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ABSTRACT Event-based vision sensors produce asynchronous event streams with high temporal resolution
based on changes in the visual scene. The properties of these sensors allow for accurate and fast calculation of
optical flow as events are generated. Existing solutions for calculating optical flow from event data either fail
to capture the true direction of motion due to the aperture problem, do not use the high temporal resolution
of the sensor, or are too computationally expensive to be run in real time on embedded platforms. In this
research, we first present a faster version of our previous algorithm, ARMS (Aperture Robust Multi-Scale
flow). The new optimized software version (fARMS) significantly improves throughput on a traditional
CPU. Further, we present hARMS, a hardware realization of the fARMS algorithm allowing for real-time
computation of true flow on low-power, embedded platforms. The proposed hARMS architecture targets
hybrid system-on-chip devices and was designed to maximize configurability and throughput. The hardware
architecture and fARMS algorithm were developed with asynchronous neuromorphic processing in mind,
abandoning the common use of an event frame and instead operating using only a small history of relevant
events, allowing latency to scale independently of the sensor resolution. This change in processing paradigm
improved the estimation of flow directions by up to 73% compared to the existing method and yielded a
demonstrated hARMS throughput of up to 1.21 Mevent/s on the benchmark configuration selected. This
throughput enables real-time performance and makes it the fastest known realization of aperture-robust,
event-based optical flow to date.

INDEX TERMS Event-based, aperture robust, optical flow, neuromorphic computing, field programmable
gate arrays, system-on-chip, parallel acceleration, real-time systems.

I. INTRODUCTION
The emergence of event-based vision sensors has led to
the development of new applications and algorithms that
are able to leverage the high temporal resolution that these
sensors provide. One such application is the computation of
optical flow. Traditional optical flow algorithms such as the
Horn and Schunk [1] and Lucas-Kanade [2] methods operate
on traditional camera frames and thus are not suitable to take
advantage of the high temporal resolution and asynchronous
characteristics of event-based vision sensors. Many new
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methods for computing optical flow from event-based sensors
have been developed to capitalize on the unique characteris-
tics of these sensors. One such method is a modified version
of the Lucas-Kanademethod that uses the events to determine
spatial and temporal gradients [3]. Another method, uses the
derivative of the regularized surface of events to estimate
the magnitude and direction of an object’s motion [4]. Both
methods discussed are susceptible to the aperture problem
of optical flow, i.e, they will produce flow vectors that are
normal to the moving edge regardless of the true direction of
motion. This is due to the fact that both methods view only
a local region of events and do not consider all the events
produced by an object moving through the scene.
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There are some methods of event-based optical flow cal-
culation that have been able to address the aperture problem
and compute the true optical flow using event data. One
such method, known as EV-FlowNet, is presented in [5].
This method uses a self-supervised neural network to gen-
erate the optical flow using frame based accumulation of
events. This method accumulates events over a certain time
window before calculating the flow for the whole frame.
It is also dependent on the use of quality grayscale images
generated by the DAVIS event camera for training, making it
less adaptable to varied and unpredictable visual scenes [5].
Akolkar et al. [6] proposed an unsupervised event per event
spatial pooling of local-flow computations to solve the aper-
ture problem while calculating flow asynchronously using
only generated temporal contrast events. They present a
method referred to as aperture robust multi-scale (ARMS) for
computing optical flow from an event stream [6]. Details of
the ARMS algorithm are discussed further in Section II-B.

In this research, we propose a redesigned and optimized
ARMS algorithm referred to as faster ARMS (fARMS),
and analyze time complexity when compared to the original
ARMS algorithm. We then present a hardware acceleration
architecture of the fARMS flow algorithm using a hybrid
system-on-chip (SoC) embedded platform containing a field
programmable gate array (FPGA). We will refer to this archi-
tecture as hardware ARMS (hARMS). fARMS and hARMS
were developed to complement the event-based asynchronous
output of the neuromorphic vision sensors. The hARMS
architecture allows for flexible configuration based on appli-
cation specific needs and provides significant improvements
in latency and throughput compared to both the existing
ARMS flow algorithm and the fARMS software baseline.
This improved performance allows for real-time operation in
a variety of visual scenarios, opening up the possibility of
more widespread optical-flow-based application deployment
on embedded platforms.

Although there are a variety of event-based optical flow
techniques, relatively little research has been done on hard-
ware acceleration for them. This is due in part to the fact that
most of these algorithms output normal flow and do not intend
to solve for the true direction of flow. These local-flow algo-
rithms are able to perform near real time without hardware
acceleration because they only consider a small amount of
local data, however, sacrificing accuracy.

A block-matching optical flow algorithm for event-based
sensors was implemented on an FPGA by Liu and Del-
bruck [7]. This implementation, however, was found to per-
form poorly in real-world scenes and was therefore expanded
on in [8] to improve performance. It is estimated in [8] that the
improved design would require 100k look-up tables (LUTs)
and 35k flip-flops (FFs) when implemented on an FPGA
using a similar architecture as proposed in [7]. Block match-
ing was shown, in some cases, to find the true optical flow,
however this was dependent on a predetermined block size
parameter and the dynamics of the scene [8]. Although this
method can overcome the aperture problem in some cases,

it still fails to fully make use of the high temporal resolution
of event-based cameras. The algorithm is not asynchronous,
but rather operates on time slices of accumulated events,
therefore sacrificing temporal resolution.

Another example of event-based optical flow acceleration
using an FPGA is presented in [9]. This research presents an
FPGA implementation for a modified version of the itera-
tive derivative of the surface of events algorithm presented
in [4]. The algorithm derives the surface of events after a
temporal regularization to asynchronously estimate the flow,
and is capable of performing at a throughput of 2.75 Mevt/s.
However, the overall throughput of the system is limited to
1.46 Mevt/s due to the pre-processing stage [9]. The design
was implemented using a Xilinx Spartan 6 LX150 FPGA
on an Opal Kelly XEM6010 board and required 3794 logic
slices, 138 block RAMs (BRAM), and 16 DSPs when using
a 304× 240 pixels resolution ATIS sensor.
While results presented in [9] show impressive throughput,

allowing for real-time, asynchronous operation, it makes no
attempt to address the aperture problem. The design pre-
sented also has high BRAM requirements because recent
events at each pixel location are stored. This indicates that
the architecture would scale poorly as the resolution of the
event-based vision sensor increases, drastically increasing
BRAM requirements and potentially exceeding the avail-
able resources on many embedded FPGA platforms. Finally,
an implementation of the surface of events approach [4] using
spiking neural networks and a neuromorphic spike based
processor can be found in [10].

II. BACKGROUND
This section provides an overview of event-based vision
sensors and their principle of operation. The ARMS flow
algorithm used as the basis of this research is discussed in
further detail. Finally, a brief discussion of the SoC design
methodology and tools used in this research is provided.

A. EVENT-BASED VISION SENSORS
Unlike traditional cameras, which sample pixel intensity at
a fixed, synchronized frame rate, event-based vision sen-
sors record asynchronous pixel events. These events encode
temporal log intensity contrast at a pixel as either an ‘‘on’’
or ‘‘off’’ event for increasing and decreasing intensity over
time respectively [11]. The sensor outputs events using
address-event representation (AER), where each event packet
includes the x and y coordinates of the event pixel, the event
time t , and the event polarity p [12].

The operating paradigm of event-based vision sensors pro-
vides multiple advantages over traditional cameras such as
high dynamic range and high temporal resolution [11]. High
dynamic range allows for detection and tracking of objects in
extreme lighting conditions where traditional cameras would
be saturated and unable to detect objects. The high tempo-
ral resolution of event-based vision sensors is of particular
interest for the optical flow application. The microsecond
precision of the sensors allows for the possibility of
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FIGURE 1. The principle of aperture robust optical flow computation from
a set of local optical flows estimated from increasingly large spatial
regions of interest using the ARMS framework. The principle is to
determine the spatial window size around the event that has the largest
average magnitude of local flow estimates (Un). Once found, the average
local flow vector (Ū) in that maximum magnitude window is used as best
estimate for the true optical flow of the event. The selection of the
maximum magnitude window corresponds to the selection of the best
aperture size for flow computation.

highly accurate optical flow estimates even when objects are
moving rapidly through the scene.

