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Abstract— Porting sequential applications to heterogeneous
HPC systems requires extensive software and hardware expertise
to estimate the potential speedup and to efficiently use the
available compute resources in such systems. To streamline this
daunting process, researchers have proposed several “black-box”
performance prediction approaches that rely on the performance
of a training set of parallel applications. However, due to the lack
of a diverse set of applications along with their optimized parallel
implementations for each architecture type, the predicted speedup
by these approaches is not the speedup upper-bound, and even
worse it can be misleading, if the reference parallel implementa-
tions are not equally-optimized for every target architecture.

This paper presents AutoMatch, an automated framework for
matching of compute kernels to heterogeneous HPC architectures.
AutoMatch uses hybrid (static and dynamic) analysis to find the
best dependency-preserving parallel schedule of a given sequential
code. The resulting operations schedule serves as a basis to
construct a cost function of the optimized parallel execution of
the sequential code on heterogeneous HPC nodes. Since such
a cost function informs the user and runtime system about
the relative execution cost across the different hardware devices
within HPC nodes, AutoMatch enables efficient runtime workload
distribution that simultaneously utilizes all the available devices
in performance-proportional way. For a set of open-source HPC
applications with different characteristics, AutoMatch turns out
to be very effective, identifying the speedup upper-bound of
sequential applications and how close the parallel implementation
is to the best parallel performance across five different HPC
architectures. Furthermore, AutoMatch’s workload distribution
scheme achieves approximately 90% of the performance of a
profiling-driven oracle.

I. INTRODUCTION

With the end of Dennard scaling, the performance of sequen-
tial CPUs hit the power wall, thus making it hard to improve
the performance by increasing the clock frequency [1]. To meet
the ever-increasing demand for computing performance, driven
by the multitude of data sets, computer architectures have
shifted to parallel processing. However, unlike the sequential
computing era, there is no de facto standard for hardware
acceleration. Instead, the parallel architecture landscape is in
flux as new platforms are emerging to meet the needs of
new workloads. Therefore, current (and future) HPC systems
contain a wide variety of heterogeneous computing resources,
ranging from general-purpose CPUs to specialized accelerators,
due to both the diversity of the computational kernels in the
applications and the lack of a single architecture meeting all of
their requirements [2].

Porting sequential applications to heterogeneous HPC sys-
tems for achieving high performance requires extensive soft-
ware and hardware expertise to manually analyze the target

architectures and applications not only to estimate the potential
speedup, but also to make efficient use of all the different
compute resources in such systems. To streamline such a
daunting task, end users need appropriate tools to automatically
predict the potential application performance on HPC systems.
Therefore, researchers have created several tools classified into
two categories: automated performance modeling and machine-
learning performance prediction.

Automated performance modeling tools [3], [4], [5] use static
and/or dynamic analysis to construct a performance model of
the target architecture and application and predict the potential
speedup. However, these tools are either limited to traditional
multi-core processors or require code annotations to indicate
the available parallelism and data movement, which might not
be possible for non-expert users. In addition, tools based only
on static analysis do not work well for irregular applications,
whose computation and memory access patterns are data-
dependent, due to the difficulty of alias analysis [6], [7].

On the other hand, machine-learning performance prediction
tools [8], [9] are heavily influenced by the training data.
Thus, their prediction accuracy depends on the availability
of a diverse set of applications along with their optimized
parallel implementations for every target architecture, which
is often hard to find [10]. Apart from that, the predicted
speedup is not the speedup upper-bound, and even worse it
depends on which optimization techniques are applied in the
training applications. Unfortunately, open-source heterogeneous
applications and benchmark suites are usually not equally-
optimized for each architecture type [10], [11]. For this reason,
machine-learning approaches may not be suitable to predict
the relative performance between different architecture types
despite the required expertise/effort to collect the ideal training
set and the significant time for training. Given all this, there
is a compelling need for a more practical approach to serve a
wide range of the users of HPC systems.

A. AutoMatch: The First-Order Framework

This paper presents AutoMatch, an automated framework for
matching of compute kernels to heterogeneous HPC architec-
tures. Figure 1 shows the proposed framework which analyzes
a given sequential application code to estimate the benefits of
porting this application to heterogeneous systems.

First, AutoMatch generates the architectural specifications
via micro-benchmarking to instantiate an abstract hardware
model for each architecture in the target heterogeneous system.
Second, it leverages compiler-based static and dynamic analysis
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Fig. 1: AutoMatch Framework

techniques to quantify the maximum parallelism, the maxi-
mum data locality, and the minimum synchronization of the
sequential code for estimating the upper bounds of the parallel
performance on the different architectures. Third, AutoMatch
generates high-level analytical models that combine the abstract
hardware model, the application characteristics, and the archi-
tectural specifications to predict the performance on different
types of hardware devices. This performance prediction is then
used to estimate the relative execution cost across a set of
different architectures including multi-core CPUs and many-
core GPUs, thereby driving a workload distribution scheme,
which enables end users to efficiently exploit the available
heterogeneous devices in the HPC system.

It is important to note that AutoMatch is designed as a first-
order framework for users to estimate the potential parallel
performance of their sequential applications on heterogeneous
HPC systems in the early stages of the development process,
i.e., without having to pay the high cost of developing the
optimized parallel code (or painfully collecting training data)
for every target architecture. While our automatically-generated
models are simple, they work well for predicting the relative
performance across different architectures and the best work-
load distribution strategy.

1) Use Cases: AutoMatch accelerates the application de-
velopment process and supports the emerging programming
systems for performance portability and interoperability across
different accelerators (such as MetaMorph [12], Kokkos [13]
and RAJA [14]).

