
New Approaches for In-System Debug of
Behaviorally-Synthesized FPGA Circuits

Joshua S. Monson and Brad Hutchings
Department of Electrical Engineering

Brigham Young University
459 Clyde Building Provo, UT 84602

Email: jsmonson@gmail.com, brad hutchings@byu.edu

Abstract—This paper present new approaches for in-system,
trace-based debug of High-Level Synthesis-generated hardware.
These approaches include the use of Event Observability Ports
(EOP) that provide observability of source-level events in the
final hardware. We also propose the use of small, independent
trace buffers called Event Observability Buffers (EOB) for tracing
events through EOPs. EOBs include a data storage enable signal
that allows cycle-by-cycle storage decisions to be made on an
EOB-by-EOB basis. This approach causes the timing relation-
ships of events captured in different trace buffers to be lost. Two
methods are presented for recovering these relationships. Finally,
we present a case study that demonstrates the feasibility and
effectiveness of an EOB trace strategy.

I. INTRODUCTION

Improvements in the latest generation of High-Level Syn-
thesis (HLS) tools have led to increased interest and use of
these tools in both industry and academia[1]. HLS tools have
been shown to provide a 5X boost in design productivity[2].
Some users have observed that the boost in productivity comes
from the ability to verify the design specification in software
and avoid time-consuming simulation runs[3]. From our own
experience we know that much of this productivity can be
lost if the user encounters a bug in their HLS design after
the design is operating at full speed in the final system. The
productivity loss stems from the fact that the user is required
to build an intimate understanding of the final circuit before
he can (manually) instrument the circuit for debugging. This
is because current HLS tools lack an effective, integrated
approach to in-system, source-level debugging. To be effective
and integrated, we believe a debugging approach must at least
begin at the source-level; since, eventually, the source is what
will be modified to fix the bug. Debugging at lower-than-source
levels threatens to impact the productivity for which HLS was
used in the first place.

Embedded Logic Analyzers (ELA)s are the standard
method of accomplishing in-system debugging of FPGA de-
signs. ELAs are usually configured by selecting signals from
the netlist to connect to the inputs of a trace buffer. These
signals are then recorded on a cycle-by-cycle basis during
the active execution of the design. The amount of relevent
information that can be captured by an ELA is limited by
the amount of available on-chip memory. ELAs can also be
used, when necessary, to perform in-system debugging of HLS
designs on FPGAs. However, users of HLS are generally
not familiar enough with the HLS-generated RTL code to
configure the ELA to capture the correct information in a

reasonable amount of time. Additionally, the cycle-by-cycle
capture approach of the ELA does not provide any flexibility
for the use of high-level knowledge to optimize trace buffer
efficiency even when such high-level knowledge is available
from the HLS tool.

This paper presents new approaches for the in-system de-
bugging of FPGA designs specifically optimized for debugging
HLS-generated FPGA circuits. Our approaches provide enough
flexibility to allow a trace buffer configuration to be optimized
to capture as much relevant information as possible. The
instrumentation process will utilize the high-level information
available within the HLS tool to both optimize the trace buffer
configuration for memory efficiency and resource usage. Since
our approach relies on high-level information from the HLS
tool it will also (eventually) be fully automated and debugging
circuitry will be compiled into the design reducing the need
for the user to be familiar with the low-level organization of
the FPGA circuit.

II. BACKGROUND

The general goal of commercially available HLS tools is
to take a sequential software input specification written in
a high-level language (e.g. C, JAVA) and generate efficient
hardware. In general, the sequential software specification is
a series of control flow and program state update events. We
debug software by analyzing the sequence of these events to
determine why they went wrong. To enable the user to perform
the same kind of debugging analysis on the final hardware as
he would in software we need to have access to the same
control flow and state update events.

