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Abstract—Breath-first search (BFS) is a fundamental building
block in many graph-based applications, but it is difficult to
optimize due to its irregular memory-access patterns. Prior work,
based on hardware description languages and high-level synthe-
sis, address the memory-access bottleneck by using techniques
such as edge-centric traversal, data alignment, and compute-
unit replication. While these optimizations work well for dense
graphs, they are ineffective for sparse graphs due to kernel launch
overhead and poor workload distribution across processing
elements. Thus, to complement this prior work, we present and
evaluate optimizations in OpenCL for BFS on sparse graphs.
Specifically, we explore application-specific and architecture-
aware optimizations aimed at mitigating the irregular global-
memory access bottleneck in sparse graphs. Our kernel design
considers factors such as data structure (i.e., queue vs. array),
number of memory banks, and kernel launch configuration.
Across a diverse set of sparse graphs, our optimizations deliver
a 5.7× to 22.3× speedup on Stratix 10 FPGA when compared
to a state-of-the-art OpenCL implementation for FPGA.

Index Terms—FPGA, BFS, OpenCL, HLS, sparse graphs,
dense graphs, graph traversal, irregular applications.

I. INTRODUCTION

Breadth-first search (BFS) is a graph traversal algorithm
that is used in a broad set of application domains such as the
testing and verification of digital circuits, data mining of social
networks, and analysis of road networks. A level-synchronous
BFS can be described using a filter-apply-expand abstraction,
as implemented in OpenDwarfs [1] and Gswitch [2]. The filter
stage identifies the “vertices in a given level” to process. This
set of vertices to be processed in a given level is known as the
active set, and the vertices in that level are known as active
vertices. The apply stage updates the cost of the vertices in
the active set. In the expand stage, unvisited neighbors of
the active vertices are marked to be used in the active set of
the next iteration. This process continues until the size of the
active set reaches zero.

Recent work to accelerate the graph traversal algorithm
has spanned a diverse set of fixed [3]–[6] and reconfigurable
architectures [7]–[10] at different levels of programming

This work was supported in part by NSF I/UCRC CNS-1822080 via the
NSF Center for Space, High-performance, and Resilient Computing (SHREC).

The authors would also like to thank the Intel DevCloud for providing
hardware resources along with software tools for compilation and profiling
on the Stratix 10 FPGA.

abstraction. With the advent of OpenCL [11], [12], many
graph optimization strategies have been explored [1], [8],
[13], [14]. Some OpenCL implementations for FPGA even
achieve performance that is comparable to the HDL-based
implementations [15]. Many of the OpenCL-based solutions
identify the irregular memory-access pattern of graph traversal
as a major performance bottleneck and propose strategies
such as data alignment, SIMD vectorization, and compute unit
replication to improve the performance [8], [13]–[15]. Such
optimizations perform well for relatively dense graphs with
low graph diameter but not for sparse graphs. Optimizing
BFS for sparse graphs remains a challenging task due to
factors such as kernel launch overhead and poor workload
distribution among processing elements. To address these
shortcomings, we present optimization strategies to improve
the performance of BFS for sparse graphs, resulting in the
following contributions.

• A set of optimizations for vertex-centric BFS that targets
the FPGA processing of sparse graph datasets, including
kernel fusion, architecture-aware optimizations, and other
application-specific optimizations.

• A queue-based implementation of BFS in OpenCL for
FPGA that incorporates the aforementioned optimiza-
tions and delivers a speedup of 5.7× to 22.3× over an
OpenCL-based state-of-the-art FPGA implementation.