Architecture Selection. AutoMatch predicts the relative
ranking and performance of heterogeneous architectures using
sequential code. It serves not only those who either have not
determined the target device or cannot afford to buy multiple
candidate devices, especially when the application and the
inputs are often changed, but also those who lack enough
expertise to develop the optimized parallel implementation for
each architecture type. Moreover, AutoMatch’s architecture
ranking enables the adaptivity layer of portable programming
systems to select the best performing architecture at runtime.

Algorithm Selection. AutoMatch predicts upper bounds on

the parallel performance of a given sequential application by
finding the best dependency-preserving schedule of its oper-
ations, which performs the same operations as the sequential
algorithm but in a different order. If AutoMatch’s prediction
of the original algorithm is already good enough, the user can
save the time to consider other algorithms. Conversely, if the
predicted performance is unsatisfactory, it motivates the user to
explore/develop different algorithms. Nevertheless, AutoMatch
can still play a critical role even for this case. The user
can analyze the sequential code of different algorithms using
AutoMatch to estimate their parallel upper bounds beforehand
without developing the optimized parallel code(s).

Code Optimizations. AutoMatch provides detailed infor-
mation about the inherent parallelism, data locality, and bot-
tlenecks of the sequential code to help the user to decide
on the best optimization and parallelization strategy for the
target application. Moreover, since it is often hard to find ref-
erence applications and benchmarks that are equally-optimized
for each architecture type [10], AutoMatch’s prediction of
the performance upper bounds serve as a reference to show
how close the parallel implementation is to the best possible
performance. That way AutoMatch can guide not only manual
code optimization, but also customization/tuning of the different
backends of portable programming systems.

Workload Distribution. AutoMatch’s estimation of the
relative performance (execution cost) on heterogeneous systems
promotes the development of a run-time workload distribution
on top of programming systems that support the seamless
execution of parallel applications on multiple heterogeneous
devices (e.g., MetaMorph [12]) to efficiently exploit the avail-
able compute resources across these devices.

Design-Space Exploration. Even if the applications and/or
the architectures are not yet available, AutoMatch can still
be used with synthetic application features and/or architectural
parameters to automatically explore the design space. Detailed
discussion of the architecture selection, code optimizations and
workload distribution is provided in Section III. Due to the
space limit, detailed study of algorithm selection and design-
space exploration is reserved for future work.
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B. Contributions

AutoMatch differs from the previous approaches in that it
does not require the availability of the target platforms or the
parallel application code for each platform, thereby expanding
the range of users. In addition, it is automated and applica-
ble to different types of hardware architectures with minimal
effort, i.e., generating the architecture specifications. With the
automated and repeatable methodology of AutoMatch, users
can easily adapt it to future heterogeneous architectures. In
summary, the following are the contributions of this work:
• We propose an automated framework (AutoMatch) that uses

a combination of compiler analysis techniques, abstract hard-
ware model, analytical modeling, and micro-benchmarking
to estimate the performance upper bounds of sequential
applications on heterogeneous HPC systems and the relative
ranking and performance of the architecture alternatives in
such systems (Section II).

• AutoMatch’s estimation of the relative performance across
the heterogeneous architectures enables a run-time workload
distribution scheme that simultaneously utilizes them all
in performance-proportional way, i.e., the architecture with
higher performance is assigned more workload (Section II).

• Using a set of open-source HPC applications, with different
parallelism profiles and memory-access patterns, we show
the efficacy of the proposed white-box framework across
different HPC architectures (Section III).

• We present case studies on both regular and irregular work-
loads to pinpoint the issues with black-box performance
prediction approaches, e.g., profiling and machine-learning.
Since they rely on the performance of a training set of
parallel applications, unlike AutoMatch, their results can
be fooled by heterogeneous implementations that are not
equally-optimized for each target architecture (Section III).

II. THE PROPOSED FRAMEWORK

A. Hardware Architecture Model

This work proposes an abstract hardware architecture model
that can be generalized to different shared-memory architec-
tures including multi-core CPUs and many-core GPUs. This
model extends the classical external memory model [15], [16]
to parallel architectures and considers important constraints on
such systems, such as the on-chip memory access time and the
synchronization overhead.
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Fig. 2: The abstract hardware architecture

Figure 2 shows the proposed hardware architecture model
comprised of multiple compute cores that share a fast on-chip
memory connected to a slow off-chip memory. The compute
cores can only perform operations on data in their private on-
chip memory, and each core executes floating-point operations
at a peak rate of π0 FLOPs per second. The floating-point
throughput is Π = np×π0, where np is the number of compute
cores. The fast on-chip shared memory is fully associative
with a size of Z words, and it uses the Least Recently Used
(LRU) replacement policy. The data is transferred between the
compute cores, the fast memory, and the slow memory in
messages of L words. The fast on-chip shared memory has
a latency αf and a bandwidth βf , while the slow off-chip
memory has a latency αs and a bandwidth βs.

To reach a globally consistent memory state, the compute
cores perform synchronization operations whose cost depends
on the memory latency and the number of compute cores.
Since the synchronization overhead, s0, significantly affects the
execution time on parallel architectures, especially at higher
core counts [17], [18], the proposed model considers this
overhead. There are two synchronization types: (1) global
synchronization, between coarse-grain threads with different
control units (threads on CPUs and thread blocks on GPUs),
and (2) local synchronization, between fine-grain threads with
shared control units (SIMD lanes on CPUs and threads on
GPUs). Given that local synchronization overhead is negligible
in comparison to global synchronization (usually by at least an
order of magnitude) [17], [18]. the proposed model ignores it.

