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Abstract—MapReduce is a programming model from Google
that facilitates parallel processing on a cluster of thousands of
commodity computers. The success of MapReduce in cluster
environments has motivated several studies of implementing
MapReduce on a graphics processing unit (GPU), but generally
focusing on the NVIDIA GPU.

Our investigation reveals that the design and mapping of the
MapReduce framework needs to be revisited for AMD GPUs
due to their notable architectural differences from NVIDIA
GPUs. For instance, current state-of-the-art MapReduce imple-
mentations employ atomic operations to coordinate the execution
of different threads. However, atomic operations can implicitly
cause inefficient memory access, and in turn, severely impact
performance. In this paper, we propose StreamMR, an OpenCL
MapReduce framework optimized for AMD GPUs. With efficient
atomic-free algorithms for output handling and intermediate re-
sult shuffling, StreamMR is superior to atomic-based MapReduce
designs and can outperform existing atomic-free MapReduce
implementations by nearly five-fold on an AMD Radeon HD 5870.

Index Terms—atomics, parallel computing, AMD GPU,
GPGPU, MapReduce, Mars, MapCG, OpenCL

I. INTRODUCTION

While graphics processing units (GPUs) were originally de-
signed to accelerate data-parallel, graphics-based applications,
the introduction of programming models such as CUDA [15],
Brook+ [2], and OpenCL [10] has made general-purpose
computing on the GPU (i.e., GPGPU) a reality. Although
GPUs have the potential of delivering astounding raw
performance via the above programming models, developing
and optimizing programs on GPUs requires intimate
knowledge of the architectural details, and thus, is nontrivial.

High-level programming models such as MapReduce play
an essential role in hiding architectural details of parallel
computing platforms from programmers. MapReduce, pro-
posed by Google [7], seeks to simplify parallel programming
on large-scale clusters of computers. With MapReduce, users
only need to write a map function and a reduce function,
and the parallel execution and fault tolerance is handled
by the runtime framework. The success of MapReduce on
cluster environments has also motivated studies of porting
MapReduce on other parallel platforms including multicore
systems [6], [16], Cell [12], and GPUs [16], [5], [9], [18].

However, existing MapReduce implementations on GPUs
focus on NVIDIA GPUs. The design and optimization
techniques in these implementations may not be applicable to
AMD GPUs, which have a considerably different architecture
than NVIDIA ones. For instance, state-of-the-art MapReduce
implementations on NVIDIA GPUs [5], [9] rely on atomic
operations to coordinate execution of different threads. But as
the AMD OpenCL programming guide notes [3], including
an atomic operation in a GPU kernel may cause all memory
accesses to follow a much slower memory-access path, i.e.,

CompletePath, as opposed to the normal memory-access
path, i.e., FastPath, even if the atomic operation is not
executed.1 Our results show that for certain applications, the
atomic-based implementation of MapReduce can introduce
severe performance degradation, e.g., a 28-fold slowdown.

Although Mars [4] is an atomic-free implementation of
MapReduce on GPUs, it has several disadvantages. First,
Mars incurs expensive preprocessing phases (i.e., redundant
counting of output records and prefix summing) in order to
coordinate result writing of different threads. Second, Mars
sorts the keys to group intermediate results generated by the
map function, which has been found inefficient [5].

In this paper, we propose StreamMR, an OpenCL
MapReduce framework optimized for AMD GPUs. The
design and mapping of StreamMR provides efficient atomic-
free algorithms for coordinating output from different threads
as well as storing and retrieving intermediate results via hash
tables. StreamMR also includes efficient support of combiner
functions, a feature widely used in cluster MapReduce
implementations but not well explored in previous GPU
MapReduce implementations. The performance results of
three real-world applications show that StreamMR is superior
to atomic-based MapReduce designs and can outperform an
existing atomic-free MapReduce framework (i.e., Mars) by
nearly five-fold on AMD GPUs.

II. BACKGROUND

A. AMD GPU Architecture
An AMD GPU consists of multiple SIMD units named

compute units, and each compute unit consists of several
cores called stream cores. Each stream core is a VLIW
processor containing five processing elements, with one of
them capable of performing transcendental operations like
sine, cosine, and logarithm. Each compute unit also contains
a branch execution unit that handles branch instructions. All
stream cores on a compute unit execute the same instruction
sequence in a lock-step fashion.