II. RELATED WORK

A. Graph Processing on GPUs

With the emergence of general-purpose computing on
GPUs, many BFS implementations have been proposed. Gun-
rock [3] and Enterprise [5] are high-performance graph-
processing frameworks on NVIDIA GPUs. Rodinia [4] and
Pannotia [16] are OpenCL-based benchmark suites with BFS
and other graph algorithms. More recent advancements include
Gswitch [2] and Sep-graph [17], both of which propose run-
time adaptation between multiple strategies to optimize graph-
based applications. While GPUs provide significant perfor-
mance gains, many FPGA-based solutions for graph algo-
rithms and other applications have been presented that achieve
comparable performance and significantly higher performance
per watt [7], [18]. See below for additional details.
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B. Graph Processing on FPGAs

The research in graph processing on FPGAs is extensive.
Hitgraph is an HDL-based, edge-centric, graph-processing
framework [7]. Hitgraph uses 20× less power than Gunrock
on an NVIDIA K40 GPU; it also performs as well as (or
better than) the GPU-based Gunrock even though the GPU
has 4.8× higher memory bandwidth than the Xilinx Virtex
UltraScale+ FPGA used in Hitgraph. Zhou et al. also present
an HDL-based, edge-centric BFS [19]. CyGraph [20] is a
reconfigurable architecture for parallel graph processing using
queues. HyVE [21] implement a hybrid vertex-edge memory
hierarchy for energy-efficient graph processing. GraphOps
presents a modular hardware library for energy-efficient pro-
cessing of graph-analytics algorithms [10]. Luo et al. [22]
evaluate the irregular memory accesses in a Monte Carlo
simulation and explore techniques to hide memory latency.
ForeGraph [9] is a graph-processing framework for multi-
FPGA systems. Finally, Umuroglu et al. present a hybrid
CPU-FPGA implementation [23]. None of the above, however,
specifically addresses the issues that arise when processing
sparse graphs with BFS, namely kernel launch overhead and
poor workload distribution across processing elements.

C. OpenCL-based BFS on FPGA

Several implementations of BFS have been proposed for
FPGA. OpenDwarfs was one of the first OpenCL-based
implementations for FPGA [1]. It is a vertex-centric and
architecture-agnostic BFS kernel that is functionally portable
across CPU, GPU, APU, and FPGA. In the BFS implementa-
tion from Spector [13], architecture-aware optimizations for
FPGA are applied to the OpenDwarfs BFS kernel. These
optimizations include compute-unit (CU) replication, loop
unrolling, and SIMD work-item execution. Both OpenDwarfs
and Spector make use of arrays to keep track of the active
vertices. Hassan et al. propose a bitmap-based implementa-
tion of OpenDwarfs and achieve up to a 5× improvement
over the architecture-agnostic OpenDwarfs kernel on synthetic
graphs [14]. Chen et al. propose an edge-centric BFS with
multiple processing elements (PEs) as well as a novel data-
shuffling technique to handle run-time dependencies caused
due to data dispatch across multiple PEs [8]. OBFS [15] makes
use of techniques such as graph re-ordering, data alignment,
and overlapping the apply stage with other tasks.

Our approach differs from prior work in three ways. First,
we avoid expensive global-memory accesses by maintaining
the data structures in local memory. Second, we explore a
queue-based implementation in addition to an array-based
implementation. Third, we merge the three stages (filter-apply-
expand) in a single kernel and avoid kernel launch overhead.

III. APPROACH

In this work, we leverage the filter-apply-expand approach
and use vertex-centric BFS. For a graph G(V,E), where V
is the set of vertices and E is the set of edges between the
vertices, BFS computes the hop-count between the source

vertex S and all other vertices of the graph. The active set
can be represented either using a queue or an array.

1) Queue-based BFS: In a typical queue-based implemen-
tation, vertices are added and removed using push and pop
operations, respectively, as shown in Algorithm 1. These push
and pop operations cannot be implemented in OpenCL since
dynamic memory management is not supported by OpenCL.
However, we can mimic the behavior of the queue by using
arrays — one array to represent the queues for storing active
vertices and the other to represent their neighbor set. Instead of
performing push and pop operations, we use local variables
that point to the first and last added entries in the array. The
algorithm terminates when no new vertices are added to the
array that stores neighbors.