Note, the main goal is to match the workloads to the
best architecture from a set of parallel architectures that are
fundamentally different, for which our proposed high-level
hardware model works well. In light of this, the proposed model
abstracts away architecture-specific parameters and low-level
hardware details, e.g., hardware prefetchers and complex mem-
ory hierarchies. Similarly, it ignores one-time cost overheads,
such as thread creation/destruction, kernel launching, and host-
device data exchanges, which are highly-dependent on the run-
time environment and the system/expansion bus rather than the
target architectures.

B. Inferring the Architectural Specifications

AutoMatch figures out the specifications of the hardware
architectures using micro-benchmarking. In particular, it uses
ERT [19], pointer-chasing [20], [21], and synchronization [17],
[22] micro-benchmarks to estimate the floating-point through-
put and memory bandwidth, the memory access latency, and
the global synchronization overhead, respectively. To analyze
the effectiveness of AutoMatch, this work considers five archi-
tectures (two CPUs and three GPUs) with different core counts
and considers three subsets of architectures: (ARC1, ARC3,
ARC5), (ARC1, ARC2), and (ARC4, ARC5). The first
subset contains three significantly different architectures with
few cores, hundreds of cores, and thousands of cores, while
the second and third subsets have two slightly different CPUs
and GPUs, respectively. Table I summarizes the specifications
of the target architectures.
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TABLE I: Hardware architecture specifications
Model Intel Intel Tesla Tesla Tesla

i5-2400 i7-4700 C2075 K20C K20X

ID ARC1 ARC2 ARC3 ARC4 ARC5
Clock (GHz) 3.1 2.4 1.15 0.732 0.732
np 4 4 448 2496 2688
π0 (GFLOPS) 20 33 0.9 0.41 0.42
Z (MB) 6 6 1.6 2.3 2.3
L (Byte) 64 64 128 128 128
βf (GB/s) 285 349 2117 2018 2424
αf (us) 0.004 0.004 0.028 0.045 0.045
βs (GB/s) 18.88 11.5 87.92 129.73 160.1
αs (us) 0.065 0.052 0.71 0.68 0.68
s0 (us) 0.2 0.44 7.22 6.5 6.5

Since modern on-chip memories support the inclusion prop-
erty in their hierarchy [23], AutoMatch chooses the fast mem-
ory size, Z, to be the effective on-chip memory capacity. On
CPUs, Z is the last level cache; on GPUs, Z is the shared (local)
memory and L2 cache. While the proposed architecture model
represents on-chip memory as a unified fast memory, actual on-
chip memories have complex hierarchies with multiple levels
and some levels are physically distributed (e.g., GPU’s local
memory). Therefore, AutoMatch estimates the fast memory
bandwidth and latency, βf and αf , as the average memory
bandwidth and latency of the on-chip memory hierarchy. It
turns out that the fast memory of the target architectures is
better than the slow memory by approximately a factor of 15
in terms of memory bandwidth and latency. The only exception
is ARC2, where the memory bandwidth ratio between the fast
and slow memories is ≈ 30.

Finally, AutoMatch estimates the global synchronization
cost, s0, using barrier synchronization between threads on
CPUs and thread-blocks on GPUs. While there are several inter-
block synchronization methods on GPUs, AutoMatch uses the
host-implicit, inter-block synchronization which is the simplest
and most popular one [17]. Because the number of active
threads can significantly affect the synchronization overhead,
AutoMatch estimates the global synchronization cost at full
occupancy, i.e., it launches one thread per logical core on CPUs
and four thread-blocks of dimension 32 × 32 per streaming
multiprocessor on GPUs.

C. Compiler-based Application Analysis

1) Design and Implementation: AutoMatch uses the LLVM
compiler framework [24] and works on the LLVM intermedi-
ate representation (IR) of the sequential code, which makes
it language-independent and applicable to any source code
supported by the LLVM front-ends (e.g., C/C++, FORTRAN,
and so on). Figure 3 shows the design and implementation of
the AutoMatch compiler. Clang and other front-ends parse the

Level 0

Level 1

Level 2

Level n

Level n-1

Inm instance m of the floating-

point instruction In

True dependency

Fig. 4: The application ASAP schedule on a theoretical archi-
tecture with infinite resources

sequential code of the target application and emit its IR without
any optimization. In case of multiple IR files, LLVM-LINK
merges them into one file. Next, OPT performs a set of canoni-
calization passes on the unoptimized LLVM IR. While the most
important pass is the memory-to-register translation, which
promotes all temporal stack memory allocation and accesses to
registers and converts IR into the single static assignment (SSA)
form [25], other passes such as function inlining and constant
propagation simplifies the induction variables and control flow
and makes the analysis easier. In addition, the user provides
the input data and the target kernel name. After that, the
AutoMatch compiler, which is implemented in the execution
engine of the dynamic compiler LLI, statically and dynamically
analyzes the optimized IR to extract the architecture-agnostic
characteristics of the sequential code, which are combined with
the specifications of the target heterogeneous system to generate
the final performance analysis and predictions.