In general, the design flow for a typical HLS compiler
proceeds as follows. First, the sequential input specification is
compiled to an intermediate representation (IR) by a standard
front-end compiler. The IR is represented in an assembly
language-like format and contains the necessary operations to
completely implement the input specification in software. The
IR is usually represented in the form of a two-level control flow
diagram (CFD) consisting of basic blocks (higher-level) and
operations (lower level) [4]. Basic blocks are straight lines of
code that terminate in a control flow decision operation (such
as a branch) that determines the next basic block that will be
executed. Next, the IR is passed to a scheduler that assigns
the operations from the CFD to the control steps of a state
transition graph (STG) [4]. Once scheduling is complete, the
operations in the STG are bound to allocated functional units
and registers. RTL code is then generated based on the results

of scheduling and binding. The RTL code is then instanced
into a larger design and passed through the vendor tool flow
to create a bitstream to program the FPGA.

In general, control flow and state update events are rep-
resented in the IR by the completion of operations. The
operations corresponding to control flow events are generally
the branching operations found at the end of basic blocks.
State update events generally correspond to the completion of
operations that store data in memory or in static single assign-
ment (SSA) registers. In order to instrument the final hardware
design for debugging, the instrumentation software needs to
track the correspondence between source-level events and the
operations whose completion indicate they have occurred. This
correspondence can be maintained using the -g flag to instruct
the compiler front-end to annotate the IR representation
with debugging information. Maintaining the correspondence
through the rest of the HLS flow is generally straight forward
as the operations from the IR are assigned to specific functional
units in the RTL.

Maintaining correspondence is complicated by the intro-
duction of compiler and HLS optimizations to the design
flow. Scott Hemmert previously addressed many aspects of
HLS correspondence problem[5][6]. Others, have addressed
this problem specifically for software debugging. However, a
thorough review of the work of Hemmert and others as well
as further investigation into the correspondence problem is
beyond the scope of this work. In this paper, we move forward
with the assumption that the appropriate correspondences
have been maintained and leave further investigation into the
correspondence problem to be addressed as future work.

III. EVENT OBSERVABILITY PORTS

To provide visibility of the state update and control flow
events we propose to instrument HLS designs with Event Ob-
servability Ports (EOP). EOPs consist of an event signal and a
data signal. The event signal is a one-bit signal that is asserted
when the operation corresponding to the event has completed.
The event signal also validates the data signal which provides
the result of the corresponding operation. In this way, EOPs
provide an abstraction that links source-level correspondence
information to the final hardware implementation.

The benefit of the EOP approach is that the ports are
added to the design after it has been scheduled and bound.
The effect of adding the EOP after scheduling and binding
is that it will not modify the results of these processes
and potentially obscure the bug the user is trying the find.
Users are often reluctant to recompile and re-synthesize a
debug-enabled version of their design, especially after place
and route. Hung and Wilton[7] and Keeley and Hutchings[8]
have shown that incremental debug insertion (i.e. insertion
after place and route) provides both better performance and
higher productivity compared to recompiling and inserting
instrumentation into the netlist. Delaying EOP insertion until
after RTL-code generation permits the possibility that EOPs
could be incrementally inserted at these late points in the
design flow.

To instrument a design with an EOP we need to identify
or create the relevant event and data signals. An important
source of information to complete this task is the STG. Using

the definition of STG provided by Cong and Zhang [4], an
STG is a directed graph with a set of control states with a
set of transitions between them. Each transition is associated
with a transition condition. Each control state also contains a
set of operations (from the IR). Each operation is associated
with a guard condition to control its execution. In general, the
RTL code generation process implements the STG according
to some structured circuit model (e.g. Finite State Machine
with Data Path or Data Flow Models).

The guard conditions from the STG can be used to identify
the completion of the operations that correspond to the control
flow and state update events. One benefit of using the guarding
conditions is that they are often implemented as register clock
enables for the hardware registers that store the result of the
operation in the final circuit. This is beneficial because registers
survive logic synthesis more often than combinational logic
while preserving name correspondence to the RTL. In these
cases, the register inputs can be used as the data signal and
the register clock enable can be used as the event signal. This
approach is beneficial because it utilizes circuitry that already
exists in the final circuit. In cases where the operation result
signal and guard signals have been optimized out they must
be re-created. This can be done by using the HLS-tools own
library to independently generate RTL code for the operation
and guard signal using the register signals still in existence as
input. Then the additional generated circuitry can be advanced
through the vendor tool flow to the point where the circuit will
be instrumented. In general, this may not always be possible.
But, we believe that it will cover a majority of the necessary
signals.