Algorithm 1: BFS implementation using queues
Input : graph G(V, E), source S, vertices n
Output: cost[n]
Data: cqueue[n], nqueue[n], visited[n]

1 cost[S]← 0
2 cqueue[0]← s
3 while sizeof(cqueue) 6= 0 do
4 foreach vertex v ∈ cqueue do
5 foreach neighbor v2 of v do
6 if visited[v2] 6= 0 then
7 visited[v2]← 0
8 cost[v2]← cost[v] + 1;
9 nqueue.push(v2);

10 cqueue.pop(v)
11 swap cqueue and nqueue

2) Array-based BFS: Active set vertices can be represented
using arrays. Typically, arrays with the size equal to the
number of vertices are initialized. A vertex v is active if the
value at the index v of array is 1. It is possible to use a bitmap
instead of array. That is, one element of the integer array is
4 bytes long and therefore can hold information on up to 32
vertices. The active set can be filtered from the bitmap by
performing bit-level shift and logical XOR, AND, and NOT
operations. Hassan et al. [14], [15] make use of a bitmap
whereas Krommydas et al. [1] and Gautier et al. [13] use
arrays. Algorithm 2 shows array-based graph traversal.

IV. OPTIMIZATIONS

Here we describe the optimizations used to accelerate BFS.
We categorize the optimizations into three groups: (1) OpenCL
framework-specific optimizations, (2) architecture-aware opti-
mizations, and (3) application-specific optimizations.

A. OpenCL Framework-specific Optimizations

OpenCL allows programmers to invoke the kernel in one
of the two configurations: NDRange and single task. With
NDRange, kernel execution occurs using a group of work
items that execute the kernel in a pipelined manner. In a single-
task kernel launch, only a single work item is used; this con-
figuration allows pipelined execution within the kernel loops
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Algorithm 2: BFS implementation using arrays
Input : graph G(V, E), source S, vertices n
Output: cost[n]
Data: visited[n], mask[n], update[n]

1 cost[S]← 0
2 mask[S]← 1
3 while stopbfs 6= 0 do
4 stopbfs← 0;
5 foreach v ∈ G do
6 if mask[v]← 1
7 mask[v]← 0
8 foreach neighbor v2 of v do
9 if visited[v2] 6= 0

10 cost[v2]← cost[v] + 1;
11 update[v2]← 1;
12 foreach vertex v ∈ G do
13 if update[v]← 1
14 (visited[v],mask[v], stopbfs)← 1
15 update[v]← 0

as opposed to the pipelining of work items from NDRange.
The single-task configuration allows us to implement the set
of optimizations discussed below.

1) Kernel fusion: While the NDRange variants require
synchronization during the filter and expand stages, a single-
task variant does not require synchronization between the two
stages due to the serial execution of a single work item. This
allows all the BFS stages to be merged into one kernel. Thus,
kernel fusion reduces the number of synchronization calls
made using clFinish between the BFS stages.

2) Elimination of host-based synchronization: To avoid
host-based synchronization altogether, we insert an outermost
while loop in the merged kernel. The loop terminates when
the number of active vertices is zero.

B. Architecture-aware Optimizations

OpenCL facilitates a ”write once, run anywhere” program-
ming model. However, extracting optimal performance from
an OpenCL kernel when running on a given hardware architec-
ture necessitates architecture-aware optimizations. Below we
describe our architecture-aware optimizations to achieve high
performance on an Intel Stratix 10 FPGA.

1) Local queue: In the array-based version, active ver-
tices are found by searching all the elements of an array.
In the queue-based version, we iterate over the size of the
queue. While the queue eliminates the need for redundant
comparisons, it still needs expensive irregular reads and writes
to global memory. We mitigate the irregular global accesses
by initializing the queue in FPGA local memory (BRAM).
Though this optimization limits the graph sizes that can be
processed, we show in §IV-C how to alleviate this limitation.
We also realize a local array-based BFS from Algorithm 2 and
compare the performance of the two versions in §V.