2) Parallelism Analysis: AutoMatch leverages both static
and dynamic analysis techniques to automatically quantify
the inherent parallelism in the sequential applications, thereby
estimating their computation time on the different architectures
for a given input data. In particular, it schedules the application
on a theoretical architecture with an infinite number of registers
and compute units and a zero memory access latency, such that
each operation is executed as soon as its true dependencies are
satisfied. Figure 4 depicts our As Soon As Possible (ASAP)
schedule of the application on the theoretical architecture,
where the nodes are dynamic instances of the floating-point
instructions (operations), denoted as Inm, and the edges are
true dependencies between the operations. For example, if
each dynamic instance m of a floating-point instruction In
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is scheduled at an execution level j, then Inm must have
dependencies at the execution level j − 1.

This ASAP schedule is similar in spirit to the classical work-
depth model [26], [16], which represents the computations of a
given algorithm using a directed acyclic graph (DAG) in which
nodes and edges represent operations and their dependencies,
respectively. While the classical work-depth model requires
manual analysis to quantify the sequential part and average
parallelism of a given algorithm, AutoMatch not only generates
the ASAP schedule automatically to estimate the computation
time, but also considers the workload imbalance, the vectoriza-
tion potential, the instructions mix, and the resource constraints
of the target architectures.

To identify the true dependencies between operations, Au-
toMatch uses several static and dynamic analysis techniques.
First, it constructs the def-use chains [25] at compile time to
track data dependencies through registers; due to the infinite
number of registers, only true dependencies exist. Second, it
uses LLVM’s dynamic compiler, LLI, to profile the application
and collect the execution history of the compute instructions
and memory operations. Third, using the application execution
history, AutoMatch implements a dynamic points-to analysis
[27], [28] to track data dependencies through the memory
operations. Leveraging a hash table that resembles Content-
Addressable Memory (CAM), AutoMatch dynamically detects
true (read-after-write), anti (write-after-read) and output (write-
after-write) memory dependencies.

Based on the detected true dependencies, AutoMatch con-
structs the ASAP schedule of the sequential application on
the theoretical architecture and computes D, the number of
execution levels (i.e. the depth of the critical path), and wi,
the total number of operations for each execution level i. In
addition, AutoMatch computes fim, the instruction mix of the
sequential application to estimate the performance degradation
factor relative to the peak floating-point throughput (π0) on
parallel architectures with Fused Multiply-Add (FMA) units.
The instruction mix factor fim is defined as:

fim =
Wadd +Wmul

2×max(Wadd,Wmul)
(1)

where Wadd is the number of addition and subtraction opera-
tions, and Wmul is the number of multiplication operations.

Moreover, AutoMatch leverages the LLVM vectorizer to
identify the loops that are amenable to vectorization, and
computes Wvec, the number of floating-point operations that
can efficiently utilize the vector (SIMD) units. Next, it estimates
fv , the performance degradation factor relative to the peak
floating-point throughput on parallel architectures with vector
units, as follows:

fv =
Wvec

W
(2)

where W is the total number of floating-point operations.
3) Data Locality Analysis: AutoMatch quantifies the inher-

ent data locality in the sequential applications by analyzing
their memory access pattern on the above abstract architecture
model, which assumes an ideal cache-memory model. The main

Memory location accessed a c d b c e g e d d 

LRU stack distance ∞ ∞ ∞ ∞ 2 ∞ ∞ 1 4 0 

 Fig. 5: LRU stack distance analysis example

goal is to estimate the number of data transfers between the
compute cores and the fast memory, Qf , and between the fast
and slow memories, Qs. Since the proposed architecture model
assumes that the fast memory is fully associative and uses the
LRU replacement policy, AutoMatch adopts the LRU stack dis-
tance analysis [29]. The LRU stack distance (or reuse distance)
is the number of distinct memory locations accessed between
two consecutive accesses to the same memory location; the
LRU stack distance of the first reference to a memory location
is ∞. Figure 5 shows an example of the LRU stack distance
analysis on a memory access trace of 10 memory references.

In a fully-associative cache with the LRU replacement policy,
a memory reference with an LRU stack distance larger than
the fast memory size results in a miss or an access to the
slow memory. Hence, Qs and Qf can be estimated from the
number of memory references with an LRU stack distance
larger than the fast memory size and the number of memory
references with an LRU stack distance less than or equal to the
fast memory size, respectively. While the LRU stack distance
analysis ignores the conflict and contention misses, AutoMatch
assumes that the memory transfers on the parallel architectures
are bounded by Qs and Qf , as in prior work [30].

AutoMatch estimates the memory access cost of the target
application as follows. First, it dynamically analyzes the LLVM
IR instruction stream (execution history) to capture the load
and store memory operations, and then records the referenced
memory locations (addresses) along with their last access time
in a self-adjusting binary search tree [31], which is sorted by
the last access time. Second, whenever a memory location is
referenced, AutoMatch examines the memory tree to find the
last access time; if the target memory location does not exist
in the memory tree, the current memory access has an LRU
stack distance of ∞; otherwise, AutoMatch finds the distinct
nodes accessed between the last access to the target memory
location and the current access; the number of such nodes
is the LRU stack distance of the current memory reference.
Third, AutoMatch counts the number of memory references
with a particular LRU stack distance to generate the LRU stack
distance histogram. Finally, it combines this histogram with the
specifications of the target architectures and the ASAP schedule
of the application to compute Qf and Qs.