There is a low-latency, on-chip memory region shared by
all stream cores on a compute unit named LDS. Each LDS is
connected to L1 cache as shown in Figure 1. Several compute
units then share one L2 cache that is connected to the global
memory through a memory controller. The global memory is
a high-latency, off-chip memory that is shared by all compute
units. Host CPU transfers the data to global memory through
PCIe bus. In addition to the local and global memory, there
are two special types of memories that are also shared by all
compute units. Image memory is a high-bandwidth memory

1The details of both CompletePath and FastPath will be discussed in
Section II.



region whose reads are cached through L1 and L2 caches.
Constant memory is a memory region storing data that are
allocated/initialized by the host and not changed during the
kernel execution. Access to constant memory is also cached.

B. Memory Paths

As shown in Figure 1, ATI Radeon HD 5000 series GPUs
have two independent paths for memory access: FastPath
and CompletePath [3]. The bandwidth of the FastPath is
significantly higher than the CompletePath. Loads and stores
of data whose size is multiple of 32 bits are executed through
FastPath, whereas advanced operations like atomics and sub-
32 bit data transfers are executed through the CompletePath.

Executing a memory load access through FastPath is
performed by a single vertex fetch (vfetch) instruction. In
contrast, a memory load through the CompletePath requires
a multi-phase operation and thus can be several folds slower
according to the AMD OpenCL programming guide [3].
On AMD GPUs, the selection of the memory path is done
automatically by the compiler. The current OpenCL compiler
maps all kernel data into a single unordered access view.
Consequently, including a single atomic operation in a
kernel may force all memory loads and stores to follow
the CompletePath instead of the FastPath, which can in
turn cause severe performance degradation of an application
as discovered by our previous study [8]. Note that atomic
operations on variables stored in the local memory does not
impact the selection of memory path.
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Fig. 1. AMD GPU memory hierarchy

C. GPGPU with AMD

We implemented our framework using OpenCL because
currently OpenCL [10] is the main programming language
on AMD GPUs. Another advantage of using OpenCL is its
portability across GPUs from different vendors. In OpenCL
terminology, each thread of a kernel is called a workitem and
executed on a single stream core. Multiple workitems are
organized into a workgroup. One or more workgroups can
run concurrently in a compute unit. The resource scheduler
executes each workgroup as several wavefronts (a wavefront
is similar to the warp concept in CUDA). To hide memory
latency, it switches between the wavefronts whenever any one
is waiting for a memory transaction to complete.

D. MapReduce Programming Model
MapReduce is a high-level programming model aims at

facilitating parallel programming by masking the details of
the underling architecture. Programmers need only to write
their applications as two functions: the map function and the
reduce function. All of the input and outputs are represented
as key/value pairs. Implementing a MapReduce framework
involves implementing three phases: the map phase, the group
phase, and the reduce phase. Specifically, the MapReduce
framework first partitions the input dataset among the partic-
ipating parties (e.g. threads). Each party then applies the map
function to its assigned portion and writes the intermediate
output (map phase). The framework groups all of the interme-
diate outputs by their keys (group phase). Finally, one or more
keys of the grouped intermediate outputs are assigned to each
partition party, which will carry out the reducing function
and write out the result key/value pairs (reduce phase).

III. RELATED WORK

Many research efforts have been done to enhance the
MapReduce framework [11], [19], [17], [14], [13] in cluster
environments. Valvag et al. developed a high-level declarative
programming model and its underlying runtime, Oivos, which
aims at handling applications that require running several
MapReduce jobs [19]. Zahria et al. [14] on the other side
proposed a speculative task scheduling named LATE (Longest
Approximate Time to End) to cope with several limitations
of the original Hadoop’s scheduler in heterogeneous
environments such as Amazon EC2[1]. Moreover, Elteir
et al. [13] recently enhanced MapReduce framework to
support asynchronous data processing. Instead of having
barrier synchronization between map and reduce phases, they
propose interleaving both phases, and start the reduce phase
as soon as a specific number of map tasks are finished.