This research uses data recorded with a variety of
event-based vision sensors with resolutions ranging from
240×180 pixels to 640×480 pixels [13]–[15]. Event cameras
often provide lower resolution than traditional cameras, with
early versions having resolutions lower than the ones used in
this research [16]. However, as the technology has matured,
higher resolution sensors such as the 1280×720 pixels sensor
presented in [17] have been developed. Some event-based
vision sensors are also able to record grayscale intensities
either as synchronous images or asynchronous events along
with the temporal contrast event outputs. The calculation of
optical flow using ARMS, however, only requires the use
of temporal contrast events, therefore grayscale data is not
considered.

B. APERTURE ROBUST MULTI-SCALE FLOW
Optical flow computations in general use the movement of
pixel-based information such as intensity or events to cal-
culation direction of motion. These true direction estimates,
however, are hard to estimate due to the ‘‘aperture problem’’
which arises when the flow computation is performed only on
a section of the object. To reliably compute the true direction
of motion the flow algorithm needs information about the
motion of the whole object. This requirement, however, can

lead to a computational bottleneck as it requires additional
steps such as segmentation or clustering of the different
objects in the scene. Recently, we proposed a novel method,
called ARMS (Aperture Robust Multi-Scale flow) [6], which
overcomes these problems in an event-by-event, unsuper-
vised manner that eliminates the need for additional compu-
tations. While the details may be found in [6], for readability
and completeness, we provide, in this section, a brief descrip-
tion of the basic principles behind the working of this method.

Fig. 1 shows the operational principle of the ARMS
method. Let us consider a contour shown in gray moving in
a horizontal direction indicated by the blue arrow with the
true-flow velocity of U . For each event generated by this
moving contour, we can compute the local flow (Un) using the
derivative of the surface of events. The direction of this local
flow is always orthogonal to the local tangent of the contour
and typically does not reflect the true direction of motion.
However, the true flow and local flow are related based on
the orientation of this edge and the true flow direction as
shown in (1). Interestingly, as the orientation of edge at which
local flow is computed becomes orthogonal to the true-flow
direction, the local-flow magnitude goes to its maximum
value and is equal to the true-flow magnitude, as the value
of cos(θ ) goes to one.

Un = |U| cos(θ ) (1)

In ARMS, we used this principle to show that it is possible
to find a spatial neighborhood window around an event,
in which maximizing the average local-flow magnitude is
equivalent to minimizing the error difference between aver-
age local-flow direction and the true-flow direction. This
operation can be summarized in (2) where k is the different
spatial neighborhood sizes. This means that the minimization
problem in (2) can be used to search for the best spatial
neighborhood size. This neighborhood size corresponds to
the best ‘‘aperture size’’ for the flow computation based on
the different objects present in the scene, which is determined
without requiring any a-priori knowledge of the scene itself,
thus, operating in a fully unsupervisedmanner while perform-
ing the flow computation event-by-event.

argmin
k

(E) = argmin
k

(|U| − |Un|) ≡ argmax
k

(|Un|) (2)

The true flow estimate from this spatial window is then
given as the average of all the recent local-flow vectors
computed within this window.

The visualization in Fig. 1 shows the ARMS realization of
this windowing strategy, known as multi-scale pooling. The
event at which the true flow is being computed is shown as the
red dot. The events on the contour around this event also have
already computed, local-flow vectors shown as black arrows.
The magnitude of these flow vectors (i.e the length of the
arrows) varies depending on the contour section orientation
w.r.t the true-flow direction. We create η windows of increas-
ing size (shown as green dashed rectangles), starting from the
smallest window centered around the event, up to the largest
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window of size Wn. For each of these spatial windows we
compute the average magnitude (|Un|) of all the local-flow
vectors within the window (shown as magenta arrows at the
bottom left for eachwindow).We then find the windowwhich
has the maximum magnitude (shown as green solid rectangle
with orange vector in bottom left). The average local-flow
vector (U ) in this window is then assigned as the true optical
flow for the event.

It may be noted that the theoretical basis for the ARMS
flow algorithm holds for any local flow that fulfils the criteria
in (1). This means that many different existing methods could
be used to calculate local flow and the multi-scale search then
could be used to correct the flow direction. We reported in [6]
that the ARMS method performed considerably faster than
any existing state of the art method, without need for spe-
cialized computational hardware such as a GPU. However,
for some datasets and scenarios, real-time performance could
not be achieved due to the deluge of data. The performance of
the original ARMS algorithm is constrained by two primary
factors: (1) The ARMS algorithm requires computation of the
average local-flow vectors on all events within each window
leading to repetitive averaging as the larger windows already
encompass the events of the smaller neighborhoods and
(2) the averaging considers all pixel locations in the η win-
dows even if no new recent events occurred at these pixels.
This means that the computational complexity of ARMS
depends on both the maximum search window size (Wm) and
the number of windows (η). Further analysis of the ARMS
algorithm complexity is presented in Section. III-B.

To mitigate these issues with ARMS algorithm, in this
paper, we propose optimization of the ARMS algorithm to
achieve significantly higher throughput. We refer to this new
optimized ARMS algorithm as fARMS. The optimization
strategy and the new fARMS algorithm is discussed in detail
in Sec.III-A. Further, we realized a high-performance par-
allel implementation in hardware on a Xilinx Zynq-7000
series SoC. This hardware implementation of ARMS is
referred to as hARMS and its performance improvements,
throughput, accuracy and different parameter considerations
are detailed in later sections.

C. SYSTEM-ON-CHIP DEVELOPMENT
We used Xilinx’s Zynq-7000 series SoC to implement the
hARMS architecture presented in this paper. Xilinx’s Zynq
SoC is a hybrid computing platform that couples a tradi-
tional ARM processing system (PS) with a programmable
logic (PL) FPGA fabric region. This architecture allows for
algorithms to be split across both the regions of the SoC to
achieve optimal performance. To streamline the development
of accelerated applications targeting the Zynq platform, Xil-
inx provides the Software Defined System-on-Chip (SDSoC)
development tool. SDSoC uses high-level synthesis (HLS) to
allow hardware designs to be written in C/C++ for rapid
development and verification of designs. SDSoC and HLS
were used in the development of hARMS to allow for efficient
design iteration and increase the configurability of the design.

TABLE 1. Algorithm configuration parameters.

Specifically, we used the Zynq-7045 SoC, which contains
a dual-core ARMCortex-A9 processor operating at 667MHz
and a Kintex-7 FPGA [18]. This device was chosen due to its
use in embedded computing applications combined with its
large FPGA fabric to allow scaling to large hARMS config-
urations. hARMS can also be deployed on other Xilinx SoC
platforms depending on the desired application, computing
environment, and configuration.

III. ALGORITHM OPTIMIZATION
This section outlines the optimizations made to the ARMS
algorithm. The redesigned algorithm, referred to as faster
ARMS (fARMS), is presented in detail. Complexity analysis
is performed for both the ARMS and fARMS algorithms, and
results are compared.

A. OPTIMIZED ALGORITHM
Table 1 introduces the parameters used to configure the dif-

ferent ARMS algorithms. The configuration of these param-
eters impacts the performance and accuracy of the design
and must be set based upon the performance requirements
of a given application. Wm, η, and τ are configured for all
implementation whereas N is characteristic only of fARMS
and hARMS and P is only used for hARMS configuration.

The ARMS algorithm, presented in [6], relies on succes-
sive pooling of events in multiple expanding spatial windows.
This design results in repetitive computation of averages in
regions around the event that are a subset of multiple spatial
windows. It also requires searching the whole (2Wm)×(2Wm)
pixels region around the most recent event, regardless of
which, or howmany, of the pixels in that region have triggered
recent events. This inefficiency is introduced by the reliance
on a frame of recent events. The use of an event frame does
not align with the asynchronous nature of the event stream
generated by the sensor, which has no concept of a frame.
We therefore abandon the use of an event frame altogether,
and present a more efficient design based on the use of a small
time history of recent events.