4) Synchronization Analysis: While the parallelization over-
heads consist of thread creation/destruction, kernel launching,
and synchronization, AutoMatch focuses on synchronization for
two reasons. First, unlike the other overheads, synchronization
is not a one-time cost and can increase with the problem size
(e.g., LUD has O(n) synchronization points, where n is the
matrix dimension). Second, the synchronization overhead is
significant on massively-parallel GPU architectures; As shown
in Table I, their overhead is an order of magnitude higher than
multi-core CPUs.
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AutoMatch uses a heuristic for estimating the required global
synchronization points to reach a globally consistent memory
state on parallel architectures. The proposed heuristic is based
on detecting loop-carried memory dependencies. AutoMatch
dynamically analyzes the loop nests of the sequential appli-
cation to find the inherently sequential loops, i.e., loops that
cannot run in parallel due to loop-carried memory dependen-
cies, and the parallel loops. It estimates the number of global
synchronization points as the trip counts of the inherently
sequential loops with inner parallel loops. Figure 6 shows an
example of this case, where the i-loop is inherently sequential,
and the j-loop is parallel, i.e., the number of global synchro-
nization points is n−2. In addition, AutoMatch allows users to
annotate the source code to indicate the global synchronization
points.

f o r ( i =1 ; i < n ; i ++) {
f o r ( j =1 ; j < n ; j ++) {

a [ i ] [ j ] = a [ i −1][ j ] + 2 ;
}

}

Fig. 6: Detection of global synchronization

D. Analytical Modeling

1) Execution Cost Estimation: AutoMatch constructs the
Execution Cost (EC) model that captures the complex inter-
action of the application, input data, and target architectures.
In addition, it can be generalized to different types of hardware
architectures. After analyzing the architecture-agnostic features
of the sequential application, AutoMatch combines these fea-
tures with the specifications of the target architectures to gen-
erate first-order analytical models to estimate the computation,
memory access time and synchronization overhead.

The computation time Tcomp is estimated as:

Tcomp =
D

π0
+
∑ wi

min(wi, np)× (π0 × fv × fim)︸ ︷︷ ︸
∀i

(3)

where D is the number of dependency levels, wi is the total
operations for each dependency level i, np is the number of
cores, π0 is the maximum operation throughput per core, fv is
the vectorization factor, and fim is the instruction mix factor.
This equation extends the classical Amdahl’s law. The first
term models the sequential execution, which depends on the
inherent dependency chain, while the second term models the
parallel execution that is limited by either the available cores
or work in a given execution (dependency) level. In addition,
it considers the effect of the instruction mix and vectorization
on the computation throughput.

The memory access time Tmem is computed as follows:

Tmem = (αf + αs)×D + (
Qf
βf

+
Qs
βs

)× L (4)

where αf and αs are the access latency of the fast and slow
memories, βf and βs are the memory bandwidth of the fast and
slow memories, Qf is the number of data transfers between

the compute cores and the fast shared memory, Qs is number
of data transfers between the fast and slow memories, D is
the depth of the application ASAP schedule, and L is the
memory transfer size. This equation accounts for the memory
latency once per execution (dependency) level, and assumes that
the memory transfers are effectively pipelined by the memory
system such that they are limited by the memory bandwidth.

The synchronization time Tsyn, is estimated as:

Tsyn = S × s0 (5)

where S is the total number of global synchronization points,
and s0 is the global synchronization cost.

Finally, AutoMatch evaluates equations (1)-(5) to predict
the execution cost on each architecture, which is estimated as
the overall computation time, memory access time, and global
synchronization overhead. Moreover, AutoMatch predicts the
parallel resource contention by considering the access time to
shared resources such as the fast and slow memories (assuming
that they are shared fairly among threads). Next, AutoMatch
combines the execution cost on the different architecture with
the floating-point work of the application to predict the parallel
performance upper bounds on each architecture.

2) Workload Distribution: AutoMatch also estimates the
relative execution cost across the different architectures to drive
a workload distribution service for parallel compute kernels
on heterogeneous CPU-GPU nodes. The main objective of this
run-time service is to distribute the workload (i.e., iteration
space and data) over the available heterogeneous devices to
minimize the overall execution time. Instead of distributing the
workload evenly across the CPU and GPU devices, AutoMatch
reduces the overall execution time by considering the relative
computing power of each architecture with the execution cost
prediction above. For example, if AutoMatch’s relative execu-
tion cost of a compute kernel on the CPU and the GPU is 3
to 1, its workload distribution scheme partitions the workload
into four parts and assigns the three to the GPU and the other
to the CPU.

III. CASE STUDIES

This section shows our experiments to demonstrate the effi-
cacy of AutoMatch and its utility as a first-order performance
prediction framework for sequential applications on heteroge-
neous HPC systems.

The experiments use AutoMatch to analyze the sequential
implementation of the target applications and show its es-
timation in comparison to the actual heterogeneous parallel
implementations. The applications are built by the following
compilers: gcc 4.9, icc 13.1, and nvcc 7.5, and AutoMatch is
implemented in LLVM-3.6. While AutoMatch works with any
data type supported by LLVM, this work considers double-
precision floating point only for brevity. Since the key eval-
uation point is in the relative performance of the different
HPC architectures at the chip level, the reported performance
is for the core computation kernels and ignores one-time cost
overheads such as I/O, data initialization (including host-device
transfer), profiling, and debugging.
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TABLE II: Rodinia and Parboil workloads
Workload Description Input data

CUTCP Simulation of explicit-water biomolecular model that computes the Cutoff Coulombic Potential over a 3D grid watbox.sl40.pqr
STENCIL Iterative Jacobi solver on a structured 3D grid Grid 512x512x64
SPMV Sparse matrix vector multiplication Dubcova3.mtx [32]
LBM Lid-driven cavity simulation using the Lattice-Boltzmann Method 120 120 150 ldc.of
LUD LU decomposition on a dense matrix Matrix 5122