An important property of EOPs is the relative assertion
rate (RAR) of the event signal. The assertion rate of an event
signal is calculated by dividing the number of occurrences of
the event signal by the execution latency of the hardware. The
RAR of an event signal A is then calculated as the ratio of the
assertion rate of A to the lowest assertion rate in the design.
In the general case, assertion rates are not always statically
determinable. In these cases, a user-guided approach may be
useful. For example, when a for-loop has a variable loop
bound, Vivado HLS allows the user to specify the expected
number of loop iterations using the TRIPCOUNT directive
[9]. The TRIPCOUNT directive provides a number to Vivado
HLS so the tool can calculate an estimate of the latency of the
design. A similar, directive-based approach, could be used to
assist instrumentation software in estimating RAR. The RAR
data would then be used to efficiently instrument the EOPs for
trace.

IV. TRACING EVENT OBSERVABILITY PORTS

The primary purpose of developing EOPs is to enable the
efficient trace of source-level control-flow and state update
events. We propose the use of Event Observability Buffers
(EOB) for tracing EOPs. An EOB is a small, independent trace
buffer with a data input and data storage enable input. There
are advantages of using EOBs over the monolithic trace buffer
of an ELA. The small size of EOBs often allows an EOB to
be allocated on an EOP-by-EOP basis. This allows the storage
depth of the EOB to be configured according to the RAR of the
EOP’s event signal. For example, an EOB could be configured
with a greater depth when the RAR of an EOP’s event signal

is high. Additionally, by connecting the EOPs event signal to
the data storage enable input of the EOB the event data signal
is only stored when an event has actually occurred. Small,
independent trace buffers also have advantages for incremental
insertion after place and route[7][8]. On the other hand, the
centralized, monolithic nature of the ELA prevents it from
being able to make storage decisions on an EOP-by-EOP basis.
This means that the ELA must trace both the event and data
signals and will likely store event data signals when they
are invalid thereby wasting the limited trace buffer memory.
Additionally, the ELA model provides equal storage depth for
all trace buffer inputs. Therefore, ELAs cannot adjust storage
depths on a per input basis.

EOBs are most useful when the RAR of different EOPs
is vastly different. For example, consider an HLS design
that computes an 8-bit unsigned char value to determine the
loop-bound of a for-loop that computes a 16-bit short int on
each iteration. To enable the trace of these events EOPs are
added for each event. The maximum RAR of the 16-bit event
(compared to the 8-bit event) is 256. This means that the
16-bit event will occur a maximum of 256 times for each
of the 8-bit events. The user could also provide an expected
maximum number of occurrences of the 16-bit event via a
directive. For the purposes of this example let us assume the
user has provided a maximum RAR of 32. The individual
configurability of EOBs allows the instrumentation software
to allocate 32 16-bit EOB entries for each 8-bit EOB entry.
Sizing EOBs in this manner helps them fill at approximately
the same rate.

Another advantage of the EOB approach is the ability for
EOPs to share EOBs when their event signals are asserted
during mutually exclusive clock cycles. EOB sharing is ac-
complished by multiplexing the EOB data inputs and using
the event signals to appropriately select each input. The data
storage enable signal is then created by logically ORing both
event signals together. In the previous example, assume that
the 8-bit loop bound event occurs a cycle before the first
16-bit event ensuring that the event signals of the EOPs are
asserted during mutually exclusive clock cycles. Having these
two EOPs share the same EOB avoids the situation of wasting
an entire BRAM to capture the 8-bit event or relying on
the distributed memory within the FPGA that might not be
available. Adding a multiplexor in front of the EOB increases
the potential that the EOP data signal will become a critical
path in the design. One approach to mitigate this problem is to
apply multi-cycle path constraints to the EOP data input paths.
Zheng et. al [10] described an approach to identify and add
multi-cycle paths to designs generated by HLS tools. A similar
approach could potentially be used to identify opportunities to
apply multi-cycle paths to these EOB input probes.