The redesigned algorithm used for fARMS is presented in
Algorithm 1. The first, and most significant, optimization is
the introduction of the Recent Flow event Buffer (RFB). This
buffer stores the last N events generated with a valid local
flow. In the original ARMS algorithm, the method discards
any local flow events occurring more than τ ms prior to the
current event when computing the true flow to avoid bias from
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Algorithm 1 fARMS Algorithm for True Flow
1: RFB[N ]←− 0, recent flow-event buffer
2: next_idx ←− 0, RFB fill index
3: EDGE[η + 1], window bin edges
4:

5: 1. Initialize Window Edges
6: for win←− 0 to η do
7: EDGE[win] = win · (Wm/η)
8: end for
9:

10: 2. Process Events
11: for each event(x, y, t, vx, vy,mag) do
12: sums←− 0, holds vx, vy, and mag sum arrays
13: COUNTS ←− 0, window event count array
14: RFB[next_idx] = event
15: next_idx = (++ next_idx) mod N
16: for i←− 0 to N do
17: if abs(RFB[i].t − event.t) ≤ τ then
18: 2a. Window Arbitration
19: dx = abs(event.x − RFB[i].x)
20: dy = abs(event.y− RFB[i].y)
21: dmax = max(dx, dy)
22: for j←− 0 to η − 1 do
23: if dmax ∈ [EDGE[j],EDGE[j+ 1][ then
24: tag = j
25: end if
26: end for
27: 2b. Window Averaging
28: for k ←− 0 to η − 1 do
29: if tag ≤ k then
30: sums.VX [j] += RFB[i].vx
31: sums.VY [j] += RFB[i].vy
32: sums.MAG[j] += RFB[i].mag
33: COUNTS[j] ++
34: end if
35: end for
36: end if
37: end for
38: MAG_AVGS = sums.MAG/COUNTS
39: wmax = argmax(MAG_AVGS)
40: true_vx = sums.VX [wmax]/COUNTS[wmax]
41: true_vy = sums.VY [wmax]/COUNTS[wmax]
42: return Flow(true_vx, true_vy)
43: end for

old local flow events. Therefore, as long as the N events in
the RFB have occurred within this duration, no information
about the local flow is lost due to buffering. In fact, the use
of the RFB preserves more information than the use of an
event frame. This is because the event frame only preserves
the most recent event at each pixel, discarding the older event
even if it may have fallen into the τ ms time window. The
RFB however, has no limitation on the number of events per
pixel that can be stored because the location of the event is

explicitly included for each entry instead of being implicitly
encoded in the event frame location. We hypothesize that
multiple events at a single pixel within the τ ms window are
most likely to occur along strong edges in the scene where the
local-flow estimates will be most accurate. Because of this,
we expect to see, on average, improved true-flow estimates
from the fARMS algorithm when compared to ARMS.

While we do expect to observe improved accuracy from
fARMS, the primary objective is optimization for improved
throughput performance. The use of the RFB also yields
significant performance improvement due to the removal of
redundant computation and the reduction of the search space.
To enable the use of the RFB and achieve this performance
improvement, the challenge of determining which windows
each event in the RFB falls into needs to be addressed. Unlike
the event frame, the RFB maintains no spatial relationship
between events, instead just storing the x and y locations
of the event. Therefore, we introduce a window arbitration
technique to give each event in the RFB a window tag based
on its x and y location relative to the current event. First,
maximum component distance between the current event and
the RFB event is found. Then a tag is assigned based on
the pre-computed window bin that the maximum component
distance falls into. It is known that an event that falls into
a given spatial window will also belong to all larger spatial
windows. This means that only η + 1 unique window tags
are needed to encode all possible windows along with the
scenario where an event is not included in any windows. Once
the windows that an event falls into are determined, the aver-
aging can be performed as shown in part 2b of Algorithm 1.
With the use of window arbitration and the RFB the algorithm
only requires iteration over all of the N events in the RFB as
opposed to costly searches over each of the expanding spatial
windows.

The true-flow results from fARMS are calculated in the
same way as ARMS. The spatial window with the maximum
local-flow magnitude is considered the correct window and
the averages of the x and y components of local flow in that
window are returned as the true-flow result. A comparison
of the complexity of both ARMS and fARMS is provided
in the following section and accuracy results are discussed
in Section V.

B. COMPLEXITY ANALYSIS
The worst-case complexity of both the ARMS and fARMS
algorithms is evaluated based on the number of loop iter-
ations required for the true-flow computation for a single
event. The number of loop iterations, nARMS , for the original
ARMS algorithm in [6] is shown in (3).

nARMS =
η∑
i=1

(
2Wm

η

)2

i2 (3)

Expansion of the summation in (3) yields the expression
for nARMS given in (4). From (4) the complexity in terms of
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loop iterations is derived and shown in (5).

nARMS =
1
6

(
2Wm

η

)2

η (η + 1) (2η + 1) (4)

nARMS ∈ O(W 2
mη) (5)

From (5) it can be seen that the complexity of the ARMS
algorithm is bounded byW 2

m and η. The squared dependence
on Wm poses significant challenges for the scaling of the
algorithm, especially as the resolution of the sensor increases.
To capture the same region of the scene within the spatial
windows,Wm must scale as the sensor resolution scales, oth-
erwise an insufficient portion of the scene may be considered
for evaluating the true flow at an event. This could reduce
robustness to the aperture problem and the overall effective-
ness of the algorithm. Furthermore, it is later observed in
Section V that flow accuracy tends to improve with larger
values of Wm, particularly when there is a single dominant
direction of motion in the scene. The necessity of scaling to
higher values of Wm in many cases means that complexity
that scales independent fromWm, and thus sensor resolution,
is highly desirable.

The number of loop iterations required to compute true
flow for one event using the fARMS algorithm is shown
in (6). From this the overall complexity is derived in (8).

nfARMS =
N∑
i=1

2η (6)

nfARMS = 2Nη (7)

nfARMS ∈ O(Nη) (8)

From (8) we see that the fARMS complexity is bounded
only by N and η. Therefore, the fARMS algorithm achieves
the objective of scaling independent of Wm. Since both
ARMS and fARMS complexity scales with η, we compare
W 2
m and N to evaluate the relative scaling of both algorithms.

In most cases W 2
m is much larger than N , meaning fARMS

has a much lower run-time complexity. Take for example a
benchmark configuration that will be used in Section V-A
where Wm = 320, η = 4, and N = 1000. When substituting
these parameters into (4) and (7) we get nARMS = 768000 and
nfARMS = 8000. In this case the fARMS algorithm results
in a 98.96% reduction in the theoretical complexity of the
true-flow calculation when compared to the original ARMS
algorithm. While the complexity difference will vary as the
values of Wm and N are changed, this analysis shows that
the fARMS algorithm substantially reduces ARMS compu-
tational complexity.

IV. hARMS SYSTEM ARCHITECTURE
The hARMS system architecture describes the hardware real-
ization of the fARMS algorithm for improved performance on
embedded platforms. The system architecture was designed
to be modular to allow for streamlined realization of various
configurations. The result is a flexible acceleration archi-
tecture that can be adapted to application-specific needs.

Fig. 2 shows this system architecture with each of the main
processing modules included.

The design is divided across three sections of the Zynq
SoC platform—DDR memory, processing system (PS), and
programmable logic (PL). The DDRmemory is used to buffer
flow information and store software application variables.
The PS consists of a dual-core ARM Cortex-A9 processor
and is used to run the main C++ application that receives
local-flow inputs, calls the hardware accelerator, and collects
the true-flow results. The PL is used to realize the hARMS
accelerator using custom hardware blocks implemented in the
FPGA fabric.

The architecture developed for validation and testing com-
putes the local flow in software on the PS. However, the
local flow is only considered as an input to the hARMS
design and can therefore be computed using any method,
including PL acceleration as required by the application.
As events are generated and the local flow is computed, the
PS is used to accumulate local-flow events and collect the
true-flow results. The accumulated events for which a valid
local flow exists, and thus true flow can be calculated, are
transferred to temporary RAM in the PL fabric using a direct
memory access (DMA) controller and a block RAM (BRAM)
interface. In addition to being stored in temporary RAM, the
accumulated events are also added to the RFB to be used
in the processing of future events. The true flow at each
accumulated event is then processed in parallel as the RFB is
streamed through the P parallel accelerators in the PL region.
The processing is performed in a hierarchical order by the
window arbitration, stream averaging, and ARMS compute
modules. The design of these modules is discussed further in
the following sections.

