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Abstract—The proliferation of heterogeneous computing plat-
forms presents the parallel computing community with new
challenges. One such challenge entails evaluating the efficacy
of such parallel architectures and identifying the architectural
innovations that ultimately benefit applications. To address this
challenge, we need benchmarks that capture the execution pat-
terns (i.e., dwarfs or motifs) of applications, both present and
future, in order to guide future hardware design. Furthermore,
we desire a common programming model for the benchmarks
that facilitates code portability across a wide variety of different
processors (e.g., CPU, APU, GPU, FPGA, DSP) and computing
environments (e.g., embedded, mobile, desktop, server).

As such, we present the latest release of OpenDwarfs, a
benchmark suite that currently realizes the Berkeley dwarfs in
OpenCL, a vendor-agnostic and open-standard computing lan-
guage for parallel computing. Using OpenDwarfs, we characterize
a diverse set of fixed and reconfigurable parallel platforms: multi-
core CPUs, discrete and integrated GPUs, Intel Xeon Phi co-
processor, as well as a FPGA. We describe the computation
and communication patterns exposed by a representative set of
dwarfs, obtain relevant profiling data and execution information,
and draw conclusions that highlight the complex interplay be-
tween dwarfs’ patterns and the underlying hardware architecture
of modern parallel platforms.

Keywords—OpenDwarfs; benchmarking; evaluation; dwarfs;
performance characterization; CPU; FPGA; GPU; OpenCL

I. INTRODUCTION

Over the span of the last decade, the computing world
has borne witness to a parallel computing revolution, which
delivered parallel computing to the masses while doing so at
low cost. The programmer has been presented with a myriad
of new computing platforms promising ever-increasing per-
formance. Programming these platforms entails familiarizing
oneself with a wide gamut of programming environments,
along with optimization strategies strongly tied to the under-
lying architecture. The aforementioned realizations present the
parallel computing community with two challenging problems:
(a) the need of a common means of programming, and (b) the
need of a common means of evaluating this diverse set of
parallel architectures.

The former problem was effectively solved through a con-
certed industry effort that led to a new parallel programming
model, i.e., OpenCL. Efforts, like SOpenCL [1] and Altera
OpenCL [2] enable transforming OpenCL kernels to equivalent
synthesizable hardware descriptions, thus facilitating exploita-
tion of FPGAs as hardware accelerators, while obviating the
overhead of additional development cost and expertise.

The latter problem cannot be sufficiently addressed by
the existing benchmark suites. Such benchmarks suites (e.g.,
SPEC CPU [3], PARSEC [4]) are often written in a language
tied to a particular architecture and porting the benchmarks
to another platform would typically mandate re-writing them
using the programming model suited for the platform un-
der consideration. The additional caveat in simply re-casting
these benchmarks as OpenCL implementations is that existing
benchmark suites represent collections of overly specific ap-
plications that do not address the question of what the best
way of expressing a parallel computation is. This impedes
innovations in hardware design, which will come as a quid
pro quo, only when software idiosyncrasies are taken into
account at design and evaluation stages. This is not going to
happen unless software requirements are abstracted in a higher
level and represented by a set of more meaningful benchmarks.
To address all these issues, we proposed OpenDwarfs [5], a
benchmark suite for heterogeneous computing in OpenCL, in
which applications are selected based on the computation and
communication patterns defined by Berkeley’s Dwarfs [6].

Our contributions in this paper are two-fold:

(a) We present the latest OpenDwarfs release, in which we
attempt to rectify prior release’s shortcomings. We propose
and implement all necessary changes towards a compre-
hensive benchmark suite that adheres both to the dwarfs’
concept and established benchmark creation guidelines.

(b) We verify functional portability and characterize
OpenDwarfs’ performance on multi-core CPUs, discrete
and integrated GPUs, the Intel Xeon Phi co-processor and
even FPGAs, and relate our observations to the underlying
computation and communication pattern of each dwarf.

The rest of the paper is organized as follows: in Section II
we discuss related work. Section III presents our latest contri-
butions to OpenDwarfs. In Section IV we offer an overview of
FPGA architectures and the SOpenCL tool. Section V outlines
our experimental setup, followed by results in Section VI.
Section VII concludes the paper and discusses future work.

