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Abstract—The proliferation of heterogeneous computing sys-
tems has led to increased interest in parallel architectures and
their associated programming models. One of the most promising
models for heterogeneous computing is the accelerator model,
and one of the most cost-effective, high-performance accelerators
currently available is the general-purpose, graphics processing
unit (GPU).

Two similar programming environments have been proposed
for GPUs: CUDA and OpenCL. While there are more lines of
code already written in CUDA, OpenCL is an open standard that
supports on a broader range of devices. Hence, there is significant
interest in automatic translation from CUDA to OpenCL.

The contributions of this work are three-fold: (1) an ex-
tensive characterization of the subtle challenges of translation,
(2) CU2CL (CUDA to OpenCL) — an implementation of a
translator, and (3) an evaluation of CU2CL with respect to
coverage of CUDA, translation performance, and performance
of the translated applications.

Index Terms—source-to-source translation, GPU, CUDA,
OpenCL

I. INTRODUCTION

RECENT trends in processor architectures utilize available
transistors to provide large numbers of execution cores,

and hence threads, rather than attempting to speed-up the
execution of a single thread or a small number of threads. This
has led to general interest in parallel architectures and pro-
gramming models even outside of the high-performance com-
puting (HPC) realm. The accelerator model, where general-
purpose computations are performed on the central process-
ing unit (CPU) and data- or task-parallel computations are
performed on specialized accelerators, is one of the models
being proposed as a way to program heterogeneous comput-
ing architectures. By leveraging the economics of graphics
cards, particularly gaming cards, graphics processing units or
GPUs in graphics cards have been particularly successful in
supporting the accelerator model.

GPUs were originally designed to perform a set of com-
putations on a large number of picture elements or pixels
simultaneously. Besides producing highly realistic, real-time
graphics for gaming, this characteristic could also be harnessed
to execute parts of scientific computations in parallel with
high performance. Examples of these computations include
simulating the physical movements of atoms and molecules as
part of an n-body molecular dynamics problem and searching
for alignments in nucleotide or protein sequences, as done
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in [1] and [2], respectively. When used for more than graph-
ics computations, GPUs are called general-purpose GPUs or
GPGPUs. (For brevity and convenience, we refer to GPGPUs
simply as GPUs for the remainder of this paper.)

In the accelerator model, the overall logic of an application
runs on the CPU, possibly utilizing multiple cores to execute
several threads simultaneously. Threads delegate computations
to accelerators by spawning off parallel computations, called
kernels, to the GPUs. At appropriate points during execution
on the CPU, the CPU sends data to the GPUs, and the
kernels are invoked. The CPU may continue to perform other
computations in parallel with the kernels until such time as
the results are needed, whereupon the results are transferred
from the GPU back to the CPU. Because GPUs have hundreds
or even thousands of threads (compared with tens of threads
in CPUs), effective utilization of GPUs for computations
can accelerate parallel computations tremendously. Because
the accelerator model is a straightforward extension to the
programming models commonly used, it is readily understood
by programmers of widely differing skill levels. As a result,
GPU programming has taken off.

Initially, general-purpose computations were programmed
using the shader languages developed for graphics operations
— a tedious task. However, as the use of GPUs has increased,
languages and tools for more conveniently specifying general-
purpose computations have been developed. One of the earliest
and most successful programming environments to date is
NVIDIA’s CUDA.

In CUDA [3], kernels are written in a variant of C++,
which has additional data types and operations suited to
computations on larger chunks of data, according to the accel-
erator model. It also provides synchronization primitives that
ensure correctness. On the CPU side, CUDA extends C++ by
including special syntax for invoking kernels. Because of these
extensions, however, the CUDA programming environment
cannot use standard C++ compilers, and instead, must use
a compiler for the extended language. Although CUDA is
widely used, it is largely tied to NVIDIA’s freely available but
proprietary hardware and software development kit (SDK).

OpenCL, short for Open Computing Language, is another
programming environment that implements an accelerator pro-
gramming model that is similar to CUDA. It is an open stan-
dard that is maintained by the Khronos group. The OpenCL
API consists of a C library supporting device programming
in the C99 language (rather than as extensions to C++ as in
the CUDA API). As a result, OpenCL can take advantage of
existing tools and compilers for a wide variety of host and
GPU platforms. Porting OpenCL to a different host platform
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(a) Translation from PTX. (b) Source-to-source translation.

Fig. 1: Two of the approaches for translating CUDA source.

is a matter of providing an implementation of the runtime
library that conforms to the standard. In contrast, CUDA
requires a compiler that understands the extended syntax as
well as an appropriate runtime library.1 Thus, the APIs of the
two programming environments differ quite a bit. However,
learning to program in one yields the same mental model of
GPGPU computations as learning in the other, allowing the
other programming environment to be understood readily once
the differences in syntax and library are taken into account.

With a choice in programming environments comes the need
to choose. CUDA has the largest installed base and many time-
saving libraries for important functions such as FFT. However,
it is only supported on NVIDIA hardware. OpenCL, on the
other hand, is an open standard that is supported on a variety
of mainstream devices: NVIDIA GPUs, AMD GPUs, and
x86 / x86-64 CPUs from Intel and AMD. Support is also
available for some system-on-chip (SoC) devices [5], including
the ARM Cortex-A9 CPU [6] and the PowerVR SGX GPU [7].
Additionally, Intel intends to support OpenCL on their Many
Integrated Cores (MIC) architecture [8], and Altera already
has a program to develop an OpenCL environment for their
FPGAs [9], as represented as a dashed line in Fig. 1b. Due
to the greater functional portability provided by OpenCL (and
in spite of the weaker OpenCL library support for important
functions), many are choosing OpenCL as their programming
environment of choice.

With the great interest in OpenCL comes a challenge:
organizations have a large investment in CUDA codes and yet
would like to take advantage of wider deployment opportuni-
ties afforded by OpenCL. Thus, there needs to be a translator
from CUDA to OpenCL that not only allows compilation in
the new environment but also yields maintainable source code
such that development can continue directly in OpenCL. To
this end, we created CU2CL, an automatic CUDA-to-OpenCL
source-to-source translator that also preserves the comments
and formatting in the original source code.

1Although NVIDIA recently contributed an open-source compiler based
upon LLVM to aid researchers [4], there is only a single (proprietary)
implementation of the runtime library.

The contributions of this work are three-fold:
1) A characterization of the mapping between CUDA and

OpenCL with particular emphasis on areas where the
semantics are not trivially equivalent,

2) A discussion of a prototype implementation of an auto-
matic translator from CUDA to OpenCL called CU2CL.

3) An evaluation of the CU2CL translator in three areas:
(a) coverage of CUDA constructs translated automati-
cally, (b) translation time, and (c) a comparison of the
execution time for automatically translated applications.

The remainder of the paper is as follows: Section II
discusses related work, followed by relevant background on
CUDA and OpenCL in Section III.. Section IV gives an
extensive characterization of many of the challenges in trans-
lating CUDA to OpenCL. Section V introduces the CU2CL
translator, and Section VI evaluates its performance. Sec-
tion VII outlines future work and Section VIII summarizes
the contribution of the work.

II. RELATED WORK

Several projects exist that enable the running of CUDA
source code on hardware platforms other than NVIDIA GPU
hardware. There are three main approaches: (1) translating the
Parallel Thread Execution (PTX) intermediate representation
(IR) from the nvcc compiler, (2) translating from one source
to another, and (3) modifying the original source code to utilize
an abstract interface for which different implementations are
provided.