The hARMS design aims to closely match the event-by-
event results of the fARMS algorithm. However, for opti-
mization of the hardware implementation, some quantization
from full floating point representation is performed. The
local-flow results are rounded and represented as 16-bit inte-
ger inputs, while the resulting true flow is represented as a
32-bit fixed point value with eight fractional bits. Arbitrary
bit width representations are used internally in the design
to achieve more resource efficient hardware. Further reduc-
tion in the number of bits used to represent data could be
considered in some cases depending on the expected range
of velocities in the scene or tolerable loss in flow accuracy.
We, however, designed the standard hARMS configuration
with the goal of being robust to wide variations in scene
dynamics, while maintaining accuracy equivalent to the
fARMS algorithm.

The architecture includes all the configurable parameters
available in the fARMS algorithm, with the addition of P as
outlined by Table 1. Unlike the fARMS algorithm in software,
which can define these parameter at runtime, the hardware
nature of the hARMS architecture requires configuration
before compilation. The value of P is used to specify the
number of parallel accelerators to be used in the PL fabric.
The high levels of parallelism that can be achieved through
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FIGURE 2. High level Zynq-SoC acceleration architecture showing the design of hardware ARMS (hARMS). The processing system (PS) and programmable
logic (PL) regions, along with the DDR memory shown are hardware components of Zynq platform. DDR memory is used to store the Event Accumulation
Buffer (EAB). The PS is used to buffer the incoming local-flow events, initiate memory transfers to the PL, and collect the output true-flow results after
computation. Each block in the PL region represents physical hardware implemented in the FPGA fabric. The DMA controls the transfer of data from both
DDR memory and the PS to the PL region. The recent flow buffer is a BRAM ring buffer that stores recent local flow results. The window arbiter, tag LUT,
stream averager, and ARMS compute blocks are the main computational components of the accelerator, and are duplicated for each of the P parallel
accelerators used.

the use of this parameter have substantial impact on the
design’s performance and resource utilization. This impact
along with the trade-offs between other parameters will be
discussed and analyzed in Section V.

A. EVENT ACCUMULATION
Event accumulation is the primary function of the PS in the
system architecture. As local-flow events are generated, the
flow components and flow magnitude are stored in the Event
Accumulation Buffer (EAB). The EAB holds the events for
which the true flow will be calculated when the hardware
accelerated function is called. The depth of the EAB is equal
to the number of parallel accelerators, P, included in the
design. When the EAB is filled with new events, a DMA
transaction is initiated to move the EAB data to the PL region
via a BRAM interface. This transaction begins the true-flow
calculation process for the events in the EAB. Once the EAB
is transferred to the PL, the events are added to the RFB
as well as to temporary RAM. The RFB is a BRAM ring
buffer of length N that is implemented in the PL fabric and
retains its values between calls to the hardware accelerator.
The N parameter dictates the number of events stored in the
RFB and processed in the PL. The ring buffer allows for
new events to be added while replacing the oldest events
at the same time. This way the most recent N events are
always available for each true-flow calculation. When the

true-flow calculations begin, the data stored in the RFB is
streamed into the accelerator modules as shown in Fig. 2.
Since the hARMS accelerators are designed for streaming
inputs, one value from the RFB can be read each clock cycle,
achieving an initiation interval of one and preventing the need
for resource-expensive array partitioning.

The hARMS accelerators are designed to perform asyn-
chronous computation, such that, as the ARMS true flow is
being calculated using the FPGA accelerator, the EAB can
begin to be filled asynchronously as the previous EAB
events are being processed. Buffering events allows multiple
true-flow events to be processed simultaneously using the
same RFB. This reduces the BRAM required for simultane-
ous processing of events, while increasing the throughput of
the system. Processing multiple true-flow events in this way
results in up to P − 1 future events being considered for a
given event when multi-scale pooling is performed. Because
P is typically much smaller than N , this artifact of buffering
events has no significant impact on the accuracy of the flow
estimate as shown by the results in Section V-A1.

B. WINDOW ARBITRATION
Multi-scale pooling as introduced in Section II-B requires
averaging over expanding spatial windows around the pixel
location of the incoming event at which true-flow is being
calculated. The window or windows that a recent flow event
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will fall into is dependent on the location of the recent
event around which multi-scale pooling is being applied. The
hARMS architecture uses the same window arbitration tech-
nique introduced by fARMS in Algorithm 1. The maximum
component distance calculated is used as the input to a hard-
ware lookup table (tagLUT ), which determines the appropri-
ate window tag. The maximum component distance is equal
to max(Fwidth,Fheight ) − 1, where the sensor resolution is
Fwidth×Fheight pixels. This value could be considered the the-
oretical maximum value ofWm, because it is applied outward
from the event in all four directions. However, in reality the
value ofWm is not restricted due to the resolution indifferent
design of the hARMS architecture.

As discussed in Section III-A, there are η + 1 possible
window tags that could be assigned to any recent event as
it is streamed into the accelerator, with the additional tag
representing a recent event that does not belong to any of the
defined windows. The tag can then be represented using only
dlog2(η+1)e bits in hardware. These tag bits are appended to
the input stream, while the x and y coordinate data is removed
from the stream, as all required location information is now
encoded in the window tag.

The window arbiter hardware is fully pipelined to allow
one new recent-flow event to be read from the internal input
stream generated from the RFB on each cycle. The window
edge values are statically declared in the tagLUT module
and the window search is fully unrolled. This implementation
allows the tagLUT module to achieve an interval and latency
of one cycle. This high-performance window arbitration is
achieved regardless of the relative order in which events are
streamed in. This allows for the simple ring buffer realization
of the RFB, significantly reducing the control logic for the
RFB and eliminating the need for software-based window
arbitration before streaming data to the accelerator.

C. STREAM AVERAGING
Averaging is the fundamental operation of multi-scale pool-
ing. It involves averaging the values of recent local-flow
events within each window. This operation is performed by
the stream averaging module implemented in the PL fab-
ric. The stream averager is a modified stream-based FPGA
implementation of the averaging performed in the fARMS
algorithm. It differs in its streaming nature and modular
design, which allows parallelism between multiple instances
of the module. As events from the RFB are streamed into
the module, they are added to an internal array of window
sums, where there is one sum for each of the η windows used
in the design. This addition, however, is only performed for
the sums of the windows that the event falls into. The tag
assigned by the window arbitration module is used to select
the window sums to which the event value should be added.
These steps are outlined further in Algorithm 2.
As each recent event is added to the appropriate window

sums, a count of events that fall into each window is kept.
When the entire length of the RFB has been streamed through
the averager, the averages for each of the spatial windows are

Algorithm 2 averager Streaming Algorithm Design
1: ISTREAM internal input stream
2: WIN_SUMS[η], array of intermediate sums
3: WIN_COUNT [η], count of events in each window
4: AVERAGES[η], array of resulting averages
5: sEvent , stream input event holding (tag, value, valid)
6: 1. Compute Window Sums
7: for all events in ISTREAM do
8: sEvent ←− ISTREAM {load event from stream}
9: for idx ←− 0 to η − 1 do

10: if sEventtag ≤ idx and sEvent.valid then
11: WIN_SUMS[idx] += sEvent.value
12: WIN_COUNT [idx] += 1
13: end if
14: end for
15: end for
16: 2. Compute Averages
17: for i←− 0 to η − 1 do

18: AVERAGES[i] =
WIN_SUMS[i]
WIN_COUNT [i]

19: end for
20: return AVERAGES

generated by dividing the sum array by the count of events
that belonged to the corresponding window. This division
occurs once per window for each true-flow event. No checks
for division by zero are required because we are guaranteed
to have at least one event—the event for which true flow is
being calculated—in each window. Because implementation
of many dividers is resource intensive, a limit of four hard-
ware dividers per averagermodule is enforced. These dividers
are reused when the number of windows, and therefore divi-
sions, is increased beyond four. Because this operation only
occurs once at the end of the processing pipeline for this
stage the added latency of pipelined division instead of fully
unrolled division only has a limited impact on the overall
latency of the stream averaging stage of processing. The
constraint of four could be modified to fit specific application
needs based on available device resources.