V. RECOVERING EVENT ORDER AND TIMING

A primary challenge of the EOB approach is that the
timing relationship between events is lost. This relationship
is inherently preserved by the ELA approach because of the
use of a monolithic trace buffer. This problem can be remedied
using what we call an event reference trace. An event reference
trace uses a single EOB to trace the event signals of the
EOPs. This is accomplished by connecting the event signals of
the EOPs to the data input of an EOBs allocated specifically

Value Cycle

0 0x0A 0

1 0x0B 2

2 0x0C 3

Event 1

Event 1 EOB

Value Cycle

0 0xEE 2

1 0xFF 4

Event 2 EOB

Event 1

Event 2

0x0B 0x0C 0x?? 0x??

Sample
0 1 2 3 4

0xEE 0xFF 0x?? 0x?? Event 2 0x??

0x0A

Event Signals

Reconstructed

Fig. 1: Example of event order and timing recovery using a
cycle-accurate event reference trace.

for this purpose. Then the same event signals are logically
ORed together to create the input for the data storage enable
signal of the EOB. The logical ORing of the event signals
creates a data storage enable input that filters the storage of
data during cycles in which no events occur. When needed, a
cycle-accurate reference trace can be created by replacing the
previous data storage enable signal with a constantly asserted
enable signal.

After the EOP trace is complete, the event reference trace
can be used to recover event results from the corresponding
EOB. This is done by matching the last assertion in the event
reference trace with the last value written to the corresponding
EOB. This step is repeated moving backwards through each
sample of the event reference trace. Figure 1 demonstrates how
the recovery algorithm works. The two event signals in Figure
1 represent the contents of a cycle-accurate event reference
trace after it has been uploaded. The recovery algorithm begins
by examining the contents of the final sample (4) of each event
signal. In this case, Event 2 is asserted indicating that an data
corresponding to this event is stored into the last entry of
the Event 2 EOB. This data is then labeled with the event
trace sample number to which is corresponds. The process
is continued by repeating these steps on previous event trace
samples until the beginning of the event trace is reached. This
approach works as long as both trace buffers stop recording at
the same time.

Another approach to recovering event order is to use high-
level knowledge of relationships between events. Consider,
for example, the trace of a completely unoptimized version
of a design in which events in the hardware occurred in the
same order they do in the original specification. Under these
circumstances, the user could step through the source code
and reconstruct the order of events by reading them from
the EOBs as they are encountered on his walk through the
source code. When a control flow decision is encountered the
user would use the result from the hardware to ensure he
proceeds down the same control flow path as the hardware. The
benefit of such an approach is that an event reference trace is
not required. However, scheduling and binding optimizations
practically guarantee that events will not occur in the same
order in the hardware as in the source.

Recall that the operations that correspond to the source-
level events are contained in the STG. Since hardware is
generated from the STG we can expect that the sequential

relationships of events are also preserved. Therefore, by walk-
ing the STG we can perform the same kind of analysis as
previously described on the source code and avoid having
to use an additional EOB to perform a reference trace. At
least two conditions must be fulfilled to perform this kind of
analysis. First, all EOBs must start their traces at the beginning
of the HLS design operation. Second, all EOPs representing
control flow decisions must be included in the trace. In many
cases the STG may also be used to infer cycle-accurate timing
information for many control flow sequences. This information
may not be available when, for example, the control flow stalls
while waiting for a memory read over a bus.

VI. CASE STUDY

In this section, we present a short case study which
evaluates the use of EOBs for tracing the control flow and
state update events of HLS designs instrumented with EOPs. In
this case study we evaluate the effect of preserving the signals
required to create the EOPs. We also compare the efficiency
of capturing events using EOBs to standard ELA approaches.
To do this we have instrumented three small HLS benchmarks
with EOPs. These designs include a fully-pipelined fir filter,
a partially-pipelined sample mean and population variance
estimator, and an un-pipelined floating-point accumulator.