TABLE I: Initiation interval (II) for the loop in the filter stage

Implementation II (# clock cycles)
Single-task OpenDwarfs with array 237
Single-task OpenDwarfs with bitmap 225
This paper (Using local copy of level) 1

2) Using multiple memory banks: Kernel performance can
be improved by specifying the number of banks in the lo-
cal queue [24], [25]. Having multiple banks allows parallel
accesses to the queue. Even when two different elements of
the same array are accessed in different pipeline stages, there
could be stalls in the pipeline due to memory contention.
Parallel accesses, in turn, reduce pipeline stalls in such cases.

3) Speculated iterations: The performance of pipelined
loops can be improved by specifying the number of speculated
iterations before the execution of the loop [25]. The offline
compiler generates the hardware to run N more iterations of
the loop while ensuring that extra iterations do not affect the
correctness of the results. Speculated iterations can reduce the
loop initiation interval and increase the frequency. The value of
N must be carefully chosen. If the exit condition of the loop
is calculated in very few iterations, the redundant iterations
performed after the exit condition can negatively impact the
performance. For our implementation, we set the speculated
iteration count at five (5).

C. Application-specific Optimizations

The architecture-agnostic kernels in OpenDwarfs and their
optimized FPGA variants in Spector provide unoptimized
and optimized baselines for FPGA performance, respectively.
However, there still remains room for application-specific
optimizations to further improve performance, as noted below.

1) Merged apply and expand: The apply stage of BFS
can be merged with the expand stage. Instead of reading the
cost of a vertex from global memory and writing the updated
cost back to its neighbor, we use a local variable to keep
track of the current level. We assign this level to the neighbors
of active vertices. This optimization improves performance in
two ways. First, it avoids the expensive global read of the
dependent variable in the loop that stalls the pipeline in the
filter stage. As a result, our initiation interval (i.e., II)1 for the
loop in the filter stage takes only one (1) clock cycle, as shown
in the Table I. Second, it avoids redundant cost updates that
take place in Algorithm 2 at line 10 when two vertices from
the active set have shared neighbors.

2) Elimination of duplicate entries: The array visited in
Algorithm 1 serves the purpose of eliminating the introduction
of duplicate entries in the queue; but using an array limits the
size of the queue as local memory is limited. By replacing
the array with a bitmap, we allocate more space for the queue
and, in turn, can process graphs with up to 221 vertices (or
2,097,152 vertices) in our optimized FPGA implementation.

1The initiation interval (II, for short) is the number of clock cycles that the
pipeline must stall before it can process the next loop iteration.
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TABLE II: Sparse Graph Datasets

Graph Description # Vertices # Edges
Luxembourg OSM Open street map 114.6K 119.7K
roadNet- CA Road network 2.0M 2.8M
roadNet-PA Road network 1.1M 1.5M
Belgium OSM Open street map 1.4M 1.5M
G3-circuit Circuit simulation problem 1.6M 3.0M
Ecology1 Landscape ecology problem 1.0M 1.9M

TABLE III: Resource Usage Summary

Implementation Data Structures
for Active Set

Area Utilization Frequency
(MHz)ALUTs FFs RAMs

Spector Global arrays 307193 (16%) 492824 (13%) 1912 (16%) 208

This Paper
Local arrays 231473 (12%) 317669 ( 9%) 6841 (58%) 269
Local queues
with bitmap 226834 (12%) 318679 ( 9%) 8983 (77%) 108

Local queues
with bitmap and
memory banks

226834 (12%) 318679 ( 9%) 8983 (77%) 148

V. PERFORMANCE EVALUATION

A. Experimental Setup

We perform our experiments on an Intel® Stratix 10 SX
2800 FPGA with an Intel® Xeon® Gold 6128 CPU as the
OpenCL host. To evaluate the efficacy of our approach (vs.
the state-of-the-art Spector BFS), we use a workload of
undirected sparse graphs from “The Network Data Repository
with Interactive Graph Analytics and Visualization” [26], as
shown in Table II. We draw the reference implementation of
BFS from [27] with commit SHA b536909.