For efficient implementation of Algorithm 2 in hardware,
the loops on lines 9 and 17 are fully unrolled. To facili-
tate parallel access to the sum and count arrays, they are
fully partitioned such that all elements can be accessed and
modified concurrently. While the directive is given to fully
unroll the division loop on line 17, the unroll factor will,
in implementation, be limited by the limit placed on the
number of dividers to be instantiated. The compute window
sums loop that reads in each of the recent-flow events from
the input stream is fully pipelined with an initiation interval
of one such that it can read a new event from the input stream
once every clock cycle.

D. ARMS COMPUTE CORE
The ARMS compute core is the main functional control
block of each hARMS accelerator instantiated. It receives the
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Algorithm 3 ARMS Compute Core Algorithm for hARMS
Architecture
1: event , EAB event of interest (x, y, t)
2: sEvent , stream input event (tag, vx, vy,mag, t)
3: ISTREAM , output stream from window_arbiter
4: 1. Process Input Stream
5: for all events in ISTREAM do
6: sEvent ←− ISTREAM {load event from stream}
7: if abs(sEvent.t − event.t) ≤ τ then
8: valid = true
9: else

10: valid = false
11: end if
12: VX_STREAM ←− (sEvent.(vx, tag), valid)
13: VY_STREAM ←− (sEvent.(vy, tag), valid)
14: MAG_STREAM ←− (sEvent.(mag, tag), valid)
15: end for
16: 2. Stream Averaging
17: VX_AVGS = averager(VX_STREAM )
18: VY_AVGS = averager(VY_STREAM
19: MAG_AVGS = averager(MAG_STREAM )
20: 3. True-Flow Selection
21: wmax = argmax(MAG_AVGS)
22: return (VX_AVGS[wmax],VY_AVGS[wmax])

tagged event stream from the window arbiter. Using the event
timestamps included in that stream and the defined value of
τ it performs temporal filtering of the event streams. Any
event that occurs more than τ microseconds before the EAB
event under consideration is flagged and not considered when
performing multi-scale pooling using the stream averaging
blocks.

The ARMS compute core extracts the three values from
the stream that must be averaged: the x component of local
flow, y component of local flow, and magnitude of local
flow. These values and the window tag are passed to three
instances of the stream averaging module in parallel streams.
The multi-scale average arrays generated are then collected
by the compute core and a maximum search is performed on
the flowmagnitude average results to find the spatial window
with the largest local-flow magnitude. The average x and y
components of the local flow in that spatial window are then
returned as the true-flow results for the EAB event being
processed.

The ARMS compute module functionality described is
realized as shown in Algorithm 3. The control flow is mod-
ified from that of fARMS to efficiently use streaming inter-
faces, as well as to capitalize on available parallelism. The
process input stream loop is fully pipelined such that one
event is read from and written to the window arbiter and aver-
ager modules respectively on each clock cycle. The calls to
the stream averaging modules in lines 17 to 19 are performed
in parallel using task-level, dataflow pipelining. Once the
stream averaging is completed, the window index, wmax , cor-
responding to the maximum local-flow magnitude is found

and the true-flow results are returned and stored in temporary
RAM before the DMA transfer of the results back to the PS
for collection.

V. EXPERIMENTS AND RESULTS
We evaluated the presented fARMS and hARMS designs
against the same datasets presented in [6] for a direct compar-
ison of accuracy and performance between the hardware and
software designs. These datasets span a variety of scenes and
sensor resolutions, allowing for a detailed investigation of the
design space. We also evaluate how resource utilization and
performance change when different configurable parameters
are modified, and analyze design trade-offs when selecting
a hardware configuration. A real-time performance compar-
ison for the different datasets used is also provided to show
successful achievement of real-time operation across a variety
of visual scenes, event rates, and sensor resolutions.

The Xilinx ZC706 development board, which includes
the Zynq-7045 SoC, was used for all embedded software
and hardware benchmarks. The Zynq’s FPGA contains 218k
LUTs, 437k FFs, 900 DSP slices, and 19.2 Mb of BRAM.
Resource utilization will be considered as a percentage of
these total resources. Embedded software benchmarks for
fARMS were run on the Zynq’s ARM processor using a
single core operating at 667MHz. Compiler optimization was
set to -O3 and Xilinx’s PetaLinux distribution was used. All
hardware configurations used a 200 MHz clock for both the
accelerator and the DMA controller.

A. TRIVIAL PATTERN
The same trivial pattern dataset presented in [6] was used
for evaluation of the developed hARMS accelerator. The
dataset was recorded with a qVGA resolution event-based
sensor and features a square and bars moving up and down in
front of the stationary event camera. This dataset is denoted
‘‘Bar-Square’’ data. In the recording, the bars are always
moving perpendicular to the true direction of motion, mean-
ing that the ARMS algorithm should achieve an accurate
estimate of the true flow in most cases.

This dataset was used to test more than 60 different hard-
ware design configurations. The number of spatial windows
(η), maximum size of the spatial windows (Wm), and the
number of parallel accelerators (P) were all varied and the
results evaluated. The direction estimation accuracy, through-
put, throughput speedup, FPGA resource utilization, and esti-
mated power usage were all collected to evaluate trade-offs in
the design configuration selections.

1) DIRECTION ESTIMATION ACCURACY
The bar-Square data involves motion of the scene in only
one direction—either moving upward or downward. This
means that for any of these movements, an ideal optical flow
algorithm should output a direction distributionwith one peak
and with a standard deviation of zero. We use this to quantify
the performance of the different implementations of the flow
algorithms. Thus, the direction estimation error is quantified
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FIGURE 3. Bar-Square results are shown for the two directions of motion,
up (top) and down (bottom). Local-flow results are shown using red
vectors and hARMS output is show in blue. The hARMS results show good
direction correction with consistent magnitude. The direction distribution
is shown in the polar histogram on the right. The local and hARMS
direction distributions have different frequency scales for improved local
flow visibility.

as the standard deviation of flow angle results across all the
events. Larger standard deviation of angles indicate larger
error in correcting the direction of motion from normal to
true direction. A low standard deviation indicates that the true
flow calculated has only one primary direction of motion,
which is what is expected from the dataset. It is important
to note that the configuration that provides the best standard
deviation for this visual scene, will not necessarily provide
the best results in all scenes, but it does allow comparison
of accuracy between multiple algorithms and configurations.
The values ofWm and ηwhich provide the optimal results will
vary based on sensor resolution and visual scene activity.

Fig. 3 provides an example of hARMS flow correction
when the scene is moving up (top) and down (bottom). The
local-flow results are generally normal to the moving edge
and are noisy in both magnitude and direction. The corrected
hARMS flow results correctly capture the true direction of
motion. This behavior is seen in the direction distribution his-
togram with strong peaks at 90 deg and −90 deg as opposed
to the local flow, which has multiple erroneous peaks in
direction frequency. The hARMS results also show a more
uniform magnitude of flow across the sensor frame.

We also evaluated the direction standard deviation results
across multiple values of η for the ARMS, fARMS, and
hARMS algorithms. These results are shown in Fig. 4 which
uses values of 320 for Wm and 1000 for N . The value of N
was chosen to ensure that all of the true-flow events within
the temporal window set by τ are considered. We observe
a significant improvement in direction estimation accuracy
for fARMS and hARMS over the original ARMS algorithm.
This behavior is a result of the optimizations included in
the fARMS algorithm. The use of multiple events at the
same pixel within the temporal window, as made possible
by the ring buffer realization of the RFB, likely improves
performance due to the occurrence of this behavior along
strong edges where local-flow estimates are most accurate.