II. RELATED WORK

HPC engineering and research have highlighted the im-
portance of developing benchmarks that capture high-level
computation and communication patterns. In [7] the authors
emphasize the need for benchmarks to be related to scien-
tific paradigms, where a paradigm defines what the important
problems in a scientific domain are and what the set of
accepted solutions is. This notion of paradigm parallels that
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TABLE I: Dwarf Instantiations in OpenDwarfs

Dwarf Dwarf Instantiation
Dense Linear Algebra LUD (LU Decomposition)
Sparse Matrix-Vector Matrix CSR (Compressed Sparse-Row Vector
Multiplication Multiplication)
Graph Traversal BFS (Breadth-First Search)
Spectral Methods FFT (Fast Fourier Transform)
N-body Methods GEM (Electrostatic Surface Potential Calculation)
Structured Grid SRAD (Speckle Reducing Anisotropic Diffusion)
Unstructured Grid CFD (Computational Fluid Dynamics)
Combinational Logic CRC (Cyclic Redundancy Check)
Dynamic Programming NW (Needleman-Wunsch)
Backtrack & Branch and Bound NQ (N-Queens Solver)
Finite State Machine TDM (Temporal Data Mining)
Graphical Models HMM (Hidden Markov Model)
MapReduce StreamMR

of the computational dwarf. A dwarf is an algorithmic method
that encapsulates a specific computation and communication
pattern. The seven original dwarfs, attributed to P. Colella’s
unpublished work, became known as Berkeley’s dwarfs, after
Asanovic et al. [6] formalized the dwarf concept and comple-
mented the original set of dwarfs with six more. Based in part
on the dwarfs, Keutzer et al. later attempted to define a pattern
language for parallel programming [8].

The combination of the aforementioned works sets a con-
crete theoretical basis for benchmark suites. Following this
path and based on the very same nature of the dwarfs and
the global acceptance of OpenCL, our work on extending
OpenDwarfs attempts to present an all-encompassing bench-
mark suite for heterogeneous computing. Such a benchmark
suite, whose application selection delineates modern parallel
application requirements, can constitute the basis for com-
paring and guiding hardware and architectural design. On a
parallel path with OpenDwarfs, which was based on OpenCL
from the onset, many existing benchmark suites were re-
implemented in OpenCL and new ones were released (e.g.,
Rodinia [9], SHOC [10], Parboil [11]). Most of them were
originally developed as GPU benchmarks and as such still
carry optimizations that favor GPU platforms. This violates
the portability requirement for benchmarks that mandates
a lack of bias for one platform over another [6], [7] and
prevents drawing broader conclusions with respect to hardware
innovations. We attempt to address the above issues with our
efforts in extending OpenDwarfs.

On the practical side of matters, benchmark suites are
used for characterizing architectures. Both [9] and [10] discuss
architectural differences between CPUs and GPUs on a higher
level. Although not based on OpenCL kernels, a more detailed
discussion on architectural features’ implications with respect
to algorithms and insight on future architectural design require-
ments is given in [12]. In this work, we complement prior
research by characterizing OpenDwarfs on a diverse set of
modern parallel architectures, including CPUs, APUs, discrete
GPUs, the Intel Xeon Phi co-processor, as well as on FPGAs.

III. OPENDWARFS BENCHMARK SUITE

OpenDwarfs is a benchmark suite that comprises 13 of the
dwarfs, as defined in [6]. The dwarfs and their corresponding
instantiations (i.e., applications) are shown in Table I. This
OpenDwarfs release provides full coverage of the dwarfs,

including more stable implementations of the Finite State
Machine and Backtrack & Branch and Bound dwarfs. CSR
(Sparse Linear Algebra dwarf) and CRC (Combinational Logic
dwarf) have been extended to allow for a wider range of
options, including running with varying work-group sizes or
running the main kernel multiple times. We plan to propagate
these changes to the rest of the dwarfs, as they can uncover
potential performance issues for each of the dwarfs on devices
of different capabilities.

One of the most important changes in this implementation
of OpenDwarfs is related to the uniformity of optimization
level across all dwarfs. More precisely, none of the dwarfs
contains optimizations that would make a specific architecture
more favorable than another. Use of shared memory, for
instance, in many of the dwarfs in the previous OpenDwarfs
release favored GPU architectures. Such favoritism limits the
scope of a benchmark suite, as we discuss in Section II.

In order to enhance code uniformity, readability and us-
ability for our benchmark suite, we have augmented the
OpenDwarfs library of common functions. For example, we
introduce more uniform error checking, while a set of common
options can be used to select and initialize the appropriate
OpenCL device at run-time. FPGA support for Altera FPGAs
is offered, but currently limited to two of the dwarfs, due to
lack of complete support of the OpenCL standard by the Altera
OpenCL SDK, which requires certain alterations to the code
for successful compilation and full FPGA compatibility [13].
We plan to provide full coverage in upcoming releases, but
for completeness in the context of this work we use SOpenCL
that enables full Xilinx FPGA OpenCL support.