A. Experimental Setup

Each benchmark was originally written in C and compiled
to RTL using Vivado HLS 2013.2. Vivado HLS was configured
to target a ZYNQ 7020 device with a minimum clock period of
10 ns for the fully-pipelined design and 25 ns for the partially-
pipelined and un-pipelined designs. The lower clock rate target
for the partially-pipelined and un-pipelined designs reduced the
latency of the floating point operations in these designs and
avoided inserting empty clock cycles (in which no events take
place) which could reduce the number of events captured by
our baseline approach and artificially inflate our results. En-
abling pipelining in the fully-pipelined and paritially-pipelined
designs required that we add the HLS PIPELINE directive
to each design. To achieve an initiation interval (II) of one
for the fully-pipelined design required that we apply the HLS
PARTITION directive to two arrays in the design. Other than
the above mentioned exceptions our experiments relied on the
default behavior of Vivado HLS 2013.2.

Next, the design was instrumented with EOPs correspond-
ing to the control flow and state update events we desired to
trace. Each HLS benchmark was instrumented using a four
step process. First, the C-code was examined to determine a
set of events that provide a good picture of the execution of
the design. Second, the mapping between events in the C-code
and RTL was determined. Third, the design was synthesized
using XST (14.6) and an EDIF net-list was written. Finally,
the EOPs are added as top-level ports of the EDIF netlist. This
is done by searching the EDIF netlist for the needed signals
and routing them to the top-level ports. In addition to the EOP
signals ports are also created for the clock and start signals. If a
needed signal was not found in the design a keep attribute was
added to the RTL source. The RTL was then re-synthesized
and the EDIF file recreated.

Design REGs LUTs Min. Clk. Period
Un-Pipelined 358 332 18.738 ns
Partially-Pipelined 817 1908 19.886 ns
Fully-Pipelined 922 696 8.726 ns

TABLE I: Resource Utilization of Baseline Designs

Design ELA Mod. ELA EOB
Un-pipelined 388 752 1505
Partially-Pipelined 750 1424 1507
Fully-Pipelined 1533 1533 1538

TABLE II: Table of Events Captured

Once the design had been instrumented with EOPs an
event-trace strategy was selected and trace buffers are config-
ured according to that strategy. The EOP-instrumented EDIF
file was then instantiated within a VHDL wrapper containing
the trace instrumentation. The wrapper is then run through the
Xilinx PlanAhead design flow to generate a bitstream. The
bitstream was then downloaded to a ZedBoard and a trace
experiment was run. The goal of each trace experiment was
to determine the number of control flow and state update
events captured by the currently implemented trace strategy.
The testbench circuitry is configured so that each experiment
is triggered by the DUT start signal and ends when an EOB
is full. The contents of the trace buffers are then uploaded to
the host machine and the events are tallied.

B. Results

Two sets of experiments were performed on each test
design. The first set demonstrates the effect of the keep
attribute to preserve name correspondence from the RTL to
the net-list. The remaining experiments test the efficiency of
different trace strategies used to trace EOPs. Baseline design
statistics are presented in Table I. The experimental results in
Figures 2 and 3 are normalized to the design statistics in Table
I.

The first set of experiments was performed to determine
the effect of using the keep attribute to preserve name corre-
spondence between the RTL and netlist. Name correspondence
was preserved to ensure that the correct signals were used to
instrument the circuit with EOPs. Figures 2 and 3 show that
the keep attribute had very little effect on LUT usage or the
minimum clock period. This is because many of the signals
to which the keep attribute was applied already existed under
a different name. The worst effect of the keep attributes was
seen in the fully-pipelined design which saw a 4% increase in
LUT usage.