Mars [4] is the first MapReduce implementation on GPUs.
One of the main challenges of implementing MapReduce on
GPUs is to safely write the output to a global buffer without
conflicting with output from other threads. Mars addresses
this by calculating the exact write location of each thread.
Specifically, it executes two preprocessing kernels before the
map and reduce phases. The first kernel counts the size of
the output from each map/reduce thread by executing the
map/reduce function without writing the generated output to
the global buffer. The second kernel is a prefix summing that
determines the write location of each thread. Each thread then
reapplies the map/reduce function and safely writes the inter-
mediate/final output to the predetermined location in the global
buffer. After the map phase, Mars groups the intermediate out-
put by their keys using bitonic sort. After similar preprocessing
kernels (counting and prefix summing), the reduce phase starts,
where every thread reduces the values associated with certain
key and finally writes the generated key/value pair to the final
output. One main disadvantage of Mars’ preprocessing design
is that the map and reduce functions need to be executed twice.
Such a design was arguably due to that atomic operations were
not supported on the GPUs at the time Mars was developed.

Recently Hong et al. proposed MapCG [5], an
implementation for MapReduce on both CPU and GPU.
Its GPU implementation depends on using atomic operations
to safely write the intermediate and final output. Also, MapCG
designed a memory allocator to allocate buffers from the
global memory for each warp. Moreover, MapCG uses hash



tables to group intermediate output from map function, which
is shown to be more efficient than sorting used in Mars.

As we will discuss in Section IV, our investigation
shows that using global atomic operations can cause severe
performance degradation in MapReduce implementation
on AMD GPUs. Consequently, StreamMR does not use
global atomic operations. Instead, StreamMR introduces
several novel techniques that address disadvantages of Mars,
including an efficient output procedure that greatly reduces the
preprocessing overhead as well as an atomic-free algorithm
that groups intermediate results using hash tables. More
details of StreamMR design will be discussed in Section V.

There are two other studies on accelerating MapReduce
on GPUs [9], [18] that are orthogonal to our study in this
paper. In [9], Ji et al. proposed several techniques to improve
the input/output performance by using shared memory as a
staging area. These techniques can be applied to StreamMR to
further improve its performance. GPMR [18] is a MapReduce
implementation for a cluster of GPUs. GPMR is mainly
designed to minimize the communication cost between
different GPUs. GPMR also introduces several application-
specific optimizations to improve the program performance.

IV. PERFORMANCE IMPACTS
OF ATOMIC OPERATIONS ON MAPREDUCE FRAMEWORKS

In this section, we seek to quantify the performance impacts
of using atomic operations in MapReduce implementations
on an AMD Radeon HD 5870 GPU. We first implement
a basic OpenCL MapReduce framework based on Mars.
In its original design, Mars uses preprocessing kernels,
i.e., counting and prefix summing kernels, to calculate the
locations of output records in global memory for each thread.
We add a feature that allows threads in different wavefronts
to use atomic operations (instead of using preprocessing
kernels) to compute the output locations.

We compare the performance of the basic OpenCL
MapReduce implementation (named Mars) and the atomic-
based implementation (named AtomicMR), focusing on
the execution time of two MapReduce applications: Matrix
Multiplication (MM) and KMeans (KM). Specifically, we run
MM for matrix sizes of 256 X 256, 512 X 512, and 1024 X
1024, and KM for number of points 4K, 16K, 64K. As shown
in Figure 2 and Figure 3, the performance of atomic-based
MapReduce framework is significantly worse than Mars. More
specifically, the average slowdown is 28-fold and 11.3-fold for
Matrix Multiplication and KMeans, respectively. These results
suggest that atomic-based MapReduce implementations are
not suitable for AMD/ATI Radeon HD 5000 series.
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Fig. 2. Performance of atomic-based MapReduce vs. Mars using Matrix
Multiplication
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Fig. 3. Performance of atomic-based MapReduce vs. Mars using KMeans

It is worth noting that, our atomic-based implementation
uses atomic operations at the granularity of a wavefront,
i.e., one master thread in the wavefront is responsible for
allocating more buffer for all threads in this wavefront. In
KMeans and Matrix Multiplication, each map thread writes
to the global buffer once, so atomic operation is called once
per wavefront by a master thread. This implementation using
atomics at the wavefront level fairly mimics the map phase
of the MapCG[5] implementation.