IV. FPGA TECHNOLOGY AND SOPENCL

FPGAs (field-programmable gate arrays) are configured
post-fabrication through configuration bits that specify the
functionality of the configurable high-density arrays of uncom-
mitted logic blocks and the routing channels between them.
They offer the highest degree of flexibility in tailoring the
architecture to match the application and avoid the traditional
ISA-based von Neumann architecture followed by CPUs and
GPUs. FPGAs are traditionally programmed using Hardware
Description Languages (VHDL or Verilog), a time-consuming
and laborious task that requires deep knowledge of low-level
hardware details.

We use the SOpenCL tool [1] to automatically gener-
ate hardware accelerators for the OpenDwarf kernels, thus
dramatically minimizing development time and increasing
productivity. The SOpenCL front end is a source-to-source
compiler that adjusts parallelism granularity of the OpenCL
kernel to better match the hardware capabilities of the FPGA.
The output of this stage is semantically equivalent C code at
the work-group granularity. SOpenCL back-end flow is based
on the LLVM compiler infrastructure [14], supports bitwidth
optimization, predication, and swing modulo scheduling (SMS)
and generates the synthesizable Verilog of the accelerator.

V. EXPERIMENTAL SETUP

This section presents our experimental setup. First, we
present the software setup and methodology used for collecting
the results and discuss the hardware used in our experiments.



TABLE II: Configuration of the Target Fixed Architectures

Model AMD Opteron AMD Llano AMD Radeon AMD A10- AMD Radeon AMD Radeon Intel Xeon Phi
6272 A8-3850 HD 6550D 5800K HD 7660D HD 7970 P1750

Type CPU CPU* Integr. GPU* CPU* Integr. GPU* Discrete GPU Co-processor
Frequency 2.1 GHz 2.9 GHz 600 MHz 3.8 GHz 800 MHz 925 MHz 1.09 GHz
Cores 16 4 5† 4 6† 32† 61
Threads/core 1 1 5 1 4 4 4
L1/L2/L3 16/2048/ 64/1024/- 8/128/- 64/2048/- 8/128/- 16/768/- 32/512/-
Cache (KB) 8192‡ (per core) (L1 per CU) (per 2 cores) (L1 per CU) (L1 per CU) (per core)
SIMD (SP) 4-way 4-way 16-way 8-way 16-way 16-way 16-way
Process 32nm 32nm 32nm 32nm 32nm 32nm 22nm
TDP 115W 100W* 100W* 100W* 100W* 210W 300W
GFLOPS (SP) 134.4 46.4 480 121.6 614.4 3790 2092.8

† Compute Units (CU) ‡ L1: 16KBx16 data shared, L2: 2MBx8 shared, L3: 8MBx2 shared * CPU and GPU fused on the same die, total TDP

TABLE III: OpenDwarfs Benchmark Test Parameters

Benchmark Problem Size and Index Space
GEM Input file & parameters: nucleosome 80 1 0.
NW Two protein sequences of 4096 letters each.
SRAD 2048x2048 FP matrix, 128 iterations.
BFS Graph: 248,730 nodes and 893,003 edges.

A. Software and experimental methodology

For benchmarking our target architectures we use the
latest release of OpenDwarfs (available for download
at https://github.com/opendwarfs/OpenDwarfs). The CPU/G-
PU/APU software environment consists of 64-bit Debian Linux
7.0 with kernel version 2.6.37, GCC 4.7.2 and AMD APP SDK
2.8. AMD GPU/APU drivers are AMD Catalyst 13.1. Intel
Xeon Phi is hosted on a CentOS 6.3 environment with the Intel
SDK for OpenCL applications XE 2013. For profiling we use
AMD CodeXL 1.3 and Intel Vtune Amplifier XE 2013 for the
CPU/GPU/APU and Intel Xeon Phi, respectively. In Table III
we provide details about the subset of dwarf applications used
and their input datasets and/or parameters. Kernel execution
time and data transfer times are accounted for and measured
by use of the corresponding OpenDwarfs timing infrastructure.
In turn, the aforementioned infrastructure lies on the OpenCL
events to provide accurate timing to a very fine granularity.

