transition outputs, which will
be written to the STE’s state-transition RAMs. Similarly, the
mapper will create a mapping of pseudo-state to the assigned
state’s effective input indices, which will be written to the
STE’s input-selection RAMs. Finally, using the previous state
assignment, the mapper creates a mapping of state to pseudo-
state and STE IDs, which will written to the state-map RAM.

Due to the complexity of mapping FSMs, the M-RAM
would ideally be complemented with a high-level synthesis
process that automatically handles both implementation and
mapping, which we will investigate as future work.

V. EXPERIMENTS

The following subsections define the experimental setup
(Section V-A), and evaluate the area (Section V-B), clock
(section V-C), and compilation time (Section V-D) of the M-
RAM compared to existing FSM overlays and direct RTL.

A. Experimental Setup
For each experiment, we evaluate the different architectures

using FSMs from the IWLS 93 benchmark set [14]. Since



TABLE I
AREA COMPARISON OF FSM OVERLAYS AND DIRECT RTL

Benchmark Virtex 7 LUTs M-RAM LUT
Reduction

M-RAM 3-RAM 2-RAM RTL 3-RAM 2-RAM

origin 12 9 7 1 -33% -71%
s298 797 926 759 157 14% -5%
opus 68 93 119 23 27% 43%
styr 382 507 2K 90 25% 76%
sync 93 75 65 45 -24% -43%
s510 121 120 98 53 -1% -23%
s208 112 80 97 12 -40% -15%
s420 134 94 117 12 -43% -15%
ex2 41 47 35 12 13% -17%
ex1 379 415 861 63 9% 56%
sand 413 767 2K 94 46% 75%
s832 732 1K 4K 77 38% 83%
s820 640 1K 4K 84 46% 85%

kirkman 9K 9K 24K 24 2% 63%
s1494 420 2K 2K 123 73% 80%

scf 1K 8K 136K 164 88% 99%

multi1 1K 12K 136K N/A 89% 99%
multi2 1K 8K 10K N/A 83% 87%
multi3 8K 36K 183K N/A 77% 95%

all 10K 222K* 2M* N/A 95% 99%

Bench. Avg. 876 1K 11K 65 15% 29%
Bench. Median 381 461 810 58 13% 49%
Trimmed Avg. 356 1K 10K 67 16% 27%

Total Avg. 2K 15K 125K 65 29% 43%
Key: K = ×103, M = ×106

* example does not fit on XC7VX485T

the overhead of overlay architectures described in Section III
is largely determined by Itotal and Stotal, we selected 16
benchmarks to cover a wide range of Itotal and Stotal.

In Sections V-B and V-C, we analyze the area and clock of
the M-RAM compared to existing overlays and direct RTL. For
these experiments, we obtain synthesis results of the overlay
architectures and the FSM’s direct RTL implementations using
Vivado 2015.2 targeting the XC7VX485T FPGA.

In Section V-D, we analyze compile times for FSMs on
the M-RAM architecture, on existing overlays, and directly
on the FPGA. We use Python 2.7 scripts to generate overlay
bitstreams from the KISS format [14]. For the direct RTL
implementations, we use Vivado 2015.2 to generate the FPGA
bitstream for the same KISS FSMs converted to Verilog [16].

B. Area Analysis

This experiment focuses on comparing the area of the M-
RAM overlay with prior FSM-based overlays and with direct
RTL. For each benchmark, the overlay instance is tailored to
minimally support the benchmark. For our synthetic examples,
the overlay instance is tailored to minimally support a subset of
the benchmark set. It should be noted that these instances still
support any FSM whose parameters do not exceed an overlay’s
limits. From here on, any references to lookup tables (LUTs)
refer to the FPGA’s physical fine-grained LUTs, as opposed
to the logical LUTs implementing functions as described in
Section IV, which we implement using distributed RAM.

Table I shows the LUT results for the overlays and for
direct RTL. The “Virtex 7 LUTs” section reports the number
of Virtex 7 LUTs after synthesis, translation, and mapping
with post-synthesis estimates for designs that do not fit. As
a point of reference, we provide synthesis results for direct
RTL, whose implementations are often significantly smaller
than respective overlay implementations due to gate-level
optimizations. The “M-RAM LUT Reduction” section reports
the M-RAM’s reduction in LUTs relative to the 3-RAM
and 2-RAM. For each section, the table shows the average
and median of results for individual benchmarks, a trimmed
average excluding the kirkman as an extreme outlier for all
overlays, and a total average including synthetic multi-FSM
examples.