LavaMD Molecular-dynamics simulation that calculates the potential due to mutual forces between particles in a 3D space boxes1d 10
HotSpot Thermal simulation and modeling for VLSI designs temp 1024 power 1024
SRAD Image processing used to remove locally correlated noise, known as speckles image 5122

Fig. 7: Parallelism and LRU stack distance profiles

A. Performance Forecasting and Analysis Case study

This case study shows the effectiveness of AutoMatch in
identifying the performance upper-bound of sequential appli-
cations on heterogeneous HPC architectures and how close
the parallel implementation is to the best parallel performance.
In addition, the study presents the sensitivity of AutoMatch
to variations in the architectural characteristics and its ability
to predict the relative ranking of the architecture alternatives.
We consider eight HPC workloads from Rodinia [33] and
Parboil [11] benchmarks with different parallelism profiles
and memory access patterns. The reason for choosing Rodinia
and Parboil is because they provide sequential/multithreaded
CPU implementations and GPU implementations, which are
used as reference for several black-box performance prediction
approaches [8], [9]. Table II presents the target workloads and
the input data sets provided by their benchmark suites.

Figure 7 presents the parallelism and LRU stack distance
profiles of the target workloads. Due to space limitations,
it shows only three workload results: STENCIL, SPMV and
LUD. AutoMatch indicates that STENCIL is inherently parallel
with a few execution levels and massive amounts of work per
level, and it has a uniform memory access pattern with few
memory streams corresponding to the dimensions of the data
grid. SPMV has a small number of execution levels; however,
the amount of work per level is significantly lower than
STENCIL, due to the sparsity of the input matrices. In addition,
SPMV suffers from low data locality, as the compulsory misses
(memory references with LRU stack distance ∞) dominate
the memory accesses. LUD has an irregular parallelism pro-
file that alternates between two bounds corresponding to the
computation of the pivot column and the update of the trailing
sub-matrix, respectively. For LUD, the amount of work per

execution level decreases as it moves down the critical path of
the application schedule, which results in workload imbalance.
Moreover, LUD has scattered memory access streams, because
the data accessed decreases as the execution progresses due to
the workload imbalance.

Figure 8 shows AutoMatch’s estimation of the upper bounds
on the parallel performance compared to the achieved per-
formance of the OpenMP and CUDA implementations, while
Figure 9 provides AutoMatch’s analysis of the execution bottle-
necks on the different architectures. The experiment considers
the first subset of the target architectures (ARC1, ARC3
and ARC5) that contains heterogeneous architectures with
significantly different hardware capabilities. The results show
that AutoMatch accurately identifies the best architecture and
the relative ranking of the different architectures in all the test
cases. Moreover, the actual parallel implementations do not ex-
ceed AutoMatch’s prediction, which indicates that AutoMatch
accurately predicts the performance upper-bound.

Performance Gap. AutoMatch helps the user to determine
how close the parallel implementations is to the performance
upper bounds. The results show that the gap between the
achieved performance and the estimated upper bounds on
the many-core GPUs (ARC3 and ARC5) is small in most
cases; however, this gap is quite large on the multi-core CPU
(ARC1). In particular, the actual parallel implementations
show that GPU architectures achieve more than two orders-
of-magnitude speedup (up to 120X) over the CPU architecture,
while AutoMatch reports lower relative speedup between the
two architectures (up to an order-of-magnitude speedup). The
important question here is whether this performance gap is due
to AutoMatch’s prediction error or because the benchmark
suites are not equally-optimized for each architecture type.
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Fig. 8: Achieved performance vs. AutoMatch’s upper bounds

Fig. 9: AutoMatch bottlenecks prediction

As Lee et al. [10] debunk the unrealistic 100X speedup
of GPUs vs. CPUs and show that it results from an unfair
comparison with inferior CPU implementations, our hypothesis
is that the benchmark suites are not equally-optimized for
each architecture type. After inspecting their actual parallel
implementations, it turns out that the CUDA implementation
is optimized whereas the OpenMP implementation is unopti-
mized, which is justified by the following. First, the OpenMP
implementation does not utilize the vector units, which reduces
the performance of compute-bound workloads (e.g., IavaMD
and CUTCP). Second, the OpenMP code is cache-unfriendly,
e.g., it distributes loop iterations with unit-stride memory
accesses on different threads (STENCIL) and uses array of
structures (IavaMD, CUTCP and LBM). Simple data-layout
optimization can dramatically improve the performance of the
CPU caches [34]. Third, the CPU code incorrectly uses GPU-
specific optimizations, e.g., irregular applications (SPMV) use
the GPU-friendly compressed format (JDS format).

Optimization Studies. To verify our hypothesis and to show
that the estimated upper bounds are attainable, the experiment
here considers two cases: a regular workload (STENCIL) and
an irregular workload (SPMV). First, AutoMatch indicates that
STENCIL is bounded by the off-chip memory access time
(Figure 9), and it has few memory access streams corresponding
to the dimensions of the input data grid (Figure 7). We found
that the original workload distribution strategy (of the baseline
OpenMP implementation) partitions the input data grid along
the X-axis, which has the smallest reuse distance or highest
locality, and distributes chunks of Y-Z planes over the different
threads. Hence, we changed the workload distribution strategy
to distributes chunks of X-Y planes over the different threads.
Second, AutoMatch shows that SPMV suffers from low data
locality and has limited parallelism (Figure 7), which increases
the load imbalance especially for architectures with massive
number of threads. While the original OpenMP implementa-
tion uses the JDS format, which is more suitable for data-
parallel architectures with fine-grain parallelism [35], we use
the CSR format that outperforms JDS on coarse-grain parallel

architectures with large caches. In addition, we used a dynamic
workload distribution strategy that distributes chunks of 32
compressed rows over the available cores.