FIGURE 4. Flow direction estimates standard deviation for different
design configurations. The value of Wm is constant at 320 for all results
shown and N is fixed at 1000. For this case, fARMS and hARMS results
show a significant reduction in standard deviation over the original ARMS
algorithm. The hARMS results represent the average of results for all
values of P .

The fARMS and hARMS results are almost identical for all
window sizes, with only slight variance due to the quanti-
zation of inputs to the hARMS accelerator. The value of P
has negligible impact on direction estimation accuracy for all
tested values of η. This validates the use of a single input
buffer of recent-flow events rather than individual buffers for
each of the last P true-flow events.
The direction estimation accuracy was also evaluated as

a function of RFB length, N . While reducing N improves
the throughput of the design, it also reduces the number of
recent local-flow estimates that can be used for estimating the
true direction. Because of this reduction in data, the standard
deviation of angle estimates increases as the buffer length is
reduced. This behavior is shown in Fig. 5. There is also a
certain point beyond which increasing N will not improve
accuracy because all additional events will be filtered by the
temporal window constraint. This is seen in Fig. 5 between
buffer lengths of 1000 and 2000 where there is no change
in accuracy. Despite the increase in standard deviation as
N decreases, the accuracy was below the of the original
software ARMS algorithm. This proves that even with a
significant reduction in the amount of data considered, the
hARMS and fARMS designs can achieve accurate results.

2) THROUGHPUT
Design throughput is measured in true-flow events per sec-
ond (evt/s). As many events will not have viable local-flow
results such as those generated due to noise, the event rate
coming from the sensor could be significantly higher than
the maximum design throughput without overwhelming the
design. However, we consider only the throughput of the
hARMS design after filtering and prepossessing of events
occurs. This allows us to evaluate the worst-case scenario
where every event generated by the sensor is a valid true-
flow event. In Section VI-D, a real-time evaluation of the
hARMS architecture is provided, which includes information
regarding total events and true-flow events in each dataset
considered.
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FIGURE 5. hARMS standard deviation results for different values of η as
N changes. Each point represents the average standard deviation across
all values of P tested at that configuration. As N increases, the standard
deviation decreases until it reaches its minimum.

Fig. 6 shows the throughput results for fARMS and
hARMS with varying P for different number of spatial win-
dows (η). The results shown were generated for a selected
benchmark configuration where Wm = 320 and N = 1000.
The figure shows that the throughput of the fARMS soft-
ware design decreases as the number of spatial windows is
increased. However, as expected, the throughput for each
hardware configuration is nearly constant across varying
numbers of spatial windows, with only small decreases as
the number of windows increases. This behavior is due to the
streaming architecture and fully unrolled window searching
implemented in hardware. The small decreases in throughput
that are observed as η increases are a result of the number
of dividers being limited to four per averager. The highest
throughput achieved with N = 1000 is 1.21 Mevt/s when
η = 4 and P = 24.

Higher throughput speedups were achieved for larger val-
ues of η due to the decreasing performance of the fARMS
baseline with large numbers of spatial windows. That poor
performance results from the need for sequential iteration
through the windows in software. The parallel nature of
hARMS and streaming architecture eliminate this bottleneck
and allow for substantial speedup over the software baseline.
As shown in Fig. 7, speedup ranges from 4.6× for P = 1 and
η = 4 to 269.2× for P = 8 and η = 32.
The value of Wm only affects the hardware implementa-

tion of the predetermined edges in the tagLUT module, and
therefore has no impact on the latency or throughput of the
design. The final parameter that has significant impact on the
throughput of the design is N . Its value was set at 1000 for
the primary benchmark because analysis of the Bar-Square
dataset showed that a RFB with length 1000 is sufficient
to capture all the recent-flow events within the τ temporal
window of 5 ms used. However, in some cases the length
of the RFB will need to be larger or smaller based on use
case and desired throughput and accuracy. Fig. 8 shows the
relationship between N and the throughput of one hARMS
accelerator core. When N is greater than 1000, the expected
trend is observed with throughput decreasing as N increases.

FIGURE 6. Maximum throughput results using qVGA Bar-Square dataset.
Hardware configurations are denoted as hARMS-P . The throughput of the
hARMS design increases as P is increased. Wm is equal to 320 in all cases
and N is 1000 for all cases.

FIGURE 7. Maximum speedup results using Bar-Square dataset. The
speedup is measured over the optimized fARMS design outlined in
Section III. Wm is equal to 320 in all cases and N is 1000 for all cases.

Throughput decreases slightly as η increases for a given
value of N . This is caused by the limitation of four hardware
dividers per averager in the hARMS core, making repeated
calls to division resources necessary for higher numbers of
windows. At smaller values of N we observe unexpected
behavior, with all configurations having nearly identical flat
values for throughput. This is due to the latency of the data
transfer between the PS and PL regions, which for small
buffer lengths becomes the dominant latency during the hard-
ware function execution. This latency could be removed by
providing a direct connection between the event-based vision
sensor and the PL region of the SoC. This would result in a
significant increase in throughput across all configurations,
but it would limit the versatility and configurability of the
design as well as require an FPGA implementation of local
flow. For these reasons it was not included in the hARMS
architecture.
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FIGURE 8. hARMS throughput measured using Bar-Square dataset for
varying buffer lengths and numbers of windows. P is fixed at 1 for all
cases.

3) RESOURCE UTILIZATION
FPGA resource utilization is evaluated based on the imple-
mented design for each configuration. LUT and FF usage
are of primary interest in evaluating how the design scales as
parameters change. BRAM utilization is evaluated in relation
to the value of N , while DSP utilization remains at zero
across all configurations. BRAM usage is independent of all
parameters except N as it is only used for the data motion
network and the RFB. The volume of data transferred by
the DMA controller changes with P, this however does not
impact the BRAM usage required for the interface meaning
that BRAM scales only with N .
The LUT and FF usage as a function of P is shown in Fig. 9

and Fig. 10 respectively. Both resources show linear scaling
as the value of P increases. The rate of scaling is dependent
upon the number of spatial windows used. Table 2 shows the
per parallel accelerator core resource usage for each of the
values of η tested. This linear scaling is expected due to
the limited opportunity for resource sharing between accel-
erator cores. Only the DMA, event RAM, and result RAM
resources can be shared between accelerator cores.

BRAM utilization as a function of N is shown in Fig. 11.
It shows a baseline utilization of 3.5%, which is required
for the DMA network and a relatively small RFB. As the
buffer length increases the BRAM utilization increases. The
increase takes on a step-like characteristic because although
the absolute size of the RFB increases linearly with N ,
a BRAM block can be considered utilized without its whole
memory capacity being used. Overall, BRAM usage is very
small compared to the LUT and FF utilization. The hARMS
architecture is not dependent on storing an event frame with
the same size as the sensor resolution like most existing
hardware and software designs. This results in more efficient
use of memory in the PL fabric as only the most relevant
events are stored.

4) ESTIMATED POWER
Power limitations often accompany embedded systems. One
advantage of neuromorphic hardware is that it often operates

FIGURE 9. LUT utilization vs P for different number of spatial windows.
Utilization is represented as a percentage of the 218600 total LUT
available on the Zynq-7045 SoC used.

FIGURE 10. FF utilization vs P for different number of spatial windows.
Utilization is represented as a percentage of the 437200 total FF available
on the Zynq-7045 SoC used.

TABLE 2. Resource usage per accelerator core for different values of η

implemented on Zynq-7045 SoC.

at low-power consumption. Tomaximize the benefit of sensor
power efficiency, it is important to consider the processing
power requirements as well. Fig. 12 shows how the estimated
dynamic power requirements of the FPGA change with the
value ofP. These power estimates are generated fromXilinx’s
Vivado design tool. Like FF and LUT resource utilization,
estimated power consumption scales linearly with P.

Overall dynamic power consumption ranges from 0.305 to
1.310Watts for configurations implemented. Dynamic power
for low values of P is dominated by clocking and clock gener-
ation which accounts for 200 mW or more of dynamic power
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FIGURE 11. BRAM utilization vs N for different number of spatial
windows. Utilization is represented as a percentage of the 545 total 36Kb
BRAM blocks available on the Zynq-7045 SoC used.

depending on the number of windows used. In some cases,
this power consumption could become prohibitive for power
constrained embedded platforms. To address this concern,
steps could be taken to improve power efficiency such as
reducing the size of P and η. Reducing the hARMS operating
frequency could also yield reductions in power, however at
the cost of reducing the throughput of the design. For this
research, we chose to focus on optimization of the design for
latency and throughput.