Fig. 1a shows the approach taken by the Ocelot project [10]
and by Caracal [11]. In this approach, the CUDA source code
is first translated to the PTX IR using the nvcc compiler
from the CUDA SDK. Instead of immediately sending the
PTX representation to the device driver, which finishes the
compilation and executes the code (as shown by the work
flow in the middle of the diagram), Ocelot parses the PTX
and utilizes the Low-Level Virtual Machine (LLVM) toolkit to
perform transformations and optimizations before generating
code for the target architecture. Target architectures currently
include x86 CPUs from Intel and AMD and the IBM Cell
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Broadband Engine. Ocelot can also generate PTX as output
from the transformed representation for NVIDIA hardware.
Caracal builds upon Ocelot by adding a just-in-time compila-
tion step that translates PTX to AMD’s Compute Abstraction
Layer (CAL) in order to run CUDA applications on AMD
GPU hardware for which there is no CUDA runtime. In both
cases, starting with the PTX IR makes it possible to translate
code to run on other hardware platforms even if the source
code is not available.

Fig. 1b shows an alternative translation approach taken by
MCUDA [12] and our CU2CL [13]. In contrast with Ocelot
and Caracal, which both start with the PTX IR, CU2CL and
MCUDA perform a source-to-source translation on the original
CUDA source code to generate a semantically equivalent
program targeted to another hardware platform. The native
compilers, linkers, and other development tools for that plat-
form are then used to prepare the computation for execution.
The target programming platform for MCUDA is OpenMP,
which runs on a variety of CPU platforms, including non-
x86 CPUs. The target programming platform for CU2CL is
OpenCL, which runs on a variety of CPUs and GPUs. (Support
for other devices, such as FPGAs, are still under development,
as represented by a dashed line in the figure.)

The source-to-source approach possesses many advantages.
First, it leverages the considerable effort that has been spent
over the years creating robust and high-performance tools for
the various hardware platforms. Second, automatic translation
into another source language gives the option of continued
code development in the new environment. This is particularly
an advantage if migration is desired. Third, it preserves more
of the high-level semantics, and hence, more easily enables
transforming the code to achieve additional goals, such as
improved performance. As shown in [1] and many other pub-
lications the optimizations necessary for better performance
differ depending on whether the GPUs are from AMD or
NVIDIA. Optimizations necessary for better performance on
CPUs are also different from those required for GPUs.

The original source code is a representation of the intent
of the programmer and hence contains information that can
get lost in the translation to an intermediate form or becomes
more difficult to reconstruct from that form. With additional
information, better optimization choices can be made by the
tool chain without human intervention.

Note that these two approaches, starting with PTX or
starting with the source code are beneficial in different cir-
cumstances. Translation from PTX is viable whether or not the
original source code is available. Source-to-source translation
is beneficial for organizations that value platform diversity,
desire to migrate their code base, or are invested in existing
vendor-specific tool chains.

CU2CL targets OpenCL in order to support the wide variety
of multi- and many-core processors and accelerators in the
market. The breadth of hardware platforms supported by
OpenCL is very compelling, particularly since it gives the
flexibility to purchase the platform with the best performance.

It should be noted that there are two CUDA APIs. The
high-level runtime API, which provides reasonable defaults
for many runtime parameters, and the lower-level device API,

TABLE I: CUDA and OpenCL terminology.

CUDA OpenCL

GPU device
multiprocessor compute unit
scalar core processing element

kernel program
block work-group
thread work-item

global memory global memory
shared memory local memory
local memory or registers private memory
constant memory constant memory
texture memory image memory

which gives the programmer much more control but at the
expense of programmability. Most CUDA applications use
the runtime API because it requires less attention to detail.
CU2CL initially assumes that the CUDA source uses the more
common runtime API as that makes the tool more immediately
useful. Translating the CUDA runtime API is also the greater
intellectual challenge as the CUDA device API is very similar
to the OpenCL API. CU2CL will be extended to also support
the CUDA driver API in the future.

As mentioned earlier, there is a third approach to the
problem, represented by Swan [14]. Instead of translating the
intermediate or source languages, the programmer rewrites all
CUDA API calls with Swan equivalents. The code is then
compiled and linked with one of two currently supported Swan
libraries, libswan_ocl or libswan_cuda, which permits
execution on either of the main GPU platforms. The main
disadvantages are the labor involved (which is currently only
partially automated) and the fact that the source code is no
longer CUDA or OpenCL and hence does not have widespread
industry support.

III. BACKGROUND

This section presents an overview of CUDA and OpenCL
before delving into the details of automatic translation. As
mentioned earlier, both CUDA and OpenCL are designed
to support the accelerator model of computing. Both have
provisions for specifying and launching kernels on compute
devices, for managing memory, for synchronizing, etc. How-
ever, CUDA is more tightly focused on GPUs and provides
many GPU-centric features, whereas OpenCL takes a more
platform-agnostic approach.

One of the challenges in translating between the two is
understanding the terminology. Table I lists various CUDA
terms and their OpenCL counterparts. The CUDA terms will
be used in the discussions as they are likely more familiar to
the reader. The differences in terminology are mentioned as
applicable below.

A. Work Allocation Model

Work is allocated to the streaming multiprocessors on a
GPU according to a multidimensional grid of blocks, as shown
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Fig. 2: Overview of the CUDA and OpenCL models.

in Fig. 2a. Each block specifies numerous threads, also possi-
bly in a multidimensional configuration. The configurations are
specified in the host code during a kernel function invocation.
For good performance, the number of threads need to be
chosen so that there are sufficient threads to hide the latency of
memory accesses or other operations and yet sufficient work
per thread to amortize the cost of invoking the kernel.

B. Memory Model

Both CUDA and OpenCL have three separate memory
spaces. CUDA refers to these memory spaces as global
memory — off-device and accessible by all threads in all
blocks; shared memory — on-device and available to all
threads in a block; and local memory — owned by one
thread. In addition to these memories, two special-use memory
spaces provide faster memory operations: constant memory
and texture memory. Constant memory is cached for fast
reads, but is limited in size and does not support writes.
Texture memory allows for fast reads as well as writes but is
limited in size. Furthermore, kernels must use special built-in
functions to access data residing in these regions. In general,
device memory must be explicitly allocated through CUDA
API calls and is usually initialized by copying data from host
memory. Fig. 2b shows how the memory spaces are laid out
hierarchically.

C. Host API

Two CUDA APIs exist for programming host-side code:
a low-level driver API and a high-level runtime API. The
driver API gives the programmer great flexibility and control
but also requires more setup and configuration to be done
explicitly. In addition, CUDA includes an extension of C
providing special features like concise kernel launch syntax,
known as CUDA C. As an example, consider the host code
needed to invoke a matrixMul kernel [15]. Fig. 3a shows
the code for a CUDA C launch while Figs. 3b and 3c show
the code for the CUDA runtime and driver APIs, respectively.
The runtime and driver API versions set the arguments for
the kernel invocation explicitly while the CUDA C variant

accomplishes the same task with a more succinct syntax. The
attention to detail needed for the driver API is generally much
greater, so programmers tend to use CUDA C in combination
with the runtime API whenever possible.

By way of comparison, Fig. 3d shows the equivalent host
code for invoking the kernel in OpenCL.2 The number of lines
of code in the OpenCL example is the same as with the CUDA
driver API example. Further, there is a close correspondence
between the two. Consequently, translating between the CUDA
driver API and OpenCL API is straightforward and a much
easier task to automate. However, most CUDA codes use the
runtime API whenever possible due to its ease of programma-
bility [16], [17]. This is why CU2CL supports the CUDA
runtime API now and why supporting the driver API is left
for future work.