V. STREAMMR: PROPOSED MAPREDUCE FRAMEWORK

A. Design Overview

There are two major design issues in a MapReduce runtime
framework on GPUs: 1) how to efficiently and correctly
write output from the large number of threads to the global
memory and 2) how to efficiently group intermediate results
generated by the map function according to their keys.

1) Writing output with opportunistic preprocessing: As
discussed in Section IV, using global atomic operations in the
MapReduce framework can incur severe performance penalties
on AMD GPUs. While Mars implementation does not employ
atomic operations, it requires expensive preprocessing kernels
to coordinate output from different threads to the global
memory. In particular, the computation in the counting kernel
is repeated in the actual compute (map or reduce) kernel; this
redundant computation results in wasted compute resources.

StreamMR introduces a two-pass atomic-free algorithm that
enables different threads to efficiently write their output to
the global memory on AMD GPUs. Specifically, each work-
group maintains a separate output buffer in global memory. In
the first pass, these output buffers are preallocated according
to a user-defined size. Each work-group independently writes
the output to its own buffer without synchronizing with other
work-groups. When the preallocated buffer is full, the compute
kernel (map or reduce) switches to a counting procedure that
only counts the sizes of different output records (without ac-
tually writing them), similar to the Mars design. In the second
pass, an overflow buffer is allocated for the work-groups that
use up their preallocated buffer in the first pass, using the sizes
computed in the counting procedure. A separate kernel is then
launched to handle the unwritten output of the first pass.

The StreamMR output design eliminates the need for global
atomic operations. It can also greatly save the preprocessing
overhead compared to Mars. For applications with output
sizes that can be easily estimated, e.g., Matrix Multiplication
and KMeans, the counting procedure and the second pass can
be skipped altogether, yielding the most efficient execution.
That is, the preprocessing only happens opportunistically.



For applications with output sizes that are hard to predict,
StreamMR saves the counting computation corresponding
to preallocated buffers during the first pass, whereas Mars
performs the redundant counting computation for all output.
In addition, in StreamMR, we record the output size per work-
group as opposed to recording output size per thread in Mars,
thus improving the prefix summing performance (as fewer
size records need to be dealt with in the prefix summing).

2) Grouping intermediate results with atomic-free hash
tables: Like MapCG, StreamMR organizes the intermediate
output generated by the map phase using hash tables. How-
ever, MapCG uses atomic operations on global variables, e.g.,
compare-and-swap, to implement the hash table, which will
incur performance penalty caused by the slow CompletePath
on AMD GPUs. To address this issue, StreamMR maintains
one hash table per wavefront, thus removing the need of
using global atomics to coordinate updates from different
workgroups to the hash table. Also, as explained in the
next section, StreamMR leverages the lock-step execution
of threads in a wavefront as well as atomic operations on
local variables (i.e., variables stored in the local memory) to
implement safe concurrent updates to the hash table of each
wavefront. During the reduce phase, a reduce thread reduces
the intermediate output associated with a specific entry in all
hash tables, i.e., hash tables of all wavefronts.

B. Implementation Details

In StreamMR, each work-group maintains four global
buffers as shown in Figure 4. Among these buffers, Keysi
and V aluesi store keys and values of intermediate results.
HTi is the hash table of wavefront i. Figure 5 depicts the
details of the hash table design. Each entry in the hash table
contains two pointers to the head and tail of a linked list
(hash bucket) stored in KV Listi. The head pointer is used
to explore the elements stored in a hash bucket, and the tail
pointer is used when appending a new element. Each element
in KV Listi associates every key to its value, and it contains
a pointer to the next element in the linked list.
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Fig. 4. Main data structures used in the map phase of StreamMR

1) Map Phase: Initially, every map thread executes the
map function on its assigned input key/value pair. A map
thread then collaborates with other threads on the same work-
group i to determine its write location on the global buffers,
i.e., Keysi, V aluesi, and KV Listi without conflicting

with other threads in the same work-group. This can be
efficiently done using the system-provided atomic operations
on local variables, leveraging the fact that atomic operations
on local variables does not force memory access to follow
the CompletePath.
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Fig. 5. Details of the hash table

To safely update the hash table HTi, a single entry of
the hash table should be updated by only one thread in
the workgroup, this thread is named master thread. Before
the master thread updates the hash table, all threads in
the workgroup should be synchronized. However, since the
threads of the workgroup may diverge based on the input
characteristics, deadlock can occur during the synchronization.
To address this issue, we decide to use one hash table per
wavefront, for all threads in a wavefront are synchronized by
the lock-step execution.