VI. hARMS ON REAL-WORLD DATASETS
Based on the results from the Bar-Square dataset, we imple-
mented the hARMS configurations to compute aperture
robust optical flow on more complex real-world scenarios
such as the DAVIS dataset [19], the MVSEC data [20] and
a VGA resolution recording [6]. The results for these are
presented in the next sections. Note that because fARMS
and hARMS produce flow results with only small differences
due to quantization, only hARMS results will included in the
following sections, however, results would be equivalent if
using fARMS.

A. DYNAMIC ROTATION DATASET
To ensure that the redesigned algorithm used for fARMS and
hARMS maintains accuracy in dynamic scenes, the DAVIS
dataset presented in [19] was used. This dataset provides the
event stream from the 180 × 240 pixels resolution DAVIS
along with timestamped grayscale images. The dataset also
includes inertial measurement unit (IMU) data collected at a
rate of 1000 Hz, which provides the angular velocity of the
camera as the scene is being recorded.

The dataset recording selected is the dynamic rotation
scene as it allows for easier mapping from optical flow to the
angular velocities from the IMU. In this scene the DAVIS
is rotating along its axes while recording an office scene.
The dynamic nature of the scene can be seen in Fig. 13,
which shows the local-flow direction estimates (left) and the

FIGURE 12. Estimated dynamic FPGA power consumption vs P for
different values of η. Estimates are obtained from Xilinx Vivado after
bitstream generation is completed. Results are for implementation on the
Zynq-7045 SoC and do not include the power consumption of the ARM
processing system. N is 1000 for all estimates.

hARMS flow direction estimates (right) for three distinct
directions of motion. We observe that even in a dynamic
scene, the hARMS design performs well, producing the
expected true direction of motion as its output, even from
noisy local-flow direction estimates. For comparison to the
software design study performed in [6], the same algorithm
parameters were used, therefore, the hARMS configuration
used to process the DAVIS dataset was (Wm = 100, η = 10,
τ = 5ms, P = 16, N = 1500). The size of N was
intentionally set below the maximum required size to avoid
losing events in the temporal window. This was done to show
that even with a buffer length of less than half the minimum
size to capture all relevant events, the fARMS algorithm and
hARMS accelerator can still provide accurate output flow in
dynamic scenes.

The IMU data provided for the dynamic rotation scene was
used to quantify the accuracy of the hARMS results in this
dynamic scene. The flow velocities in the x and y directions
were compared to the angular velocity measurements from
the IMU. Both results are shown in Fig. 14, which shows high
correlation between the hARMS results and the ground truth.
The hARMS results achieve a correlation value greater than
R = 0.93 for both the x and y flow estimates.

B. MVSEC DATASET
For further verification of the hARMS design for optical
flow estimation in real-world environments, we applied it to
scenes in the Multi Vehicle Stereo Event Camera (MVSEC)
dataset [20]. The MVSEC dataset utilizes an array of sen-
sors to provide dense ground truth optical flow at specified
frame intervals. We follow the same approach used in [6] to
map the asynchronous optical flow outputs from the hARMS
implementation to the frame based ground truth. The hARMS
configuration used to process the dataset was (Wm = 100,
η = 10, τ = 5 ms, P = 16, N = 1500). The hARMS results
are plotted with the ground truth for four of the MVSEC
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FIGURE 13. Qualitative results showing correction of local-flow estimates
using the hARMS design. The panels show local and hARMS flow
direction estimates for events recorded using DAVIS. The events are
overlaid on grayscale images captured using the DAVIS.

FIGURE 14. Comparison of hARMS results with IMU ground truth for
dynamic rotation DAVIS dataset. The results show a high correlation
between the ground truth angular velocity and the hARMS flow results.

dataset recordings as shown in Fig. 15. The hARMS results
successfully correct the local flow and closely follow the
ground truth provided. This is especially true for the indoor
flying scenes where the hARMS results closely follow the
ground truth throughout the recording. The hARMS flow
does struggle more with the outdoor day recording where the
hARMS output is much noisier than the ground truth. This is
especially noticeable during 22 to 32 second interval when the

FIGURE 15. Comparison of hARMS flow results with the provided ground
truth for four MVSEC scenes. hARMS results closely match the ground
truth, particularly for the indoor scenes. The hARMS results for the
outdoor scene show more variation, but follow the shape of the ground
truth well.

TABLE 3. Average endpoint error on MVSEC data for EV-FlowNet, ARMS,
and hARMS.

hARMS results overshoot theVy ground truth and undershoot
the Vx ground truth with high noise in both cases. As was
observed in the original software realization presented by [6],
this loss of accuracy can occur in areas with poor local-flow
estimates or rapid changes in direction for which the ARMS
flow cannot quickly correct.

We also evaluate the accuracy of the hARMS flow on the
MVSEC datasets in terms of average endpoint error (AEE)
using the provided ground truth data. AEE is computed as
AEE =

∑
||(V − Vgt )||2 where V is the estimated flow

vector and Vgt is the ground truth provided. These results are
presented in Table 3 and show that the hARMS architecture
produces flow results with an AEE equal to or better than
both EV-FlowNet and ARMS for the datasets tested except
for Outdoor Day-1 where the hARMS AEE is slightly higher
than the ARMS result.
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C. PENDULUM VGA DATASET
To verify the performance of the hARMS design for multiple
directions of motion and occluded objects within a scene,
we use the pendulum dataset introduced in [6]. This scene
uses a VGA (640 × 480 pixels) resolution sensor to record
two pendulums of the same length oscillating in front of
the sensor. One pendulum is placed further from the sensor
such that it will appear smaller as it passes behind the other
pendulum. For this dataset, we use the following hARMS
configuration for processing: (Wm = 50, η = 5, τ = 5ms,
P = 16,N = 2000). A smaller value ofWm was chosen based
on the observation from [6] that such selection improves flow
results in the presence of occlusion.

Fig. 16 shows the results of hARMS processing on the
pendulum dataset. At 0 ms in the sequence, the pendulums
are swinging towards each other and hARMS produces accu-
rate flow estimates for both objects. In the next 40 ms the
further pendulum nears the closer and the flow estimates
on the leading edge begin to erroneously assume the direc-
tion of motion of the closer pendulum. This continues until
the further pendulum is completely occluded by the closer
pendulum at 80 ms. The same behavior is then observed as
the two pendulums separate. The erroneous flow direction
estimates are quickly corrected as the distance between the
two pendulums increases. This behavior matches that of the
original software algorithm and shows that momentary errors
in direction due to occlusion are quickly rectified as objects
separate in the scene.

D. PERFORMANCE COMPARISONS
In the following sections we provide real-time performance
analysis and comparisons for the fARMS and hARMS
designs. Performance evaluations are made for fARMS on
both embedded and desktop grade platforms, while hARMS
is restricted to its intended use case on embedded platforms.
Performance is evaluated across a range of datasets and sen-
sor resolutions.

1) EMBEDDED PERFORMANCE
Evaluating the performance of an asynchronous, event-based
algorithm for real-time operation can be difficult due to the
inherent dependency on the event rate at any moment in
time. Scenes with high activity, and therefore high event
rates will require higher algorithm processing throughput to
achieve real-time operation. For this research we will con-
sider real-time operation to be the case where the fARMS or
hARMS compute rate exceeds the true-flow rate of a specific
dataset, where true-flow rate is the number of events per
second that require a true-flow calculation to be performed.