IV. CHARACTERIZATION

Two primary concerns drive our source-to-source approach.
First, the translated source should not deviate from the seman-
tics of the original source. This is a requirement for functional
portability or functional correctness. Second, the translated
code should perform as well as the original source code on
similar hardware platforms and on new hardware platforms.
This requirement is called performance portability.

Functional portability is the most important of the two
concerns as it does not matter how fast the code runs if
it gets the wrong answer. Once functional portability has
been obtained, the performance differences between the two
computing platforms can be addressed in order to achieve
performance portability.

This paper focuses exclusively on functional portability,
leaving the issue of performance portability for future work.
The remainder of this section will discuss issues that make
CUDA-to-OpenCL source-to-source translation challenging. It
will also outline how the problems are solved in the CU2CL
translator.

2Note: The closest equivalent to the CUDA runtime API is to use the
OpenCL C++ wrapper API to create succinct abstractions. There are as yet
no standard abstractions.
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dim3 threads(BLOCK_SIZE, BLOCK_SIZE);
dim3 grid(WC / threads.x, HC / threads.y);
matrixMul<<<grid,threads>>>(C, A, B, WA, WB);

(a) CUDA C

dim3 threads(BLOCK_SIZE, BLOCK_SIZE);
dim3 grid(WC / threads.x, HC / threads.y);
cudaConfigureCall(grid, threads, 0, 0);
cudaSetupArgument(C, 0);
cudaSetupArgument(A, 4);
cudaSetupArgument(B, 8);
cudaSetupArgument(WA, 12);
cudaSetupArgument(WB, 16);
cudaLaunch("matrixMul");

(b) CUDA runtime API

cuFuncSetBlockShape(matrixMul, BLOCK_SIZE, BLOCK_SIZE, 1);
cuFuncSetSharedSize(matrixMul, 2 * BLOCK_SIZE
* BLOCK_SIZE * sizeof(float));

cuParamSeti(matrixMul, 0, C);
cuParamSeti(matrixMul, 4, A);
cuParamSeti(matrixMul, 8, B);
cuParamSeti(matrixMul, 12, WA);
cuParamSeti(matrixMul, 16, WB);
cuParamSetSize(matrixMul, 20);
cuLaunchGrid(matrixMul, WC/BLOCK_SIZE, HC/BLOCK_SIZE);

(c) CUDA driver API

size_t localWorkSize[] = {BLOCK_SIZE, BLOCK_SIZE};
size_t globalWorkSize[] = {shrRoundUp(BLOCK_SIZE, WC), shrRoundUp(BLOCK_SIZE, workSize)};
clSetKernelArg(matrixMul, 0, sizeof(cl_mem), (void *) &C);
clSetKernelArg(matrixMul, 1, sizeof(cl_mem), (void *) &A);
clSetKernelArg(matrixMul, 2, sizeof(cl_mem), (void *) &B);
clSetKernelArg(matrixMul, 3, sizeof(float) * BLOCK_SIZE *BLOCK_SIZE, 0);
clSetKernelArg(matrixMul, 4, sizeof(float) * BLOCK_SIZE *BLOCK_SIZE, 0);
clEnqueueNDRangeKernel(commandQueue, matrixMul, 2, 0,

globalWorkSize, localWorkSize, 0, NULL, &GPUExecution);
clFinish(commandQueue);

(d) OpenCL API

Fig. 3: Comparison of the CUDA and OpenCL APIs.

A. Translation Challenges

At first glance, translating CUDA to OpenCL appears to
be a straightforward mapping process. While most CUDA
constructs map one-to-one to OpenCL, not all do, as shown
in Tables II, III, and IV. As a result, translating certain parts
of CUDA requires a deeper understanding of both APIs to
identify suitable corresponding constructs. Furthermore, these
tables provide only a high-level view of the translation process;
in practice, more sophisticated techniques are required to
perform the translations. For example, in some cases, data
must be tracked throughout the lifetime of the translation
before certain translations can be finalized. Such is the case
when rewriting device pointers to cl_mem data types, as the
rewrite must propagate through types found in parameters and
sizeof expressions.

As Table II shows, each of the CUDA modules possesses a
corresponding OpenCL equivalent. However, the bigger chal-
lenges in CUDA-to-OpenCL translation only become apparent
upon deeper inspection. For example, Table III shows some
CUDA data structures and their OpenCL equivalents. Some
have direct equivalents: dim3 vs. size_t[3]. Others have

TABLE II: CUDA modules and the OpenCL equivalents.

CUDA Sample Call OpenCL

Thread cudaThread-
Synchronize

Contexts & Command
Queues

Device cudaSetDevice Platforms & Devices
Stream cudaStream-

Synchronize
Command Queues

Event cudaEventRecord Events
Memory cudaMalloc Memory Objects

no direct equivalent, e.g., cudaDeviceProp, and have to be
synthesized from OpenCL data structures and function calls.
The most challenging translations are ones like the CUDA
device pointers and their semantically similar, but function-
ally different, OpenCL cl_mem structures. (This particular
challenge is discussed in greater depth in Section IV-A1.)

Built-in structures and functions are another area where
there are similarities and differences, as shown in Table IV.
CUDA indices and dimensions (both grid and block) are
variables that have OpenCL counterparts accessible via built-
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TABLE III: CUDA and OpenCL data structures.

CUDA OpenCL

Device pointers cl_mem created through cl-
CreateBuffer

dim3 size_t[3]

cudaDeviceProp No direct equivalent
cudaStream_t cl_command_queue

cudaEvent_t cl_event

textureReference cl_mem created through cl-
CreateImage

cudaChannelFormatDesc cl_image_format

TABLE IV: CUDA built-ins and their OpenCL equivalents.

CUDA OpenCL
gridDim.{x,y,z} get_num_groups({0,1,2})
blockIdx.{x,y,z} get_group_id({0,1,2})
blockDim.{x,y,z} get_local_size({0,1,2})
threadIdx.{x,y,z} get_local_id({0,1,2})
warpSize No direct equivalent
__threadfence_block() mem_fence(CLK_LOCAL_MEM_-

FENCE | CLK_GLOBAL_MEM_-
FENCE)

__threadfence() No direct equivalent
__syncthreads() barrier(CLK_LOCAL_MEM_-

FENCE | CLK_GLOBAL_MEM_-
FENCE)

in functions. However, there are some built-in functions, such
as __threadfence() that have no equivalent function-
ality in the current version of OpenCL. As a consequence,
workarounds must be synthesized.

Below are some specific examples of the challenges in
translating CUDA to OpenCL.

1) Pointers: CUDA refers to device data buffers through
pointers to the type of data stored, similar to standard C
dynamically allocated buffers. However, rather than initializing
a pointer to the dynamically allocated region with a standard
malloc call, in general these buffers must be initialized by a
call to one of the cudaMalloc* variants specified in the
CUDA runtime. The device buffer pointers are passed to a
CUDA kernel launch in nearly identical fashion as the passing
of their standard C counterparts to a host-side function call.
Both host and device share the same pointer type for the buffer.

However, OpenCL device buffers use the cl_mem type to
represent all buffers on the host side, and standard pointer
types on the device. When a pointer type is specified as a
parameter to an OpenCL kernel, any cl_mem buffer which
resides in the correct memory access space can be specified for
the parameter, regardless of the buffer’s intended type. These
buffers are then interpreted as an array of the appropriate type
by the device code, similar to CUDA. However, this draws
attention to an important difference between how the two APIs
reference buffers on the host side.