B. Hardware

In order to capture a wide range of parallel architectures,
we pick a set of representative device types: a high-end
multi-core CPU (AMD Opteron 6272) and a high-performance
discrete GPU (AMD Radeon HD 7970). An integrated GPU
(AMD Radeon HD 6550D) and a low-powered low-end CPU
(A8-3850), both part of a heterogeneous Llano APU system
(i.e., CPU and GPU fused on the same die), as well as a
newer generation APU system (Trinity) comprising an A10-
5800K and an AMD Radeon HD 7660D integrated GPU.
Finally, an Intel Xeon Phi co-processor. Details for each of the
aforementioned architectures are given in Table II. To evaluate
OpenDwarfs on FPGAs, we use the Xilinx Virtex-6 LX760
FPGA on a PCIe v2.1 board, which consumes approximately
50 W and contains 118560 logic slices. Each slice includes
4 LUTs and 8 flip-flops. FPGA clock frequency ranges from
150 to 200 MHz for all designs.

VI. RESULTS

Here we present our results of running a representative
subset of the dwarfs on a wide array of parallel architectures.
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Fig. 1: GEM

After we verify functional portability across all platforms,
including the FPGA, we characterize the dwarfs and illustrate
their utility in guiding architectural innovation, which is one
of the main premises of the OpenDwarfs benchmark suite.

A. N-body Methods: GEM

The n-body class of algorithms refers to those algorithms
that are characterized by all-to-all computations within a
set of particles (bodies). In the case of GEM, our n-body
application, the electrostatic surface potential of a biomolecule
is calculated as the sum of charges contributed by all atoms
in the biomolecule due to their interaction with a specific
surface vertex (two sets of bodies). In Figure 1 we illustrate
the computation pattern of GEM and present the pseudocode
running on the OpenCL host and device. Each work-item
accumulates the potential at a single vertex due to every atom
in the biomolecule. A number of work-groups (BLOCKS=120
in our example) each having blockDimX*blockDimY work-
items (4096 in our example) is launched, until all vertices’
potential has been calculated.

GEM’s computation pattern is regular, in that the same
amount of computation is performed by each work-item in a
work-group and no dependencies hinder computation continu-
ity. Total execution time is mainly dependent on the maximum
computation throughput. Computation itself is characterized
by FP arithmetic, including (typically expensive) division and
square root operations that constitute one of the main bottle-
necks. Special hardware can provide low latency alternatives
of these operations, albeit at the cost of minor accuracy
loss that may or may not be acceptable for certain types of
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Fig. 2: Results: (a) GEM, (b) NW, (c) SRAD, (d) BFS

applications. Such fast math implementations are featured in
many architectures and typically utilize look-up tables for fast
calculations.

With respect to data accesses, atom data is accessed in a
serial pattern, simultaneously by all work-items. This facili-
tates efficient utilization of cache memories available in each
architecture. Figure 2 and Table II can assist in pinpointing
which architectural features are important for satisfactory
GEM performance: good FP performance and sufficient first
level cache. With respect to the former, Opteron 6272 and
A10-5800K CPUs reach about 130 GFLOPS and A8-3850
falls behind by a factor of 2.9, as defined by their number
of cores, SIMD capability and core frequency. However, the
cache hierarchy between the three CPU architectures is funda-
mentally different. Opteron 6272 has 16K of L1 cache per core,
which is shared among all 16 cores. Given the computation
and communication pattern of n-body dwarfs, such types of
caches may be an efficient choice. Cache miss rates at this
level (L1), are also indicative of the fact: A8-3850 with 64KB
of dedicated L1 cache per core is characterized by a 0.55%
L1 cache miss rate, with Opteron 6272 at 10.2% and A10-
5800K a higher 24.25%. Those data accesses that result in
L1 cache misses are mostly served by L2 cache and rarely
require expensive RAM memory accesses. Measured L2 cache
miss rates are 4.5%, 0.18% and 0%, respectively, reflecting the
L2 cache capability of the respective platforms (Table II). Of
course, the absolute number of accesses to L2 cache, depend
on the previous level’s cache misses, so a smaller percentage
on a platform, tells only part of the story if we plan to compare
different platforms to each other. In cases where data accesses
follow a predictable pattern, like in GEM, specialized hardware
can predict what data is going to be needed and fetch it ahead

of time. Such hardware prefetch units are available - and of
advanced maturity - in multi-core CPUs. This proactive loading
of data can take place between the main memory and last
level cache (LLC) or between different cache levels. In all
three CPU platforms, a large number of prefetch instructions
is emitted, as seen through profiling the appropriate counter,
which, together with the regular data access patterns, verify
the overall low L1 cache miss rates mentioned earlier.