In the remaining experiments, EOPs were traced using one
of three different trace strategies. The first strategy was the
standard cycle-by-cycle ELA trace strategy. In this strategy, all
EOP event and data signals were connected directly to the EOB
inputs. The EOB enable signals were then tied high to force
the EOBs to store all EOP signals on every clock cycle after
the trigger (start signal) regardless of whether or not an event
had occurred (just like an ELA would). The second (Modified
ELA) strategy was identical to the first strategy except that
rather than tying the EOB enable signals high we logically OR
the event signals from all EOPs and connect the result to the

Design ELA Mod. ELA EOB
Un-pipelined 3 3 3
Partially-Pipelined 5 5 4
Fully-Pipelined 2 2 4

TABLE III: Block RAMs used

enable signal of each EOB. This strategy prevents the EOBs
from storing data during cycles when no events are occurring.
In the final strategy, the EOBs are instrumented as described
earlier in this paper. The event and data signals of each EOP
are respectively connected to the enable and data inputs of the
EOB. This strategy also took advantage of the EOB sharing
techniques discussed earlier in this paper. The benefit of this
strategy is that it only stores data when events actually occur. A
EOB was also used to capture a cycle-accurate event reference
trace in experiments where the EOB strategy was used.

Along with EOBs, each benchmark was also instrumented
with circuitry to control the experiment (i.e. detect a trigger and
start the trace) and upload the results from the trace buffers.
The cost of this additional circuitry (in LUTs) can be seen in
Figure 2 by comparing the LUT usage of the baseline circuit
with keep attributes to the ELA experiments. The resource
requirements of the additional circuitry was determined by
building each component independently from the test design
and other instrumentation. Together these circuits required 82
LUTs. This number, however, does not include the multiplexor
used to select a particular EOB for readback. The size of this
multiplexor will vary depending on the number of EOBs used
for the trace. The difference in LUT usage between the baseline
with keep attribute and the ELA benchmark varied anywhere
from 41 to 132 LUTs. It is hard to know how much of that
increase to attribute specifically to the control and upload
circuitry since the synthesis tool has a second chance to operate
on the benchmark netlist when it synthesizes the wrapper.

In all cases, the EOB strategy increased the number of
source-level events captured (Table II). The EOB strategy
was most successful on the un-pipelined design where it
captured 3.88 times more events than the ELA strategy and 2
times more events than the modified ELA strategy. The EOB
strategy was also successful for the partially-pipelined design
where it increased the number of events captured while using
one less BRAM (Table III). The partially-pipelined design is
particularly interesting because it represents a more realistic
use case as it alternates between dense and sparse regions of
events. The sparse nature of the event’s in the un-pipelined
and partially-pipelined designs created a lot of opportunities
for the EOB strategy to optimize the trace. On the other hand,
the fully-pipelined design contained fewer opportunities for
trace optimization. For example, there were no opportunities
for buffer sharing. Implementing the EOB strategy in this
instance only resulted an increase of five events overs the ELA
strategies.

Figures 2 and 3 show a great deal of resource and minimum
clock period parity between the trace strategies. This is a
positive result. However, the designs presented in this case
study are small. Thus, more work will be needed to determine
how the EOB strategy scales to larger designs.

In summary, we have found that the EOB strategy is

0.9
1

1.1
1.2
1.3
1.4
1.5
1.6

Un-Piplined Partially-
Pipelined

Fully-Pipelined

Baseline w/keep

ELA

Modified ELA

EOB

Fig. 2: LUT usage for each experiment normalized to the
baseline.

0.9

1

1.1

1.2

Un-Pipelined Partially-
Pipelined

Fully-Pipelined

Baseline w/keep

ELA

Modified ELA

EOB

Fig. 3: Minimum clock period for each experiment normalized
to baseline.

effective for designs that have sparse event regions (e.g. the un-
pipelined and partially-pipelined designs) and not effective for
designs that contain only densely-populated event regions (e.g.
the fully-pipelined design). The fact that each trace strategy
was successful under different circumstances suggests that
achieving maximum event visibility requires the application
of the right trace strategy. A proper analysis of information
available from HLS tools has the potential to allow the creation
of an automated approach to selecting trace strategies in a way
that is not immediately possible for hand-coded RTL designs.