Commonly, we have observed that CUDA device memory
allocation and kernel calls reside in separate functions within
an application. In these cases, the buffer pointer is frequently
passed as a parameter to the kernel call’s wrapping function.
From a syntax perspective, this pointer parameter has no
indication whether the parameter represents a host- or device-

side buffer. However, once the device buffer is translated to
OpenCL, the wrapped kernel call will require a cl_mem type
for all device buffers, necessitating a rewrite of the parameter,
as well as any functions lower on the call stack which passed
the parameter through. As CUDA device buffer pointers have
no readily-observable syntax declaring them as such, accurate
propagation of type rewrites across these functions is made
significantly more complex.

float *newDevPtr;
...
cudaMalloc((void **) &newDevPtr, size);

(a) Original CUDA source.

cl_mem newDevPtr;
...
newDevPtr = clCreateBuffer(clContext,

CL_MEM_READ_WRITE, size, NULL, NULL);

(b) Rewriten OpenCL source.

Fig. 4: Example of rewriting the cudaMalloc API call.

The current translator prototype does not yet perform this
full call stack propagation of cl_mem types. It only performs
a type translation within the scope containing the declaration
of the CUDA device buffer pointer. For example, CU2CL
translates the CUDA buffer allocation shown in Fig. 4a to
a form similar to Figure 4b. Proper translation is assured if
the pointer declaration shares the same scope as the kernel
call. Complete type propagation is the subject of future work.
(One potentially-viable approach we are currently considering
is the simple method of reducing the scope of the cl_mem
translation, by allowing the buffer to retain the original pointer
type and simply providing explicit casts at buffer allocation
and kernel invocation, the only two points at which it is
required to be a cl_mem or should ever be accessed by the
host.)

2) Pre-processing: Source-to-source translation of prepro-
cessed languages, such as C/C++, as well as domain-specific
variants such as CUDA and OpenCL, is known to be diffi-
cult [18]. The code that the compiler sees can be dramatically
different than the code in the source file.

One solution is to run the source code through the prepro-
cessor prior to translation. While this approach can achieve
functional correctness, it has the tendency to make the trans-
lated source code much less maintainable as features like
constants are expanded into opaque values.

An alternative approach, taken by CU2CL, is to translate the
un-preprocessed tokens based on guidance from the prepro-
cessed code in the hope that the preprocessing done later will
not lead to syntactically or semantically invalid code. While
this heuristic cannot guarantee a clean translation, it works
well in practice as tricky macro preprocessing is a software
maintenance nightmare and is generally avoided.

3) Separate Compilation: Separate compilation is an im-
portant tool in the development of software. However, it
poses a significant challenge in source-to-source translation
for languages like C/C++, where global state is often implicit
until the linking stage. This is an important issue as nearly
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all but the most trivial applications are composed of multiple,
separately compiled source files.

As the result of separate compilation, the declaration of
a feature and its use may occur in separate files making
it challenging to ensure that compatible translations happen
in each file. This issue is especially prevalent in code that
performs device initialization, memory management, or kernel
definition.

As an example, consider the translation of pointers to
CUDA memory buffers allocated with cudaMalloc, shown
in Fig. 4a, to OpenCL’s cl_mem which is a pointer to an
opaque type, shown in Fig. 4b. Using a pointer to an opaque
type may make it easier to implement OpenCL on widely
divergent devices, but it makes translation significantly more
difficult as it requires propagation of a type rewrite across
all functions which utilize the buffer pointer as a function
parameter or return value. If declaration and uses are split
across multiple source files — particularly when used as a
kernel parameter — care must be taken to ensure the same
type change propagates throughout all the sources files.

4) Precompiled Binary Code: Another challenge to au-
tomatic translation is the use of precompiled or hand-tuned
binary code in CUDA applications. A fair number of CUDA
applications from the CUDA SDK utilize precompiled libraries
and thus thwart the source-to-source translator. Translations
of the libraries’ header files can be performed but the pre-
compiled code remains inaccessible. This is an important
problem as there are a growing number of high-quality high-
performance CUDA libraries becoming available and being
used.

Not all is lost however. By their very nature, such libraries,
e.g., cuFFT, implement common functionality that is widely
used. Libraries implementing similar functionality are becom-
ing available for OpenCL, e.g., AMD Accelerated Parallel
Processing Math Libraries (APPML) FFT, enabling translators
to map from one library to another. As equivalent libraries
become available, the translator can be extended to perform the
translation. Currently, however, the CUDA library calls pass
through the translator unchanged and hence require manual
intervention.

A complimentary approach is to extend Ocelot to translate
precompiled binaries to OpenCL code and use the translated
kernel code in the place of the binary.

5) C++ Syntax: CUDA supports both C and C++ syntax
for host and kernel code while OpenCL supports C and C++
bindings for host code but only C99 with select extensions
for kernel code. This makes translating CUDA kernel code
containing C++ problematic.

Function templates are a concrete example of a C++ feature
in CUDA kernels. Other than stipulating that global -
functions with private scope cannot be instantiated, CUDA
provides full support for function templates. Fully-automated
translation would require the parsing of function templates and
the creation of individual kernel functions specialized for each
unique instantiation of a kernel function template.

The current approach is to wait for the OpenCL standard to
be extended to support C++ in kernels. Thus, this is another
area that temporarily requires human intervention.

6) Literal Arguments: There is a subtle difference in the
kernel launch semantics of CUDA and OpenCL, particularly
in the way that kernel function parameters are specified.

While CUDA provides several methods of launching de-
vice kernels, by far the most popular uses the CUDA C
kernel invocation syntax (see Fig. 3a), with the semantics
that kernel arguments are passed by value. OpenCL, on
the other hand, specifies kernel arguments through calls to
clSetKernelArgs (see Fig. 3d), which implements pass-
by-reference semantics.

For many kernel arguments, it is sufficient to transform the
value represented by a variable to a pointer to the variable
using the address-of operator &. This approach does not
work for literal constants or macro expressions. In this case,
the translator must infer the type of the argument, create a
temporary variable of the correct type, assign the argument
to the variable, and supply a pointer to the variable’s address
to clSetKernelArgs. This is the approach taken by the
current CU2CL prototype.

7) Kernel Function Pointers: Another subtle difference
between CUDA and OpenCL are the ways in which de-
vice kernels are invoked. The OpenCL cl_kernel data
type is actually a pointer to an opaque type. Hence all
kernel invocations are upon kernel function pointers via
clEnqueueNDRangeKernel. CUDA kernel functions, on
the other hand can be invoked using CUDA C either directly
by referencing the kernel function name or indirectly by a
kernel function pointer either implicitly or explicitly. These
alternatives are shown in Fig. 5.

kernelName<<<grid,block>>>(kernelArgs...);

(a) Invoking a CUDA function

kernelPtr = &kernelName;
...
(*kernelPtr)<<<grid,block>>>(kernelArgs...);

(b) Invoking a dereferenced CUDA function pointer

kernelPtr = &kernelName;
...
kernelPtr<<<grid,block>>>(kernelArgs...);

(c) Invoking a CUDA function pointer directly

clKernel = clCreateKernel(program,
kernelName, &errror);

...
status = clEnqueueNDRangeKernel(commandQueue,

<clFuncPtr>, workDim, globalWorkOffset,
globalWorkSize, localWorkSize,
numEventsInWaitList, eventWaitList, &event);

(d) Equivalent OpenCL invocation

Fig. 5: Ways of invoking kernel functions in host code.