Xeon Phi’s execution is characterized by high vectorization
intensity (12.84, the ideal being 16), which results from regular
data access patterns and implies efficient auto-vectorization on
behalf of the Intel OpenCL compiler and its implicit vector-
ization module. However, profiling reveals that the estimated
latency impact is high indicating that the majority of L1 misses
result in misses in L2 cache, too. This signifies the need for
optimizations such as data reorganization and blocking for
L2 cache, or the introduction of a more advanced hardware
prefetch unit in future Xeon Phi editions - currently there is
lack of automatic (i.e., hardware) prefetching to L1 cache (only
main memory to L2 cache prefetching is supported). Further
enhancement of the ring interconnect that allows efficient
sharing of the dedicated (per core) L2 cache contents across
cores would also assist in attaining better performance for the
n-body dwarf. While Xeon Phi, lying between the multi-core
CPU and many-core GPU paradigms, achieves good overall
performance for this - unoptimized, architecture agnostic -
code implementation, it falls behind its theoretical maximum
performance of nearly 2 TFLOPS.

With respect to GPU performance, raw FP performance
is one of the deciding factors, as well. As a result HD 7970
performs the best and is characterized by the best occupancy
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Fig. 3: Needleman-Wunsch

(70%), compared to 57.14% and 37.5% for HD 7660D and
HD 6550D, respectively. In all three cases, cache hit rates
are over 97% (reaching 99.96% for HD 7970, corroborating
that our conclusions for the CPU cache architectures hold for
GPUs, too, for this class of applications (i.e, n-body dwarf).
Correspondingly, the measured percentage of memory unit
stalls is held at low levels. In fact, the memory unit is kept
busy for over 76% of the time for all three GPU architectures,
including all extra fetches and writes and taking any cache or
memory effects into account.

Although FPGAs are not made for FP performance,
SOpenCL produces accelerators whose performance lies be-
tween that of CPUs and GPUs. SOpenCL instantiates modules
for single-precision FP operations, such as division and square
root. Partially unrolling the outer loop executed by each
thread four times results in nearly 4-fold speedup (FPGA C2)
compared to the base accelerator configuration (FPGA C1).
Multiple accelerators can be instantiated and process in parallel
different vertices on the grid, thus providing even higher
speedup (FPGA C3).

B. Dynamic Programming: Needleman-Wunsch (NW)

Dynamic programming is a programming method in which
a complex problem is solved by decomposition into smaller
subproblems. Combining the solutions to the subproblems
provides the solution to the original problem. Our dynamic
programming dwarf, Needleman-Wunsch, performs protein se-
quence alignment, i.e., attempts to identify the similarity level
between two given strings of aminoacids. Figure 3 illustrates
its computation pattern and two levels of parallelism. Each
element of the 2D matrix depends on the values of its west,
north and north-west neighbors. This set of dependencies limits
available parallelism and enforces a wave-front computation
pattern. On the first level blocks of computation (i.e., OpenCL

work-groups) are launched across the anti-diagonal and on the
second level, each of the work-group’s work-items works on
cells on each anti-diagonal. Available parallelism at each stage
is variable, starting with a single work-group, increasing as
we reach the main anti-diagonal and decreasing again as we
reach the bottom right. Parallelism varies within each work-
group in a similar way, as shown in the respective figure,
where a variable number of work-items work independently
in parallel at each anti-diagonal’s level. Needleman-Wunsch
algorithm imposes significant synchronization overhead (repet-
itive barrier invocation within the kernel) and requires modest
integer performance. Computations for each 2D matrix cell
entail calculating an alignment score that depends on the
three neighboring entries (west, north, northwest) and a max
operation (i.e., nested if statements).

In algorithms like NW that are characterized by inter-
and intra-work-group dependencies there are two big con-
siderations. First, the overhead for repetitively launching a
kernel (corresponding to inter-work-group synchronization),
and second, the cost of the intra- work-group synchronization
via barrier() or any other synchronization primitives. Introduc-
tion of system-wide (hardware) barriers would help to solve
the former of the problems, while optimization of already
existing intra-work-group synchronization primitives would be
beneficial for this kind of applications for the latter case.

Memory accesses follow the same pattern as computation,
i.e., for each element the west, north and northwest elements
are loaded from the reference matrix. For each anti-diagonal
m within a work-group (Figure 3) the updated data from anti-
diagonal m-1 is used.