VII. RELATED WORK

The instrumentation of HLS designs for debug is not a
new topic. Instrumenting HLS ciriuits for debug has also been
previously proposed[11][12][6][13][14]. However, most previ-
ously proposed methods are scan-chain[11][12][6] or bitstream
readback[14] based. These approaches require fined-grained
clock control which is not always available at late stages
of the design flow. A problem with such approaches is that
they are not able to capture bugs that occur only when the
design is running at full speed in the final system. Researchers
at the University of Florida also investigated assertion based
debugging[13]. Assertion based debugging can be used while
operating the design at full speed in the final system and would
be compatible with the approaches presented in this paper.

A common limitation of trace-based approaches is the
limited on-chip memory that can be used to implement the
trace buffer. The focus of this paper has been to increase the
efficiency of the use of this limited memory Trace compression
is common approach for achieving this end[15]. Trace com-
pression has even been implemented on FPGAs[16][17][18].
Trace compression is an orthogonal approach and can be used
in tandem with the approaches presented in this paper.

Prabhakar has also suggested a scheme in which the
inputs of an ELA style trace can be shared[19]. However, his
approach is limited to sharing a trace buffer input between two
signals. The EOB sharing approaches in this paper can handle
an arbitrary amount of sharing.

VIII. CONCLUSIONS AND FUTURE WORK

This paper has presented a new approach for tracing
source-level events during the in-system execution of HLS
designs. Our approach instruments HLS generated hardware
with EOPs that provide observability of source-level events. To
capture the run-time execution of the HLS-generated hardware
we have proposed the use of small, independent trace buffers
known as EOBs. The most important feature of EOBs is
that they can be configured to capture data only when an
event occurs. Additionally, the depth of the buffer can be
independently configured based on the needs of the source-
level event it is assigned to capture. These two features allow
EOBs to capture events in a more memory efficient way than
the standard ELA approach. We have also proposed two new
approaches to recover the order and timing of source-level
events captured into different EOBs. In addition, we have
introduced the concept of RAR which can be used to help
configure EOB depth efficiently.

We also found that EOBs can be used to implement
different strategies for tracing source-level events through
EOPs. Our most successful strategy demonstrated the ability
to capture 2.0 and 3.88 times more source-level events than
standard ELA-like configurations. However, the success of this
strategy was limited to HLS benchmarks that contained at least
some degree of control flow. We also found that for highly-
pipelined designs EOBs can also be configured to implement
a more standard ELA-like strategy that removes the need for
an event-reference trace and lowers the performance overhead.

The case studies presented in this paper were performed
manually (for the most part) to determine the feasibility of
our ideas. The manual instrumentation process limited the
size and number of designs which we could instrument. The
primary focus of future research will be to identify methods of
automating the instrumentation process. Automation of the in-
strumentation process will permit us to further vet our ideas on
a larger number of larger designs. In the process of automating
the instrumentation process we expect to investigate a number
of exciting new research areas. The most important of these
research areas is determining techniques for maintaining as
much correspondence through optimization between source-
level events and final hardware as possible. Another important
area of future research is the automated configuration of EOBs.
Techniques need to be identified and evaluated for estimating
RAR and determining when and how EOBs can be shared.
Additionally, we plan on investigating methods to use RAR
to identify which EOPs should be traced by EOBs and which
should be traced by connecting them to a high-speed serial I/O
such as SERDES. This has the potential to preserve more of
the on-chip memory for where its needed most. Finally, we
also plan on investigating methods of incrementally inserting
EOPs and EOBs to improve the productivity and usefulness
of our debugging instrumentation.

ACKNOWLEDGMENT

This work was supported by the I/UCRC Program of the
National Science Foundation under Grant No. 1265957.

REFERENCES

[1] J. Cong, L. Bin, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhiru,
“High-level synthesis for fpgas: From prototyping to deployment,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, vol. 30, no. 4, pp. 473–491, 2011.