To evaluate the scalability of the overlays, we tested a syn-
thetic example (shown as all) that requires support for overlay
reconfiguration of each benchmark from the benchmark set in
a single architecture instance. In this experiment, the M-RAM
LUT reduction is 95% compared to the 3-RAM and 99%
compared to the 2-RAM. Notably, the M-RAM is the only
overlay that fits on the target Virtex 7 device with a 3.31%
LUT utilization, whereas the 3-RAM and 2-RAM require more
than the total amount of available memory LUTs. Similarly,
we tested additional examples (shown as multi(1-3)) that
require support for overlay reconfiguration of each benchmark
from a subset of randomly selected benchmarks and found
the M-RAM demonstrates similar trends with average LUT
reductions of 83% for the 3-RAM and 94% for the 2-RAM.
These results for the synthetic examples are the most accurate
reflection of typical use cases, where the overlays must handle
flexible control requirements rather than minimally support a
specific application. Overall, the M-RAM was the only overlay
that could support such control variability.

For individual benchmarks, the M-RAM shows average
LUT reductions of 15% compared to the 3-RAM and 29%
for the 2-RAM. Note the average compared to the 3-RAM
is skewed due to a high range of reduction values that result
from differently structured benchmarks, especially the smaller
benchmarks which represent minimal flexibility. As such, the
major trend is that the M-RAM performs most favorably for
larger benchmarks (s820, s1393, scf ) and unfavorably for
smaller benchmarks (origin, s208, s420), where the cost of
decomposition is significant.

C. Clock Analysis

This experiment focuses on comparing the clock frequencies
of the M-RAM and prior FSM-based overlays with direct RTL.
Like prior experiments, the overlay instance for each bench-
mark is tailored to minimally support it, with the exception of
the synthetic examples that support subsets of benchmarks.

Figure 6 shows the clock frequency results for each overlay
with a direct RTL. Since these designs produce same-cycle
outputs, each overlay has increasing clock overhead for each
additional RAM in the critical path, with the M-RAM hav-
ing the most RAMs with the state-map RAM addition. For
individual benchmarks, we find clock overheads compared to



direct RTL of 70% for the M-RAM, 61% for the 3-RAM,
and 50% for the 2-RAM. Despite having the largest clock
overhead, the M-RAM is still able to provide an average clock
frequency of 203 MHz, which is unlikely to be prohibitive for
many applications where datapath elements typically operate
at lower clock frequencies.

0

100

200

300

400

500

600

700

o
ri

g
in

s2
9

8

o
p

u
s

st
y

r

sy
n

c

s5
1

0

s2
0

8

s4
2

0

e
x
2

e
x
1

sa
n

d

s8
3

2

s8
2

0

k
ir

k
m

a
n

s1
4

9
4

sc
f

m
u

lt
i1

m
u

lt
i2

m
u

lt
i3 a
ll

C
lo

ck
 F

re
q

u
e

n
cy

 (
M

H
z)

M-RAM 3-RAM 2-RAM RTL

Fig. 6. Clock frequency comparison of overlays and direct RTL

For applications that tolerate multi-cycle control outputs,
FSM overlays can implement RAMs using block RAM instead
of distributed RAM. For these cases, the M-RAM has a greater
average clock frequency of 392 MHz. Due to the abundance of
block RAM for various devices, ideally the M-RAM overlay
would be implemented with a mix of distributed RAM and
block RAM to minimize area and clock overhead.

D. Compilation Time

This experiment compares FSM compile times of overlays
with Vivado 2015.2. For the different overlays, the M-RAM
has the shortest average compilation time at 0.236 seconds,
which is a 76% reduction compared to the 3-RAM’s 0.999
seconds, and the 2-RAM’s 1.012 seconds. Notably the M-
RAM’s compilation time is faster on the larger benchmarks
due to its smaller memory imprint and overlay bitstream size.

All overlays achieve four orders-of-magnitude average im-
provements compared to Vivado’s average of 553 seconds. As
FPGA devices increase the number of resources, these im-
provements will increase as overlay instances remain constant
across devices.

VI. CONCLUSION

In this paper, we introduced a new FSM-based overlay
architecture that complements existing datapath-centric over-
lays to enable rapid compilation for iterative application de-
velopment. The presented Multi-RAM overlay uses memory
decomposition on an FSM’s transition logic to efficiently map
a state transition graph’s representation onto a collection of
smaller memories, rather than on a single large memory.
Although showing modest improvements for individual FSMs,
compared to previous work, this architecture enables enhanced
scalability and flexibility showing a 77% to 99% reduction in
Virtex 7 lookup tables when supporting multiple benchmarks
in a single overlay instance. Similarly, the architecture reduces

finite-state machine compilation times to tenths of a second
and enables potential support for parallel FSMs. For future
work, we intend to explore the integration of control and
datapath overlays.