As we can observe, GPUs do not perform considerably
better than the CPUs. In fact, Opteron 6272 surpasses all
GPUs (and even Xeon Phi), when we only take kernel ex-
ecution time into account. What needs to be emphasized in
the case of algorithms, such as NW, is the variability in the
characteristics of each kernel iteration. In Figure 6a we observe
such variability for metrics like the percentage of the time
the ALU is busy, the cache hit rate, the fetch unit is busy or
stalled, on the HD 7660D. Similar behavior is observed in the
case of HD 6550D. Most of these metrics can be observed
to be a function of the number of active wavefronts in every
kernel launch. For instance, cache hit follows an inverse-U-
shaped curve, as do most of the aforementioned metrics. In
both cases, occupancy is below 40% (25% for HD 6550D) and
ALU packing efficiency barely reaches 50%, which indicates a
mediocre job on behalf of the shader compiler in packing scalar
and vector instructions as VLIW instructions of the Llano and
Trinity integrated GPUs (i.e., HD 6550D and HD 7660D).

As expected, the FPGA performs the best when it comes
to integer code, in which case, its performance lies closer
to GPUs than to CPUs. Multiple accelerators (5 pairs) and
fully unrolling the innermost loop deliver higher performance
(FPGA C2) than a single pair (FPGA C1) and render the
FPGA implementation the fastest choice for the dynamic
programming dwarf. In the FPGA implementation of NW, the
data fetches’ pattern favors decoupling of the compute path
from the data fetch & fetch address generation unit, as well
as from the data store & store address generation unit. This
allows aggressive data prefetching in buffers ahead of time of
the actual data requests.



Loop$for$iter$number$of$itera/ons{$
$calculate$sta/s/cs$for$the$region$of$interest $$
$blockX=columns/BLOCK_SIZE;$
$blockY=rows/BLOCK_SIZE;$
$localWorkSize[2]={BLOCK_SIZE,$BLOCK_SIZE};$
$globalWorkSize[2]={blockX*localWorkSize[0],$
$ $ $ $$$$$$$blockY*localWorkSize[1]};$
$kernel1();$
$kernel2();$

}$

(Each$workRitem$(i,j)$works$on$a$2D$table$element)$
dN[i][j]=J[north][j]RJ[i][j];$
dS[i][j]=J[south][j]RJ[i][j];$
dW[i][j]=J[i][west]RJ[i][j];$
dE[i][j]=J[i][east]RJ[i][j];$
Calculate$various$parameters$based$above$$
values$&$ini/al$J[i][[j]$value;$
Using$the$above$value,$calculate$diffusion$$
coefficient$c[i][j];$

(Each$workRitem$(i,j)$works$on$a$2D$table$element)$
cN=c[i][j];$
cS=c[north][j];$
cW=c[i][j];$
cE=c[i][east];$
D=cN*dN[i][j]+cS*dS[i][j]+cW*dW[i][j]+cE*dE[i][j];$
J[i][j]=J[i][j]+0.25*lambda*D;$

Host%code:%

Kernel1:%

Kernel2:%

Fig. 4: SRAD

C. Structured Grids: Speckle Reducing Anisotropic Diffusion
(SRAD)

Structured grids refers to those algorithms in which com-
putation proceeds as a series of grid update steps. It constitutes
a separate class of algorithms from unstructured grids, in
that the data is arranged in a regular grid of two or more
dimensions (typically 2D or 3D). SRAD is a structured grids
application that attempts to eliminate speckles (i.e., locally
correlated noise) from images, following a partial differential
equation approach. Figure 4 presents a high-level overview of
the SRAD algorithm, without getting into the specific details
(parameters, etc.) of the method. Performance is determined by
FP compute power. The computational pattern is characterized
by a mix of FP calculations including divisions, additions
and multiplications. Many of the computations in both SRAD
kernels are in the form: x = a ⇤ b + c ⇤ d + e ⇤ f + g ⇤ e.
These computations can easily be transformed by the compiler
to multiply-and-add operations. In such cases, special fused
multiply-and-add units can offer a faster alternative to the
typical series of separate multiplication and addition. While
such units are already existent, more instances can be beneficial
for the structured grids dwarf.

A series of if statements (simple in kernel1, nested in
kernel2) handles boundary conditions and different branches
are taken by different work-items, potentially within the same
work-group. Since boundaries constitute only a small part
of the execution profile, especially for large datasets, these

branches do not introduce significant divergence. In the case of
CPU and Xeon Phi execution, branch misprediction rate never
exceeded 1%, while on the GPUs VALUUtilization remained
above 86% indicating a high number of active vector ALU
threads in a wave and consequently minimal branch divergence
and code serialization.