The main difficulty with translating CUDA kernel function
pointers is that the required rewrites often have non-local
scope. If the location which CUDA kernel function pointer is
initialized and the location where the pointer is invoked (e.g.,
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Fig. 5b and 5c) are in the same function, only the equivalent
OpenCL code of Fig. 5d need be generated3. However, if the
kernel function pointer is passed through a set of host functions
(signified by the ellipsis), all the host functions from pointer
creation to invocation will need to be rewritten to propagate the
cl_kernel type. in the place of the CUDA kernel pointer.
In short, propagating types across function boundaries requires
substantially more effort, whether the types are cl_kernel
or cl_mem from IV-A1.

8) Device Initialization: The CUDA runtime API abstracts
away many of the details needed to initialize the GPU and
establish an execution context. There is no need for explicit
initialization (as there is for the driver API or OpenCL).
With the runtime API, an execution context is created for
each device in the system and a default device assigned. The
cudaSetDevice function can be used to change the context
if needed, although this isn’t necessary for many applications.
In contrast, OpenCL requires the programmer to not only
explicitly select both a compute platform and device, but also
manually initialize a compute context and at least one com-
mand queue for synchronization. Therefore, a translator from
CUDA to OpenCL needs to emulate the implicit initialization
behavior of the CUDA runtime API. It also needs to translate
explicit context setup as some applications make use of that
functionality.

The translator can readily emulate initialization of a default
device. However, additional work needs to occur when an
application makes use of the cudaSetDevice function. First,
as cudaSetDevice takes an integer argument specifying which
device context to use, the translator must provide a mechanism
for using an integer index to select among all compute devices
in a system. Second, the translator must either supplant its own
automatic initialization code, or it must intelligently preserve
a portion of the OpenCL environment it has automatically
initialized - replacing the command queue and context asso-
ciated with the default device. Finally, it must (re)initialize an
OpenCL context based on the device selected by the integer
index. However, this method is not necessarily guaranteed to
result in use of the same CUDA-capable GPU as intended by
the original CUDA source. Particularly in systems in which
multiple OpenCL platforms are present, depending on the
structure of the device iteration code, it is quite possible that
the default device might not even be a NVIDIA GPU.

9) Textures and Surfaces: GPU devices are commonly
equipped with special-purpose functional units designed to
provide optimized access to data having particular charac-
teristics. One such commonly used hardware unit provides
fast reading of textures. Making use of these special-purpose
memory regions can provide distinct performance benefits
to some applications. CUDA provides explicit support for
accessing these regions via the texture and surface types.
Similarly, OpenCL provides the notion of an image type
for providing access to these regions. However, despite their
similar intentions, the APIs have a number of pronounced dif-
ferences. Therefore, translation of CUDA textures and surfaces

3For semantically-identical translation, <clFuncPtr> in Fig. 5d must be
replaced by clKernel for Fig.5a and by kernelPtr for Figs. 5b and 5c.

to OpenCL images requires careful consideration.
10) Graphics Interoperability: Due to their heavily GPU-

oriented backgrounds, both CUDA and OpenCL support
mechanisms for allowing compute code to directly interact
with graphics rendering code. Primarily, this is of use to
applications which would like to provide in situ visualization
of data computed on a device without the extra overhead
of transferring data back to the host-side before rendering.
A number of applications in the sample population make
use of CUDA’s OpenGL interoperability functions. While
their translation appears achievable, CU2CL does not handle
graphic rendering code at this time.

11) CUDA Driver API: As mentioned earlier, CUDA has
both a high-level runtime API and a lower-level driver API
which provides explicit control over device usage with a
corresponding increase in required detail (Fig. 3). The driver
API is particularly close to OpenCL’s API and hence it should
be straightforward to support in CU2CL. As its use is rather
low, this is not a high priority yet.

12) Structure Alignment: Both CUDA and OpenCL provide
a mechanism for explicitly aligning memory structures for
passing between host and device. Without alignment direc-
tives, there is a potential conflict between host and device
behavior. CUDA uses the __align__(N) attribute while
OpenCL uses __attribute__((aligned(N))).

The CUDA attribute is defined as a preprocessor macro
which — for GNU C compilers — maps to an attribute spec-
ifier identical to that of OpenCL. This can create a potential
confusion for source-to-source translators which operate on the
source after preprocessing as there is effectively no difference
in the specification. However, there are two readily-available
approaches. First, the translator might simply copy the macro
from the CUDA headers and perform no translation of the
CUDA alignment specifier. However, this could be viewed as
a slight departure from providing a canonical OpenCL version.
Otherwise, the translator would need to preserve either the raw
byte alignment of the attribute, or the entire ’N’ expression of
the attribute, and perform a simple substitution of the wrapping
attribute syntax.

13) Warp-Level Synchronization: Within NVIDIA GPUs,
threads are dispatched in groups of 32 sequentially-indexed
threads, known as warps, which operate in lock step. There-
fore, one can often take advantage of this implicitly syn-
chronized execution to obviate the need for more costly
synchronization methods such as fences, barriers, and atomics.
However, as OpenCL supports a myriad of underlying com-
pute devices, many of which do not exibit similar dispatch
behavior, the preservation of warp-level synchronization is not
guaranteed. On contemporary AMD GPUs and CPUs, threads
are dispatched in groups of 64 and either 1 or the SIMD width,
respectively. Thus, implicit synchronization may be somewhat
preserved on AMD GPUs but will not on CPUs.

There is no CUDA syntax or function which provides
explicit warp synchronization. Rather the programmer must
manually orchestrate thread behavior based on individual
indicies. This makes it very difficult for the translator to au-
tomatically recognize implicit synchronization and to provide
a functionally equivalent translation. Fortunately there have
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been efforts to address this concern via dependency analysis
in the context of CUDA to OpenMP translation [19] that can
be leveraged for CU2CL.

V. IMPLEMENTATION

With an understanding of the challenges involved in translat-
ing CUDA to OpenCL, it is now time to discuss the translator
implementation. While a full discussion of the implementation
of our translator prototype, known as CU2CL (CUDA to
OpenCL) is outside the scope of this work, a brief overview
of core facets of its construction is in order. A more thorough
exposition is provided in [13].

A number of production-quality and widely-used open-
source compilers, along with various research frame-
works [20]–[23], were investigated in order to quickly develop
a production-ready tool. Clang [24] was chosen as the basis
for CU2CL for three reasons. First, though relatively young,
Clang has a large and active community with many new
features and rapidly improving quality. Second, Clang is a
driver built upon the LLVM compiler libraries, which provide
lexing, parsing, semantic analysis, and more. These libraries
may be used independently to create other source-level tools.
And third, Clang has support for parsing CUDA C extensions.
Of all the tools investigated, only Clang and Cetus had that
necessary capability. Of those two, Clang appeared to be the
most production ready.

A. Architecture

As implicitly noted in the Fig. 6, CU2CL is a Clang plugin
that ties into the main driver, allowing Clang to handle parsing
and abstract syntax tree (AST) generation, as during normal
compilation, after which CU2CL walks the generated AST
to perform the rewrites. Of particular interest in this context
are the AST, Basic, Frontend, Lex, Parse, and Rewrite libraries
from Clang. These libraries facilitate file management (Basic),
AST traversal and retrieval of information from AST nodes
(AST), plugin interface and access to the compiler instance
(Frontend), preprocessor access and token utilities (Lex), and
the actual rewriting mechanism (Rewrite). By uniquely com-
posing the libraries and classes included within each, a robust
CUDA-to-OpenCL translator was created in less than 3400
source lines of code (SLOC).

In the Clang driver, once the AST has been created, an
AST consumer is responsible for producing something from
the AST. As a Clang plugin, CU2CL provides an AST con-
sumer that traverses the AST, searching for nodes of interest.
While Clang’s AST library provides several simple methods
of traversing the tree, a CU2CL-specific method is used to
traverse the AST in a recursive descent fashion, using AST
node iterators to recurse into each node’s children.