[2] K. Rupnow, L. Yun, L. Yinan, and C. Deming, “A study of high-level
synthesis: Promises and challenges,” in ASIC (ASICON), 2011 IEEE 9th
International Conference on, Conference Proceedings, pp. 1102–1105.

[3] J. Noguera, S. Neuendorffer, S. Haastregt, J. Barba, K. Vissers, and
C. Dick, “Implementation of sphere decoder for mimo-ofdm on fpgas
using high-level synthesis tools,” Analog Integrated Circuits and Signal
Processing, vol. 69, no. 2-3, pp. 119–129, 2011.

[4] J. Cong and Z. Zhang, “An efficient and versatile scheduling algorithm
based on sdc formulation,” pp. 433–438, 2006.

[5] K. S. Hemmert, J. L. Tripp, B. L. Hutchings, and P. A. Jackson, “Source
level debugger for the sea cucumber synthesizing compiler,” in Field-
Programmable Custom Computing Machines, 2003. FCCM 2003. 11th
Annual IEEE Symposium on, Conference Proceedings, pp. 228–237.

[6] K. S. Hemmert, “Source level debugging of circuits synthesized from
high level language descriptions,” 2004.

[7] E. Hung and S. J. Wilton, “Incremental trace-buffer insertion for fpga
debug.”

[8] J. Keeley, “An incremental trace-based debug system for field-
programmable gate-arrays,” 2013.

[9] Xilinx, “Vivado design suite user guide: High-level synthesis,” vol.
UG902–Version 2013.4, 2013.

[10] H. Zheng, S. T. Gurumani, L. Yang, D. Chen, and K. Rupnow, “High-
level synthesis with behavioral level multi-cycle path analysis,” in FPL,
2013, Conference Proceedings.

[11] G. Koch, U. Kebschull, and W. Rosenstiel, “Debugging of behavioral
vhdl specifications by source level emulation,” in Design Automation
Conference, 1995, with EURO-VHDL, Proceedings EURO-DAC ’95.,
European, Conference Proceedings, pp. 256–261.

[12] C.-T. Chen, K. K #252, #231, #252, k #231, and akar, “A source-level
dynamic analysis methodology and tool for high-level synthesis,” pp.
134–140, 1997.

[13] J. Curreri, G. Stitt, and A. D. George, “High-level synthesis techniques
for in-circuit assertion-based verification,” in Parallel & Distributed
Processing, Workshops and Phd Forum (IPDPSW), 2010 IEEE Inter-
national Symposium on, Conference Proceedings, pp. 1–8.

[14] Y. S. Iskander, C. D. Patterson, and S. D. Craven, “Improved abstrac-
tions and turnaround time for fpga design validation and debug,” in
Field Programmable Logic and Applications (FPL), 2011 International
Conference on, Conference Proceedings, pp. 518–523.

[15] E. Anis and N. Nicolici, “On using lossless compression of debug data
in embedded logic analysis,” in Test Conference, 2007. ITC 2007. IEEE
International, Conference Proceedings, pp. 1–10.

[16] Y.-T. Lin, W.-C. Shiue, and I.-J. Huang, “A multi-resolution ahb bus
tracer for real-time compression of forward/backward traces in a circular
buffer,” pp. 862–865, 2008.

[17] N. Ohba and K. Takano, “Hardware debugging method based on signal
transitions and transactions,” in Design Automation, 2006. Asia and
South Pacific Conference on, Conference Proceedings, p. 6 pp.

[18] G.-R. Tsai, L. Min-Chuan, and C.-H. Lin, “A real-time two-level
trace compressor for fpga-based soc on-chip debugger,” in Innovative
Computing, Information and Control, 2007. ICICIC ’07. Second Inter-
national Conference on, Conference Proceedings, pp. 267–267.

[19] S. Prabhakar, “Algorithms and low cost architectures for trace buffer-
based silicon debug,” Thesis, 2009.