Following its computational pattern, memory access pat-
terns in SRAD, as in all kinds of stencil computation, are
localized and statically determined, an attribute that favors data
parallelism. Although the data access pattern is a priori known,
non-consecutive data accesses, prohibit ideal caching. As in the
NW case, where data is accessed in a non-linear pattern, data
locality is an issue here, too. Cache hit rates, especially for
the GPUs, remain low (e.g., 33% for HD 7970). This leads
to the memory unit being stalled for a large percentage of the
execution time (e.g., 45% and 29% on average for HD 7970,
for the two OpenCL kernels). Correspondingly, the vector and
scalar ALU instruction units are busy for a small percentage
of the total GPU execution time (about 21% and 5.6% for
our example, on the two kernels on HD 7970). All this is
highlighted by comparing performance across the three GPUs,
and once more, indicates the need for advancements in the
memory technology that would make fast, large caches more
affordable for computer architects.

On the CPU and Xeon Phi side, large cache lines can afford
to host more than one row of the 2D input data (depending
on the input sequences’ sizes). The huge L3 cache of Opteron
6272, along with its high core count, make it very efficient in
executing this structured grid dwarf. In such algorithms, it is a
balance between cache and compute power that distinguishes
a good target architecture. Of course, depending on the input
data set there are obvious trade-offs, as in the case of GPUs,
which despite their poor cache performance are able to hide
the latency by performing more computation simultaneously
while waiting for the data to be available.

An FPGA implementation with a single pair of accelerators
(one accelerator for each OpenCL kernel) offers performance
worse even than that of the single-threaded Opteron 6272
execution (FPGA C1). This is attributed mainly to the complex
FP operations FPGAs are notoriously inefficient at. Multiple
instances of these pairs of accelerators (five pairs in FPGA C2)
can process parts of the grid independently, bringing FPGA
performance close to that of multicore CPUs. Different work-
groups access separate portions of memory, hence multiple
accelerators instances access different on-chip memories, keep-
ing accelerators isolated and self-contained.

D. Graph Traversal: Breadth-First Search (BFS)

Graph traversal algorithms entail traversing a number of
graph nodes and examining their characteristics. As a graph
traversal application, we select a BFS implementation. BFS
algorithms start from the root node and visit all the immediate
neighbors. Subsequently, for each of these neighbors the
corresponding (unvisited) neighbors are inspected, eventually
leading to the traversal of the whole graph. BFS’s computation
pattern can be observed through a simple example (Figure 5),
as well as by its host and device side pseudocode. The
BFS algorithm’s computation pattern is characterized by an
imbalanced workload per kernel launch that depends on the
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)d=getGlobalId();"
if()d<numNodes"and"node_as_source[)d]==1){"

"node_as_source[)d]=0;;"
"for"(all"neighbors"neighb[i]"of"current"node)"
" "if(!node_visited[neighb[i]]){"
" " "cost[neighb[i]]=cost[)d]+1;"
" " "update_node_info[neighb[i]]=1;"
" "} " ""

}"

)d=getGlobalId();"
if()d<numNodes"and""
update_node_info==1){"

"node_as_source[)d]=1;"
"mark"node_visited[)d]=1;"
"update_node_info[)d]=0;"
"stop=0;"

}"

maxThreads=numNodes"<"maxThreads?numNodes":"maxThreads;"
globalWorkSize=(numNodes/maxThreads)*maxThreads+'

" " "((numNodes%maxThreads)==0?0:maxThreads);"
localWorkSize=max_threads;"
node_as_source[]={1,0,0,0,0,0,0};""
node_visited[]={1,0,0,0,0,0,0};"
update_node_info[]={0,0,0,0,0,0,0};""
cost[]={0,0,0,0,0,0,0};"
"Iter.' Kernel' Thread'id'(8d)'
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1" kernel1" �" � � � � � �
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3" kernel1" � � � � �" �" �

4" kernel2" � � � � � � �

Kernel1:' Kernel2:'

do{"
"stop=1;"
"kernel1();"
"kernel2();"

}while(stop==0);"

Host'code:'

Fig. 5: BFS

sum of the degrees deg(vi) of the nodes at each level. For
example (Figure 5), deg(v0)=3, so only three work-items
perform actual work in the first invocation of kernel2. Sub-
sequently, kernel1 has three working-items, as well. Second
invocation of kernel2 performs work on three nodes again
(deg(v1)+deg(v2)+deg(v3)=8, but nodes v0, v1, v2 have already
been visited, so effective deg(v1)+deg(v2)+deg(v3)=3). Com-
putation itself is negligible, being reduced to a simple addition
with respect to each node’s cost.