B. AST-Driven String-Based Rewriting

The actual rewriting is done primarily through the use
of Clang’s Rewrite library. This library provides methods to
insert, remove, and replace text in the original source files. It
also has methods to retrieve the rewritten file by combining

the original with the rewritten portions. While many traditional
source-to-source translators build an AST, modify it, and then
walk the new AST to produce the rewritten file, CU2CL uses
the AST of the original source only to walk the program.
Rewrites are done through strings locally; therefore, this
approach is called AST-Driven String-Based Rewriting.

This approach is quite useful in translating CUDA to
OpenCL as only the CUDA-related constructs need be mod-
ified. The remainder of the source code passes through un-
touched. Unlike the traditional approach of generating the out-
put directly from the AST, AST-driven string-based rewriting
preserves almost all of the comments and formatting that is
so important for maintainability [25]. In general, the scope of
the translations are very small. As a document’s structure and
comments are of vital importance to developers [26], leaving
them intact is an important benefit to CU2CL as the translated
source can now serve as the basis for further development.

C. Translating Common Patterns

In translating CUDA constructs to OpenCL, some patterns
occur multiple times. CU2CL’s design takes into account
two primary patterns: rewriting CUDA types and processing
CUDA API calls and their arguments. CUDA types may be
found in many declarations and expressions, but the rules to
identify and rewrite them are uniform with a few exceptions.
CUDA functions share similar patterns in their arguments —
what types are expected and how they are laid out — and also
in their return types, as they all return an enumerated CUDA
error value.

CUDA-specific type declarations may occur in several
places. These include variable declarations, parameter decla-
rations, type casts, and calls to sizeof, all of which may
occur in both host and device code. Rewriting such types
can be generalized for both CUDA host code and device
code. In the Clang framework, variable declarations carry with
them information about what their full type is (including type
qualifiers) as well as the source location of each part. The
base type can be derived from the full type, which may then
be inspected and rewritten accordingly. Types may be rewritten
differently depending on where the type declaration occurred
(e.g. host code, device code, kernel parameters, etc.). The
generalizations to type rewriting can be applied in locations
where there is overlap.

For example, CUDA vector types may be found in host or
device code and as kernel arguments. OpenCL vector types
have slightly different names depending on where they are
found — i.e., float4 in host code vs. cl_float4 in device
code — but, for the most part, rewriting vector types can be
combined. This pattern also extends to other CUDA types,
like dim3s, which may be declared anywhere in a CUDA C
application.

CUDA function calls to be rewritten can be processed
separately. However, for the purposes of source-to-source
translation, it is preferable to generalize as much of the rewrit-
ing as possible. An important pattern is a pointer to a data
structure that is passed in to be filled. The equivalent OpenCL
functions instead return a pointer to an opaque structure, as
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Fig. 6: High-level overview of the CU2CL translation process.

shown in Fig. 4. To translate from CUDA to OpenCL, a pointer
must be retrieved from the argument expression. This can be
done by traversing the expression and checking the types until
the proper one is found. The subexpression with this evaluated
type is used in the replacement OpenCL call.

For the time being, CU2CL simply dereferences the pointer
argument expression. The uniform enumerated CUDA error
return type used by all the CUDA API calls can be used in
rewriting the call’s parent expressions. While CU2CL does not
currently support rewriting the CUDA error type, comparison
to the equivalent OpenCL procedure and pertinent error codes
will help in properly rewriting parents that use the returned
error.

D. Rewriting Includes

As part of translation, #include preprocessor directives
for CUDA header files must be removed or rewritten. Because
#includes are not resident in the AST, the rewriting has
been implemented using the Clang driver preprocessor, as
shown in the block diagram of Fig. 7. CU2CL registers a
callback with the preprocessor that is invoked whenever a new
#include is being processed. As the preprocessor expands
the include directive, it has all the information necessary
to decide whether CU2CL should rewrite the directive. In
particular, CU2CL needs the current file that is being parsed,
the name of the file that is to be included, and whether or not it
is a system header. By tying into Clang’s preprocessor, CU2CL
can avoid the task of locating these directives manually.
This adds robustness and efficiency to CU2CL’s #include
rewriting.

...

#include \

    "CudaFile.cuh"

...

Clang

Preprocessor

CU2CL

#include \

    "CudaFile.cuh-cl.h" 

...

#include \

    "CudaFile.cuh-cl.cl"

...

Includer.cu-cl.cpp

Includer.cu

Includer.cu-cl.cl

Fig. 7: Example of rewriting an #include directive.

The #include rewrites fall into two categories: (1) re-
moving #includes pointing to CUDA and system header
files that are no longer needed and (2) rewriting #includes
to CUDA files that CU2CL has rewritten. In the first case,

CU2CL removes includes to cuda.h and cuda runtime api.h
found in any rewritten files, both host and kernel files. It also
removes system header files (e.g., stdio.h) from the OpenCL
kernel files, as they cannot be used in device code. These
header files are identified as those included using the angle
bracket notation as opposed to double quotes.4 In the second
case, CU2CL rewrites #includes to files that have been
rewritten. The original included CUDA source files will be
split into two new files, one for the host and one for device
code (e.g. cudaFile.cuh will become cudaFile.cuh-cl.h and
cudaFile.cuh-cl.cl). Therefore, CU2CL rewrites the original
#includes so that they point to the new OpenCL files. Fig. 7
shows an example of how an #include pointing to a CUDA
file may be rewritten in a new host code file. The kernel file
will be used during runtime compilation of device code, so it
is not #included by the host.

E. Error Reporting

Compilers and translators have another difficult task besides
generating correct output. They also need to provide good error
reports when the inputs are incorrect or ambiguous to guide
programmers in fixing the errors. In this regard, starting with
Clang is definitely a benefit as many consider it to have some
of the most accurate and useful error reporting of any compiler.
Source-to-source translation needs to not only report errors,
but to also clearly mark where the translator was unable to
successfully translate a construct so that they can be handled
manually.

CU2CL provides a unified mechanism for reporting issues
that arise during the translation in two ways. First, similar to a
standard compiler, all notifications are emitted with available
source file, line, and column information to the terminal
error output stream, with a severity level and brief textual
description of the issue. However, to aid manual intervention
in corner cases which are not automatically translated, notifi-
cations are also emitted into the translated application source
as comments adjacent to the code of interest. These comments
include both an easily searchable severity level as well as a
textual description which can be either identical to the message
emitted to the terminal error stream, or specified separately.

4A comparison with system header files could be done instead in order to
be more forgiving of programmer carelessness in using angle brackets instead
of double quotes but has not been done yet.



PARALLEL COMPUTING, VOL. 39, NO. 12, DECEMBER 2013 11

Primarily we provide four levels of notifications: translation
errors, untranslatable syntax, currently untranslated syntax,
and “advisories.” Translation errors are emitted to notify that
CU2CL has encountered a source construct which it has no
mechanism for actively handling. In general emission of this
level of notification is only used as a catchall default in
branching logic when the translator cannot make a concrete
decision on how to proceed. These indicate an area where the
translator is incomplete.

More frequently, the translator encounters syntax which it
can recognize, but due to differences in CUDA and OpenCL,
cannot automatically translate. In these cases, a “CU2CL
Untranslated” notification is emitted. Similarly, the translator
will also emit a notification when it reaches an actively
recognized syntax element which has an OpenCL equivalent
but it does not yet support translating.