As shown in Figure 8, the performance of our implemen-
tations, named STENCIL-OPT and SPMV-OPT, are signif-
icantly better than the original implementations on ARC1,
which means that the estimated performance upper bounds can
be achieved with platform-specific optimizations and tuning.
Moreover, while AutoMatch’s prediction error of the relative
speedup is 91% on average for STENCIL and SPMV, it
dramatically drops to 15.5% on average for STENCIL-OPT and
SPMV-OPT. These case studies pinpoint the critical issue with
the “black-box” prediction approaches (e.g., profiling-driven
and machine-learning). Since they rely on the performance
of a training set of parallel applications, their results can be
easily fooled by heterogeneous implementations that are not
equally-optimized for each target architecture. In other words,
their predicted relative speedup (and prediction accuracy) can
be misleading without the availability of a diverse set of
applications along with their optimized implementations for
each architecture type; in general, finding such applications is
another dauting task.

Finally, the gap between the the performance upper bounds
and the achieved performance on many-core GPUs is relatively
large in lavaMD and CUTCP, which are bounded by the
compute time and on-chip memory access time according to
AutoMatch’s analysis. The investigation of the CUDA imple-
mentations of lavaMD and CUTCP shows that they suffer from
low occupancy (37% and 27%), due to high registers and local
memory usage which limits the number of concurrently active
threads and thread-blocks. Kernel fission [36] can be used to
improve the occupancy by partitioning the kernel into smaller
kernels with less resources usage.

Sensitivity Analysis. The experiment here considers the
second and third subsets of the target architectures, which
contain multi-core CPUs (ARC1 and ARC2) and many-core
GPUs (ARC4 and ARC5) architectures with similar hardware
characteristics and capabilities (Table I).
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Fig. 10: AutoMatch prediction sensitivity

Fig. 11: Performance (compute kernels) on a heterogeneous CPU-GPU node (ARC1 & ARC5) with the different workload
distribution strategies: Default, AutoMatch and Oracle.

Figure 10 shows AutoMatch’s performance prediction and
the actual performance on these architecture subsets. Surpris-
ingly, AutoMatch accurately predicts the best architecture in
all the test cases, except for the LUD benchmark on multi-core
CPUs, which shows that our automatically-generated, high-
level performance models are sensitive to the small variation
of the target architectures. For LUD, AutoMatch indicates
that it is bounded by the fast memory access time on multi-
core CPUs (ARC1 and ARC2), and its parallelism and LRU
stack distance profiles show a non-uniform memory access
pattern, where the data being accessed decreases as the exe-
cution progresses due to the workload imbalance. Hence, our
hypothesis is that the higher memory bandwidth of ARC2 is
underutilized due to the non-uniform memory access pattern
of LUD, leading to the incorrect ranking. While AutoMatch’
high-level memory model captures the data locality of the target
applications, it does not consider the uniformity of the memory
access pattern and its effect on several hardware features such
as hardware prefetchers, memory coalescing units, and write
buffers. In addition, the micro-benchmarking approach has the
same limitation, as it uses a stream-like memory access pattern
to measure the memory bandwidth of the target architecture.

B. Workload Distribution Case Study

This study shows the effectiveness of our workload distribu-
tion scheme based on the execution cost model generated by
AutoMatch from analyzing the sequential code. Our scheme is
compared to an oracle distribution scheme obtained by runtime
profiling of the optimized parallel implementations.

To evaluate AutoMatch’s workload distribution, we use
three applications from the structured grids and sparse linear
algebra design patterns that are heavily-used in Computational
Fluid Dynamics (CFD). MiniGhost [37] is a representative
application for multi-material, hydrodynamics code that models
hydrodynamic flow and dynamic deformation of solid materi-
als. The main computation kernel is the finite difference solver,
which applies a difference stencil and explicit time-stepping

scheme on a homogenous 3D grid. Heat2D solves the pois-
son partial differential equations (PDEs) for heat diffusion in
homogenous two-dimensional grid [38]. SPMV is a canonical
sparse-matrix dense-vector multiplication. The experiment uses
the implementations provided by the MetaMorph library [12],
which supports the seamless execution of CFD applications
on multiple heterogeneous devices, including CPUs (OpenMP
back-end) and GPUs (CUDA back-end). In addition, MiniGhost
and Heat2D are configured to apply a 3D 7-point and 2D 5-
point stencils, respectively, on a single global grid, and to use
an explicit time-stepping with 100 time steps.

The target platform is a heterogeneous CPU-GPU node that
includes ARC1 and ARC5 devices. Three different workload
distributions are tested: default, AutoMatch, and Oracle distri-
bution. The default strategy is to distribute the workload evenly
across the available devices. The AutoMatch workload distribu-
tion uses AutoMatch to analyze the sequential implementation
and to predict the execution cost on the heterogeneous devices.
Next, based on the predicted execution cost, it distributes the
workload to minimize the overall execution time. The Oracle
distribution is similar to AutoMatch strategy; however, instead
of predicting the execution cost, it profiles the parallel code on
the target CPU and GPU and distributes the workload based on
the measured execution time.