ACKNOWLEDGEMENT

This work was supported by the I/UCRC Program of the
National Science Foundation under Grant No. EEC-0642422
and IIP-1161022.

REFERENCES

[1] Increasing productivity with quartus ii incremental compilation. Tech-
nical report, Altera, 5 2008.

[2] Vivado design suite user guide: Partial reconfiguration. Technical report,
Xilinx, 4 2016.

[3] G. Borowik. Statechart-based Controllers Synthesis in FPGA Structures
with Embedded Array Blocks. Int. Journal of Electronics and Telecom-
mun., 56(1):13–24, Jan 2010.

[4] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Progress on
the state explosion problem in model checking. In Informatics - 10
Years Back. 10 Years Ahead., pages 176–194, London, UK, UK, 2001.
Springer-Verlag.

[5] P. Cooke, L. Hao, and G. Stitt. Finite-state-machine overlay architectures
for fast fpga compilation and application portability. ACM Trans. Embed.
Comput. Syst., 14(3):54:1–54:25, Apr. 2015.

[6] J. Coole and G. Stitt. Intermediate fabrics: Virtual architectures for
circuit portability and fast placement and routing. In Hardware/Software
Codesign and Syst. Synthesis (CODES+ISSS), 2010 IEEE/ACM/IFIP Int.
Conf. on, pages 13–22, Oct 2010.

[7] J. Coole and G. Stitt. Adjustable-cost overlays for runtime compilation.
In Field-Programmable Custom Computing Machines (FCCM), 2015
IEEE 23rd Annu. Int. Symp. on, pages 21–24, May 2015.

[8] I. Garcia-Vargas and R. Senhadji-Navarro. Finite state machines with
input multiplexing: A performance study. IEEE Trans. on Comput.-Aided
Design of Integr. Circuits and Syst., 34(5):867–871, May 2015.

[9] J. Glaser, M. Damm, J. Haase, and C. Grimm. Tr-fsm: Transition-based
reconfigurable finite state machine. ACM Trans. Reconfigurable Technol.
Syst., 4(3):23:1–23:14, Aug. 2011.

[10] A. K. Jain, X. Li, P. Singhai, D. L. Maskell, and S. A. Fahmy. Deco: A
dsp block based fpga accelerator overlay with low overhead interconnect.
In 2016 IEEE 24th Annu. Int. Symp. on Field-Programmable Custom
Computing Machines (FCCM), pages 1–8, May 2016.

[11] R. Kirchgessner, G. Stitt, A. George, and H. Lam. Virtualrc: A virtual
fpga platform for applications and tools portability. In Proc. of the
ACM/SIGDA Int. Symp. on Field Programmable Gate Arrays, FPGA
’12, pages 205–208, New York, NY, USA, 2012. ACM.

[12] C. Lavin, M. Padilla, J. Lamprecht, P. Lundrigan, B. Nelson, and
B. Hutchings. Hmflow: Accelerating fpga compilation with hard macros
for rapid prototyping. In Field-Programmable Custom Computing
Machines (FCCM), 2011 IEEE 19th Annu. Int. Symp. on, pages 117–
124, May 2011.

[13] X. Li, A. K. Jain, D. L. Maskell, and S. A. Fahmy. An area-efficient
FPGA overlay using DSP block based time-multiplexed functional units.
CoRR, abs/1606.06460, 2016.

[14] K. McElvain. Iwls’93 benchmark set: Version 4.0, May 1993.
[15] G. D. Micheli. Synthesis and Optimization of Digital Circuits. McGraw-

Hill Higher Education, 1st edition, 1994.
[16] C. Pruteanu. Kiss to verilog fsm converter, 2000.
[17] S. Shukla, N. W. Bergmann, and J. Becker. Quku: a two-level

reconfigurable architecture. In IEEE Comput. Soc. Annu. Symp. on
Emerging VLSI Technologies and Architectures (ISVLSI’06), pages 6
pp.–, March 2006.

[18] V. Sklyarov. Reconfigurable models of finite state machines and their
implementation in fpgas. J. Syst. Archit., 47(14-15):1043–1064, Aug.
2002.

[19] S. M. Trimberger. Three ages of fpgas: A retrospective on the first thirty
years of fpga technology. Proc. of the IEEE, 103(3):318–331, March
2015.

[20] D. Wilson and G. Stitt. The unified accumulator architecture: A
configurable, portable, and extensible floating-point accumulator. ACM
Trans. Reconfigurable Technol. Syst., 9(3):21:1–21:23, May 2016.