Finally, it can emit notes, which serve as advisories that
the translator has had to utilize some special purpose code to
handle a structure, such as adding a variable storing the result
of a temporary expression for use as a kernel argument. These
cases do not require manual intervention but are emitted as a
courtesy to support using the translated code as a basis for
new development.

VI. EVALUATION

In this section, CU2CL is evaluated using three metrics:
the speed of translation, the performance of translated applica-
tions, and the amount of the CUDA runtime API covered. The
frequency of the translation challenges discussed in Section IV
is also presented.

A. Translation Speed

While CU2CL may only be run once on a given CUDA
application, the speed at which CU2CL translates the CUDA
source code to OpenCL source code is a metric of interest,
particularly if the end user wishes to convert multiple CUDA
applications from the well-established CUDA ecosystem. Or
perhaps there is a desire to continue development in CUDA
but to translate to OpenCL in order to gain access to a
greater breadth of accelerator platforms. Thus it is important to
evaluate the speed of translation on several GPU applications.
The applications chosen are from the CUDA SDK and the
Rodinia benchmark suite. The full list of applications can be
found in the appendix; a subset are shown in Tab. V.

For each application, the total time to translate the code from
CUDA to OpenCL was averaged over ten runs. This translation
time includes the time for the Clang driver to perform parsing
and semantic analysis of the program, in addition to CU2CL’s
translation procedure. The overall run time was measured
using the time command while the portion of the run time
attributed to CU2CL was measured with gettimeofday. In
all cases, the width of the 95% confidence interval centered
around the mean is less than ±5%.

Tables V summarizes the results. The test applications vary
in length from more than a hundred source lines of code
(SLOC) to several thousand SLOC. However, one can see that
the translation time is not strictly dependent on the length.

In general, programs with more CUDA constructs or more
complicated constructs tend to take longer to translate. In
most cases, CU2CL translates the applications in well under
a second. The longest translation time is for the particles
application from the CUDA SDK which contains five CUDA
files containing 1,184 SLOC and still only takes a little more
than two seconds. Thus, CU2CL is a feasible choice for
porting a large number of CUDA programs.

B. Translated Application Performance: Auto vs. Manual
In this section, the performance of translated applications

is evaluated using the execution time as a metric. The perfor-
mance of thirteen automatically translated CUDA-to-OpenCL
codes is considered: seven from the CUDA SDK, five from the
Rodinia benchmark suite, and the GEM molecular modeling
application [30].

For all of the experiments, the applications are complied
and run on a desktop machine with an AMD Phenom II
X6 1090T Processor (six-cores, 3.2 GHz) with 16-GB RAM
running 64-bit Ubuntu 12.04 with Linux kernel 3.2.0-35.
The GPU is a NVIDIA GeForce GTX 480 with 1.5-GB RAM
(480 total cores) using the NVIDIA driver version 310.32
and CUDA Runtime 5.0. Run times were measured using the
time command.

Table VI summarizes the performance comparisons be-
tween the original CUDA code and CU2CL’s automatically-
generated OpenCL. Each code was executed a total of ten
times and their runtimes were averaged.

TABLE VI: Run Times of CUDA Applications and OpenCL
Ports on an NVIDIA GTX 480

CUDA OpenCL Percent
Application Runtime (s) Runtime (s) Change

asyncAPI 0.58 0.55 -6.6
bandwidthTest 0.94 0.86 -8.5
BlackScholes 1.98 1.75 -11.5
FastWalshTransform 2.00 2.03 +1.3
matrixMul 0.47 0.47 -1.6
scalarProd 0.51 0.51 -0.2
vectorAdd 0.47 0.46 -0.8

Backprop 0.87 0.87 +0.4
BFS 2.09 2.17 +4.1
Gaussian 0.48 0.46 -2.8
Hotspot 0.81 0.79 -1.9
Needleman-Wunsch 0.57 0.52 -9.2

GEM 0.51 0.49 -2.9

In all but three applications, the automatically-translated
OpenCL performs better than the original CUDA, though
not by much. This contrasts starkly with previous work
which demonstrated that automatically-translated OpenCL of-
ten gave significant slowdown when using the CUDA 3.2
Runtime [13]. As the OpenCL ecosystem has matured and
NVIDIA’s OpenCL implementation has improved, the perfor-
mance difference has been largely eradicated. Therefore with
modern hardware platforms and software stacks, no significant
performance penalty is incurred when automatically-translated
applications are executed on the same NVIDIA device, but
with the added gain of access to other OpenCL-supporting
devices.
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TABLE V: Translation time and coverage of CU2CL translation.

Manual
Total CU2CL OpenCL Percent

CUDA Translation Time Lines Automatically
Source Application Lines Time (s) (µs) Changed Translated

CUDA SDK

asyncAPI 135 0.14 163 5 96.3
bandwidthTest 891 0.28 289 5 98.9
BlackScholes 347 0.27 200 14 96.0
fastWalshTransform 327 0.15 208 30 90.8
matrixMul 351 0.14 211 9 97.4
scalarProd 251 0.16 226 18 92.8
vectorAdd 147 0.14 97 0 100.0

Rodinia

Back Propagation 313 0.14 174 24 92.3
Breadth-First Search 306 0.14 200 35 88.6
Gaussian 390 0.14 210 26 93.3
Hotspot 328 0.14 204 2 99.4
Needleman-Wunsch 430 0.14 191 3 99.3

[27] Fen Zi 17768 0.35 3491 1786 89.9
[28] GEM 524 0.14 182 15 97.1
[29] IZ PS 8402 0.21 1091 166 98.0

C. Translator Coverage

CU2CL supports a large majority of the subset of the
CUDA runtime API that existed with version 3.2 of the CUDA
SDK. Given that the 4.X and 5.0 versions of the SDK add
several new features which are largely specific to NVIDIA
GPUs, work is still ongoing to determine for which features
equivalent OpenCL functionality exists, and mechanisms for
handling the remainder. In particular, it can automatically
translate API calls from the major CUDA modules: Thread
Management, Device Management, Stream Management, and
Event Management. The translator also supports the most
commonly used methods of the Memory Management module,
including calls to allocate device and pinned host memory.
This is a natural result of selecting the most frequently
used calls from the CUDA SDK and Rodinia benchmark for
implementation first.

As a result of CU2CL’s robust translation methods alongside
its support for many CUDA constructs, it can automatically
translate many applications nearly in their entirety. Table V
shows this for applications from the CUDA SDK and the
Rodinia benchmark suite. In each case, only a few lines
of host or kernel code had to be manually ported. Of the
manual changes, none are particularly difficult to handle and
automated support for these will be added as CU2CL continues
to evolve.

D. Frequency of Translation Challenges

Section IV discusses a number of translation challenges.
Table VII lists the challenges and their frequency of occurrence
in the CUDA SDK and the Rodinia benchmark suite that are
used in the evaluation above. The first lists the challenge, the
second and third columns give the percentage of the appli-
cations in the respective suites that exhibited the challenge.

The first observation is that the CUDA SDK exhibits
instances of all the challenges. This is to be expected since
example applications in the SDK are intended to instruct
programmers in how to use CUDA. The second observation is

TABLE VII: CUDA-to-OpenCL Translation Challenges and
Frequency of Affected Applications

CUDA SDK Rodinia
Challenge Frequency (%) Frequency (%)
Separate Compilation 54.4 29.4
CUDA Libraries 10.1 0.0
Kernel Templates 21.5 0.0
cudaSetDevice 54.4 29.4
Textures 27.8 23.5
Graphics Interoperability 24.1 11.8
CUDA Driver API 8.9 5.9
Literal Arguments 19.0 17.6
Aligned Types 6.3 5.9
Constant Memory 17.7 29.4
Shared Memory 46.8 70.6

that Rodinia did not exhibit some of the challenges. Some, like
graphics interoperability, are not surprising considering the
Rodinia benchmarks are intended to test compute performance
not graphics. The other omissions are largely due to the more
homogeneous programming style employed.