Figure 11 shows the overall execution time of the target
applications with the different workload distribution strategies.
The results show that the AutoMatch and Oracle strategies
achieve comparable performance and outperform the default
strategy by a factor of 3.5X and 3.8X on average, respectively.
In summary, AutoMatch’s workload distribution achieves ap-
proximately 90% of the oracle performance, due to its accurate
estimation of the relative execution cost across CPU and GPU
architectures. It would be interesting to investigate how the
different workload distribution strategies affects the energy
efficiency in that the CPU and the GPU have different power
characteristics. However, it is beyond the scope of this paper
and we leave it for our future work.
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TABLE III: Comparison of recent performance prediction tools
for heterogeneous HPC architectures (CPUs and GPUs)

COMPASS [5] XAPP [8] AutoMatch

Input code Annotated Sequential Sequential
Features extraction Static analysis Dynamic analysis Hybrid analysis
Arch model generation By users Training data Benchmarking
Performance modeling ASPEN model Machine-learning Exe. Cost model
Cache-aware No Yes Yes
App generality Low High High
HW generality High Low High
The tool speed Fast Slow Moderate

C. Caveats and Extensions

While AutoMatch generates simple and intuitive models,
the results show that it works well as a first-order framework;
however, it has several limitations. First, AutoMatch ignores
one-time overheads such as host-device data transfers, which
depend on the run-time system and the expansion bus rather
than the devices, and assumes that the performance is domi-
nated by the compute kernels. While this is a valid assumption
for long-running HPC applications, extending AutoMatch to
model the host-device interconnect and data transfers enables
the users to explore their effect on the overall performance.
In particular, the recent compiler algorithms for analyzing the
value-flow chains of the program data can be used to estimate
the communication cost between the host and devices (acceler-
ators) [39]. Second, AutoMatch ignores low-level, architecture-
specific features such as HW prefetchers, memory coalescing,
thread divergence, and occupancy. Although AutoMatch can be
extended, beyond its main goal as a first-order prediction tool,
to incorporate more sophisticated models (e.g., [40]), there is
a trade-off between the tighter performance bounds and both
the generalization to different architecture types and the limited
insight about the critical performance parameters.

IV. RELATED WORK

Recently, several tools have been proposed to automate
the performance modeling and prediction using static/dynamic
analysis and machine-learning. Table III summarizes the com-
parison of the recent performance prediction tools for hetero-
geneous HPC architectures (CPUs and GPUs).

COMPASS [5] generates a structured performance model
from the parallel application code using static analysis. How-
ever, the user must indicate the available parallelism and
data movement to generate an accurate model. Otherwise,
COMPASS may generate a conservative parallelism profile,
due to the difficulty of alias analyses [6], [7]. Therefore,
COMPASS does not work well for irregular applications whose
computation and memory access patterns are data-dependent.

XAPP [8] uses machine-learning to find the correlation
between the CPU execution profile of the application and the
GPU speedup. XAPP is heavily influenced by the training data,
and its prediction accuracy depends on the availability of a
diverse set of applications along with their optimized GPU
implementation. So, extending XAPP to new architecture types
requires huge effort to rewrite and re-optimize each training
application to the target architectures. Moreover, to predict the

performance on a specific GPU device, the user needs to run
all the training applications on this device, which takes days.
Such long-running model generation of ML-based tools end
up being orders of magnitude slower than AutoMatch, which
generates the device parameters using micro-benchmarks that
takes few minutes. In addition, XAPP’s predicted speedup is not
the speedup upper-bound, and it depends on which optimization
techniques are applied in the training applications.

Kismet [3] predicts the potential speedup of serial applica-
tions on multi-core processors. It instruments the code to build
the self-parallelism profile, and estimates the memory access
latency by profiling the application on a CPU cache simulator.
Kismet optimistically assumes that the memory bandwidth
is scalable with the number of threads, which is unrealistic
assumption especially for massively parallel architectures such
as GPUs. Therefore, its predicted speedup is unattainable at
higher core counts and for memory-bound workloads. As an
alternative, Parallel Prophet [4] predicts the speedup of the
annotated code on multi-core CPUs. Unlike Kismet, it does
not require parallelism discovery, but relies on user annotations
to identify the available parallelism. To build the performance
model, Parallel Prophet collects architectural parameters such
as instruction counts and cache misses through hardware per-
formance counters, which requires the availability of the target
CPUs and the parallel (or annotated) code.

Shen et al. [41] present a workload partitioning frame-
work for heterogeneous platforms. The framework computes
the partitioning ratio by profiling the actual parallel code to
estimate the relative hardware capabilities and the host-device
data transfer overhead. Conversely, AutoMatch estimates the
workload distribution ratio by analyzing the sequential code.
While AutoMatch assumes that the performance is dominated
by the compute kernels, it can be easily extended to model the
host-device data transfer overhead.

V. CONCLUSION

This paper proposes AutoMatch, an automated framework
that combines compiler-based analysis techniques, an abstract
hardware model, analytical modeling, and micro-benchmarking
to project (1) the realizable performance upper bounds of
sequential applications on heterogeneous parallel architectures,
(2) the relative ranking/performance of the architecture alter-
natives, and (3) the best workload distribution strategy on
heterogeneous nodes with different parallel devices. The exper-
imental results show the efficacy of the proposed framework
across five different heterogeneous architectures and a set of
HPC workloads, with different parallelism and memory access
patterns. Moreover, AutoMatch’s workload distribution turns
out to be very effective, achieving comparable performance to
a profiling-driven oracle.

Currently, AutoMatch is dedicated to shared-memory par-
allel architectures, but can be extended to non-uniform and
distributed-memory architectures by automatically constructing
the communication models [39]. Finally, AutoMatch is not
applicable only to the performance criteria, but can also be
extended to programmability and power efficiency.
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