The dependence of hARMS and fARMS throughput on
the buffer length, N , adds further difficulty to making
performance comparisons across different datasets. Higher
throughput can be achieved by reducing the input buffer
length, however, this artificially reduces the amount of data
available to correct the local-flow direction. To avoid this

FIGURE 16. hARMS results for crossing pendulums at different visual
depths. The flow on the further pendulum is distorted as it passes behind
the closer pendulum, however, results quickly correct as the objects
separate. The event frames shown are accumulated over 20 ms of motion
and only the relevant portion of the VGA sensor frame is displayed.

we select the minimum buffer length required to capture all
of the relevant events within the temporal window τ . This
requires pre-evaluation of the dataset to determine the buffer
length, which is equal to the maximum number of true-flow
events within a τ = 5 ms window. In a real-time application
where the events are not pre-recorded, the effective buffer
length can be dynamically changed in real time based on the
event rate as long as it does not exceed the initial value of N
used for hARMS configuration. However, for the purpose of
evaluation, we utilize the advance knowledge of the dataset
to select the worst case buffer length for each dataset and use
that value for processing of the entire set.

For evaluation we chose the best performing configuration
on the Bar-Square trivial motion dataset which used η = 4.
While the use of four spatial windows may not be optimal
in all cases, it proved best for a singular direction of motion
and is therefore used in all benchmarks to maintain con-
sistency across datasets. The value of Wm does not impact
the throughput of the design and can be adjusted based on
the sensor resolution and operating environment. For the
embedded benchmark testing, it was kept at 160. The value of
Pwas set to 16 for all hARMS tests due to its high throughput
and reduced resource footprint compared to the 24 core con-
figuration that has high throughput, but can only be utilized
when η is four. The embedded tests use the same plane-fitting
local-flow method as in [6] and in the prior experiments for
consistency. However, in applications where the local-flow
computation could become a bottelneck, we propose the use
of a more computationally efficient method for regularizing
the timing of events called Savitzky-Golay plane-fitting pre-
sented in [21].

The results of embedded performance benchmarking are
shown in Table 4. Real-time performance is achieved using
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TABLE 4. fARMS and hARMS throughput performance comparison for various dataset scenes on Zynq-7045 embedded platform. Real-time operation
indicated in bold.

fARMS for two of the datasets, however, as expected most
fall short of real time operation. The hARMS architecture
is, however, able to easily achieve real time performance
across all datasets tested. The dataset for which real-time
performance is most difficult is the dynamic rotation set. This
set has by far the highest average true-flow event rate of
all datasets evaluated and requires the largest RFB. Despite
this, the hARMS compute rate exceeded the true-flow rate
by 2.35× using the defined benchmark parameters. It is also
important to note that flow accuracy can be maintained even
with a more than 50% reduction in the buffer length, as shown
in Section VI-A. Leveraging that finding could allow for
even more comfortable achievement of real-time processing.
The results on the other datasets show that not only can
real-time performance be achieved, it can also be achieved
with reduced resource utilization depending on the scene.
Observing the true-flow rates in Table 4 and the throughput
results discussed in Section V-A2, it can be seen that real-time
operation can be achieved with as little as one or two hARMS
cores for most datasets, depending on the configuration.

Another takeaway from the results shown in Table 4 is
the independence of fARMS and hARMS throughput from
sensor resolution. In fact, the lowest resolution sensor has
the slowest compute rate, while higher resolution datasets
could be processed much faster. This indicates that the most
important factor in determining the fARMS and hARMS
throughput performance is the true-flow event rate, which
directly impacts the required buffer length. That true-flow
event rate is directly and most significantly impacted by the
visual scene dynamics. The sensor resolution is a secondary
contributor to an increased true-flow event rate and therefore
to changes in fARMS and hARMS throughput.

2) DESKTOP PERFORMANCE
The optimizations used in the fARMS algorithm provide a
significant decrease in the computational complexity of the
algorithm and allowed for real-time performance on embed-
ded platform in some limited cases. Although event-by-
event flow results will vary between the original ARMS and
fARMS algorithms due to these optimizations, the previous
sections have shown that the overall flow results generated
by fARMS have equivalent or better accuracy across a wide
range of visual scenes when compared to ARMS. Having

TABLE 5. Original ARMS vs faster ARMS (fARMS) throughput
performance comparison for various dataset scenes.
Real-time operation shown in bold.

demonstrated comparable flow accuracy, we now compare
the throughput of both software algorithms on a desktop grade
platform. As in [6], an Intel E5-1603 processor is used to
collect the performance results for both ARMS and fARMS,
which are shown in Table 5. Both fARMS and ARMS use
Wm = 320 and η = 4, while the fARMS configuration uses
the specified buffer length as determined for the embedded
platform tests. Real-time operation is defined in the sameway
as for the embedded tests.

The results in Table 5 show that real-time performance is
achievable with the fARMS algorithm for all but two datasets.
The ARMS algorithm, however, is far from real-time in all
cases with the specified parameters used. This demonstrates
that the fARMS algorithm yields significant throughput per-
formance improvements over the original realization pre-
sented in [6]. Although these software results show real-time
performance in many cases, they still fall significantly short
of the throughput obtainable by the hARMS architecture.
This shows that the hARMS architecture can yield per-
formance improvements even in non-embedded computing
environments.

VII. CONCLUSION
The asynchronous, high temporal resolution of event-based
vision sensors make them ideal for computation of optical
flow in the visual scene. This optical flow can then be used for
other vision related tasks such as object tracking and collision
avoidance. However, for these tasks, the optical flow must be
computed in real-time and often on small embedded comput-
ing platforms with limited processing power. To capitalize
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on the benefits of accurate optical flow from event-based
vision sensors, the development of fast embedded processing
solutions is essential. Although both software and hardware
solutions exist to calculate event-based optical flow, no pre-
vious solutions have achieved real-time, aperture-robust true-
flow calculation on an embedded platformwhile also utilizing
and maintaining the high temporal resolution of the sensor.

In this research we have introduced an optimized
event-based optical flow algorithm called fARMS along with
a novel hybrid acceleration architecture that fulfills those
requirements. The fARMS and hARMS architectures were
developed based on the ARMS algorithm presented in [6].
The algorithm was modified to be amiable to a more asyn-
chronous, neuromorphic implementation in hardware by dis-
carding the use of an event frame and instead operating
asynchronously on only a small history of relevant events.
This allows the algorithm to operate at individual events as
they arrive, rather than on a spatio-temporal cloud of events.
Further, the local flow computations at each pixel are inde-
pendent from one another and can therefore be computed in
parallel. The averaging over each spatial window to compute
true flow is also performed independently on an dedicated
hardware module in parallel with other overlapping spatial
windows. Thus, the architecture of our optical flow algorithm
is much closer to a neuromorphic processor where events
are processed independently with some overlapping shared
information. This not only improved flow accuracy, with a
decrease in angle standard deviation of up to 73%, it also
allowed for the achievement of real-time processing rates
that are independent of sensor resolution. hARMS processing
throughput of up to 1.21 Mevt/s was achieved, making it the
fastest realization of event-based true-flow demonstrated in
literature. Real-time speed was achieved for every dataset
considered, with most datasets able to be processed in real
time with low resource configurations of the hARMS archi-
tecture. Thorough analysis of the design space was performed
to determine the relationship between the architecture param-
eters and the throughput, accuracy, resource utilization, and
power of the resulting accelerator. Resource utilization scales
linearly with the number of accelerator cores used, with FF
and LUT utilization being the main constraints on design
scaling.

Unlike previous works that achieve aperture robust flow
([5], [7], [16]), the hARMS architecture can operate in real
time, fully utilizes the temporal resolution of the sensor, and
operates only on temporal contrast events.When compared to
the estimated resource utilization in [8], the hARMS archi-
tecture offers configurations capable of achieving real-time
performance with fewer resources. The achieved through-
put of 1.21 Mevt/s enables hARMS to nearly match the
throughput achieved by the local-flow FPGA implementation
in [9]. Matching this performance means that the design
in [9] could be used to generate the local-flow input to the
hARMS architecture. For higher resolution sensors, future
work would be needed to overcome the memory limitations
present in [9] if the same high throughput performance is to

be achieved by the local-flow implementation. Regardless,
it has been demonstrated that the hARMS architecture pro-
vides a configurable solution for the real-time computation of
aperture-robust event-based optical flow, enabling the use of
optical flow for higher level event-based vision on embedded
platforms.
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