Perhaps the most useful result from the table is the order
in which to tackle the challenges to maximize benefit while
minimizing effort. According to the data, device initialization
is first followed by separate compilation, textures, and literal
arguments. As CU2CL is undergoing continued development,
partial support has already been added for cudaSetDevice,
literal kernel arguments, constant memory, and shared mem-
ory. Additionally, code to actively identify instances of kernel
templates has already been integrated with CU2CL’s error
reporting mechanism discussed in section V-E.

VII. FUTURE WORK

While much has been done in to create a usable CUDA
to OpenCL translator, there are additional items that need to
be completed. The most important is to finish handling all
types of device initialization challenges, implement separate
compilation, finish implementing complete type propagation,
finish the remaining cases of structure alignment, and to
increase support for later versions of the CUDA API. Note that
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support for CUDA code containing C++ will not be feasible
until the OpenCL standard supports C++.

Longer term, CU2CL needs to be extended to support the
CUDA driver API, as well as extend and leverage Ocelet
to perform conversion of binary PTX code into OpenCL or
specific IRs. Finally, the most interesting challenge to address
will be performance portability between GPUs from different
manufactures and radically different devices once functional
portability, the topic of this paper, is completed.

VIII. CONCLUSION

The CUDA programming environment for heterogeneous
processors, namely GPUs in this case, debuted approximately
two years before the arrival of the open-standard OpenCL.
In light of the significant time and effort invested in creating
GPU-accelerated codes in CUDA, there exists a treasure trove
of CUDA applications that end users desire to migrate to
an open-standard programming platform in order to preserve
their intellectual investment while gaining greater breadth in
the number and types of parallel computing devices that are
supported. Such parallel computing devices include AMD and
Intel x86 CPUs, ARM CPUs, AMD APUs (i.e., accelerated
processing units, where the CPU and GPU cores are “fused”
onto the same processor die), AMD and NVIDIA GPUs,
and even FPGAs, to name a handful. To address the above,
we created an automated CUDA-to-OpenCL source-to-source
translator that enables CUDA programs to be automatically
translated and run on any parallel computing device that
supports an OpenCL ecosystem [13].

The work presented here seeks to characterize the chal-
lenges faced in creating a robust CUDA-to-OpenCL translator,
present our instantiation of a CUDA-to-OpenCL (CU2CL)
source-to-source translator, and evaluate its efficacy on real
CUDA codes. We have shown that although it is not straight-
forward and (currently) subject to some important limitations,
robust automatic source translation from CUDA to OpenCL is
largely achievable. Further we have shown that once translated,
when executed on the same device, application performance is
retained, suggesting that the improved portability of OpenCL
codes no longer results in reduced performance on CUDA
devices. Finally, we presented a robust automatic translator
capable of reducing the man-weeks required for manual trans-
lations to the order of seconds.
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APPENDIX

Tables VIII and IX provide the performance results of
running CU2CL on the Rodinia benchmark applications and
on the examples from the CUDA SDK, respectively. Each table
provides the name of the application, the number of CUDA
source lines in the application, and the total translation time
and the portion taken by CU2CL to perform the translation.

TABLE VIII: CUDA SDK Translation Time

Total CU2CL
CUDA Translation Time

Application Lines Time (s) (µs)
alignedTypes 316 0.16 239
asyncAPI 135 0.14 163
bandwidthTest 891 0.28 289
bicubicTexture 1251 0.78 482
bilateralFilter 864 0.89 415
binomialOptions 443 0.64 328
BlackScholes 347 0.27 200
boxFilter 980 0.74 339
clock 162 0.15 149
concurrentKernels 177 0.27 177
conjugateGradient 196 0.06 170
convolutionFFT2D 1175 0.65 488
convolutionSeparable 363 0.75 288
convolutionTexture 368 0.63 295
cppIntegration 247 0.73 261
dct8x8 1715 0.29 539
deviceQuery 165 0.57 160
deviceQueryDrv 150 0.58 150
dwtHaar1D 598 0.16 281
dxtc 886 0.43 472
eigenvalues 3109 0.48 1116
fastWalshTransform 327 0.15 208
FDTD3d 870 0.99 405
fluidsGL 811 0.28 330
FunctionPointers 1004 0.76 449
histogram 545 0.90 436
imageDenoising 1305 0.75 512
lineOfSight 337 0.17 228
Mandelbrot 2528 0.93 922
marchingCubes 1571 0.80 540
matrixMul 351 0.14 211
matrixMulDrv 525 0.72 378
matrixMulDynlinkJIT 301 0.46 158
mergeSort 954 0.65 412
MersenneTwister 310 0.27 193
MonteCarlo 1014 0.79 726
MonteCarlo Multi GPU 994 0.79 743
nbody 2088 1.54 824
oceanFFT 1037 0.76 452

TABLE VIII: CUDA SDK Translation Time (cont.)

Total CU2CL
CUDA Translation Time

Application Lines Time (s) (µs)
particles 1184 2.41 1001
postProcessGL 1291 0.88 489
ptxjit 132 0.58 120
quasirandomGenerator 510 0.90 504
radixSort 2387 1.37 1103
randomFog 888 1.34 345
recursiveGaussian 883 0.77 417
reduction 1063 0.78 583
scalarProd 251 0.16 226
scan 495 0.75 322
simpleAtomicIntrinsics 197 0.15 155
simpleCUBLAS 244 0.10 149
simpleCUFFT 249 0.15 173
simpleGL 603 0.73 350
simpleMPI 208 0.84 274
simpleMultiCopy 351 0.27 254
simpleMultiGPU 226 0.47 202
simplePitchLinearTexture 274 0.15 180
simplePrintf 1066 0.43 893
simpleStreams 243 0.15 193
simpleSurfaceWrite 207 0.15 201
simpleTemplates 458 0.16 248
simpleTexture 239 0.15 186
simpleTexture3D 506 0.78 305
simpleTextureDrv 392 0.72 379
simpleVoteIntrinsics 341 0.15 218
simpleZeroCopy 149 0.15 147
smokeParticles 2016 1.21 531
SobelFilter 780 0.75 360
SobolQRNG 10698 1.73 5275
sortingNetworks 657 0.90 487
template 187 0.15 158
threadFenceReduction 791 0.17 483
threadMigration 434 0.72 393
transpose 571 0.27 271
vectorAdd 147 0.14 97
vectorAddDrv 351 0.60 281
volumeRender 884 0.78 393

TABLE IX: Rodinia Translation Time

Total CU2CL
CUDA Translation Time

Application Lines Time (s) (µs)
Back Propagation 313 0.14 174
Breadth-First Search 306 0.14 200
CFD 2371 1.07 1230
Gaussian 390 0.14 210
Heartwall 2018 0.17 532
Hotspot 328 0.14 204
Kmeans 494 0.14 241
LavaMD 240 0.14 192
Leukocyte 624 0.28 386
LU Decomposition 332 0.28 277
MummerGPU 3786 0.18 655
Nearest Neighbor 278 0.17 170
Needleman-Wunsch 430 0.14 191
Particle Filter 1517 0.31 582
Path Finder 235 0.14 186
SRADv1 541 0.15 366
Stream Cluster 443 0.26 211