The way the algorithm works might lead to erroneous
conclusions, if only occupancy and ALU utilization is taken
into account, as in all three GPU cases it is over 95% and
88%, respectively (for both kernels). The problem lies in the
fact that not all work-items perform useful work, and the fact
that the kernels are characterized by reduced compute intensity
(Figure 5). In such cases, up to a certain degree of problem
size or for certain problem shapes, the number of compute
units or frequency are not of paramount importance and high-
end cards, like HD 7970 are about as fast as an integrated GPU
(e.g., HD 7660D). The above is highlighted by the hardware
performance counters that indicate poor ALU packing (e.g.,
36.1% and 38.9% for the two BFS OpenCL kernels, on HD
7660D). Similarly, for HD 7970, the vector ALU is busy only
for 5% (approximate value across kernel iterations) of the
GPU execution time, even if the number of active vector ALU
threads in the wave is high (VALUUtilization: 88.8%).

For similar reasons, CPU execution performance is capped
on Opteron 6272, which performs only marginally better than
A8-3850. It is interesting to see that A10-5800K and even
Xeon Phi, with 8- and 16-way SIMD are characterized by
lack of performance scalability. Why performance of A10-
5800K is not at least similar to that of A8-3850 could not
be pinpointed during profiling. However, in both A10-5800K
and Xeon Phi cases, we found that the OpenCL compiler could
not take advantage of the 256- and 512-bit wide vector unit,
because of the very nature of graph traversal.

With respect to data accesses, BFS exhibits irregular access
patterns. Each work-item accesses discontiguous memory lo-
cations, depending on the connectivity properties of the graph,
i.e, how nodes of the current level being inspected are being
connected to other nodes in the graph. Figure 5 is not only
indicative of the resource utilization (work-items doing useful
work), but of the inherent irregularity of memory accesses that
depend on run-time assessed multiple levels of indirection, as
well. Available caches’ size define the cache hit rate, even in
these cases, so HD 7970, which provides larger amounts of
cache memory provides higher cache hit rates compared to
the HD 7660D (varying for each kernel iteration, Figure 6b).

The FPGA implementation of BFS (FPGA C1) is the
fastest across all tested platforms. While kernel1 is not as fast
as in the fastest of our GPU platforms, minimal execution time
for kernel2 and data transfer time render it the ideal platform
for graph traversal, despite the dynamic memory access pattern
causing the input streaming unit to be merged with the data
path, eliminating the possibility of aggressive data prefetching.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we presented the latest release of OpenDwarfs,
which provides enhancements upon the original OpenDwarfs
benchmark suite. We verified functional portability of dwarfs
across a multitude of parallel architectures and characterized
a subset’s performance with respect to specific architectural
features. Computation and communication patterns of these
dwarfs lead to diversified execution behaviors, thus corrobo-
rating the suitability of the dwarf concept as a means to char-
acterize computer architectures. Based on dwarfs’ underlying
patterns and profiling we were able to provide insights tying
specific architectural features of different parallel architectures
to such patterns exposed by the dwarfs.

Future work with respect to the OpenDwarfs is multi-
faceted. We plan to:
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Fig. 6: (a) NW profiling on HD7660D. (b) BFS cache performance comparison between HD7970 and HD7660D.

(a) Further enhance the OpenDwarfs benchmark suite by pro-
viding features such as input dataset generation, automated
result verification and OpenACC implementations. More
importantly, we plan to genericize each of the dwarfs, i.e.,
attempt to abstract them on an even higher level, since
currently some dwarf applications may be considered too
application-specific.

(b) Characterize more modern parallel architectures, includ-
ing Altera FPGAs by using the Altera OpenCL SDK
and evaluate different vendors’ OpenCL runtimes. Further
characterization with input datasets of varying size and
even shape is a potential future research avenue.

(c) Provide architecture-aware optimizations for dwarfs, based
on the existing naı̈ve implementations. Such optimizations
could be eventually integrated as compiler back-end op-
timizations after some form of application signature (i.e.,
dwarf) is extracted by code inspection, user-supplied hints,
or profile-run data.
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