B. Analysis of Resource Utilization

Table III shows the area utilization and frequency of Spector
BFS and our BFS implementations on the Stratix 10 FPGA.
Kernels in the global array-based Spector and our local array-
based BFS implementation are scheduled at higher frequencies
than the kernels in the queue-based implementations. In our
local memory-based implementations, the RAM usage is con-
siderably higher than in Spector. RAM usage is 77% for the
queue-based kernels compared to 16% in the Spector. There
are 4% more ALUTs and FFs required in Spector compared
to the queue-based version. This is expected as Spector makes
use of optimizations such as SIMD work-item execution.

C. Performance Improvement

Fig. 1 shows the normalized speedup of our BFS over Spec-
tor’s BFS [13]. The speedup comparisons are with respect to
the optimized BFS implementation in Spector. While Spector’s
BFS outperforms our local array-based kernel by 3.18× on the
Ecology1 graph and 2.35× on the Luxembourg-osm graph, our
queue-based implementations significantly outperform Spec-
tor’s. For our queue-based kernel with a local array, we observe
12.80× and 13.15× speedup with the Luxembourg-osm and
Ecology1 graphs, respectively. Using a bitmap, instead of an
array, in the same kernel further improves performance by a
factor of 1.29.

1) Impact of banking: For the graphs in Fig. 1, the queue-
based kernel with bitmap outperforms Spector by a factor of
16.9. Using two memory banks in the same kernel causes an
average 1.3× further increase in the performance. We do not
observe any further increase in the performance by increasing

TABLE IV: Speedup over Spector BFS [13] on Intel Stratix 10

Graph Speedup # BFS
iterations

Runtime of our
implementation

(seconds)

# Edges traversed
per second

(This paper)
Luxembourg OSM 22.30× 1035 0.078 1.71M
roadNet-CA 5.82× 555 1.873 1.53M
roadNet-PA 6.20× 542 1.008 1.48M
Belgium OSM 15.41× 1459 1.422 1.04M
G3-circuit 5.77× 514 1.441 2.08M
Ecology1 21.86× 1999 0.946 2.10M

Fig. 1: Performance improvements over Spector on Stratix 10

the number of banks to 4 and 8. The operating frequency
for the queue-based version with two banks is 148 MHz (vs.
108 MHz without banking). For all the graphs in Table II, we
observe a similar trend where the queue-based implementation
with bitmap and two banks shows the most improvement.

2) Impact of sparsity: Table IV shows the speedup for
our best performing implementation (queue + bitmap + 2
memory banks) over Spector for the sparse graphs. For the
same implementation, we report the number of edges traversed
per second in Table IV. Graphs with a much higher number of
BFS iterations benefit the most from our optimizations. Sparse
graphs process a small number of vertices in each iteration.
A queue-based traversal is preferable over an array-based
traversal as it avoids the need to iterate over the entire array
to find active vertices. Our set of optimizations is applicable
to sparse datasets, and we show 5.7× to 22.3× improvement
over the reference implementation for such graphs.

VI. CONCLUSION

This paper presents OpenCL optimizations for BFS on
sparse graphs. Irregular global memory access bottleneck for
sparse graphs is mitigated by using architecture-aware and
application-specific optimizations. We evaluate the impact of
the proposed optimizations on an Intel Stratix 10 SX 2800
FPGA. Compared to the reference implementation, we achieve
5.7× – 22.3× speedup for sparse graphs. This work is meant
to serve as a complement to the state-of-the-art parallel BFS
designs that improve the performance for dense graphs using
replication of kernel logic. As a subject of future study, We
intend to explore the efficacy of a hybrid approach where the
choice of the appropriate design, i.e., queue-based single PE
vs. multiple PEs for a given iteration is made at run-time
depending on the sparsity of the vertices in the active set.
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