All threads of a wavefront use three auxiliary arrays stored
in shared memory arrays to coordinate concurrent updates to
the hash table of this wavefront. The first array is HashedKeys.
Thread i writes the hash of its key to its corresponding entry
HashedKeys[i]. The second array is Slaves, which is used to
identify the master thread of each hash entry. The third array
KeyValListId is used by the master thread to update the links
on the linked list associated with the hash entry. In updating
the hash table, all threads in the wavefront go through three
steps as shown in Figure 6. First, all active threads in the
wavefront write the hash of their keys to the HashedKeys
array and the index of the inserted record to KV Listi to the
KeyValListId array. Second, every thread reads the hash keys
of all other threads, and the first thread with a certain hash key
is considered as a master thread. For example, if thread t1,
t3, and t5 all has the same key, then t1 will be marked as the
master thread. Finally, the master thread t1 reads the indices
of its slave threads, i.e., KeyValListId[3], and KeyValListId[5],
and then it updates the tail of the hash entry HashedKeys[1]
to refer to slave records, in addition to updating the links of
these records to form the extended linked list.

2) Reduce Phase: Reducing the key/value pairs from
different hash tables is not a trivial task. Since keys are
different for in different hash tables, to insure all keys are
handled, we run the reduce kernel with number of threads
equals to the total number of entries of all hash tables i.e.,
number of entries per hash table × number of hash tables. In



t0  t1  t2  
 

t3 
 

t4 
 

t5 

 

KeyValListId  HashedKeys 

S
te

p
1
 

t0  t1  t2  
 

t3 
 

t4 
 

t5 

 

t0  t1  t2  
 

t3 
 

t4 
 

t5 

 

Slaves  

0 1 1 

0 1 1 

S
te

p
2
 

S
te

p
3

 

Step1:  Active threads in the wavefront update their corresponding entries in   
            HashedKeys and KeyValListId. 
Step2:  Active threads read all hashed keys to determine which thread will be  
            a master thread and update the Slaves array. 
Step3:  The master thread i reads the KeyValListId of the slave threads and  
            updates the hash table entry = HashedKeys[i] 

Wavefront Threads 

Fig. 6. Steps for updating the hash table assuming wavefront of 6 threads,
and t1, t3, and t5 are the active threads

particular, each reduce thread reduces the values associated
to a specific hash entry beginning from certain hash table
(ranging from hash table 0 to hash table n − 1) passing
through all subsequent hash tables. We then run another
cleanup kernel to remove any redundant outputs. Note that, for
applications generating the same keys for every workgroup, it
is enough to invoke the reduce kernel with number of threads
equals the number of hash entries in one hash table. Every
thread reduces the values of a specific hash entry in all hash
tables, and hence the cleanup kernel can be skipped.

Similar to the map phase, threads in the same wavefront
collaborate using the system-provided atomic operations on
local variables to write their final key/value pairs to the global
buffers.

C. Optimizations
StreamMR provides several optimizations in addition to

the basic design.
1) Map with Combiner: If the combiner function is

available, the map phase can be modified so that instead of
writing the map output directly to the global buffer, only one
combined value is written per key. Specifically, the master
thread generates the combined value of slave threads, and
update the hash table accordingly. Since the map outputs are
combined before being written to the global buffer, the number
of global memory transactions can be significantly reduced.

In StreamMR, values produced by the slave threads are
written to the shared memory to improve the combining
performance. For values with variable sizes, the available
shared memory may not be sufficient to hold values from all
threads in the memory. Upon such an overflow, the number
of active threads per wavefront is reduced from 64 threads (in
case of AMD Radeon HD 5870 GPU) to 32 threads. Threads
from 0 to 31 continue their processing and threads from 32 to
64 remains idle. When the first half of threads complete their

processing, the other half starts. While processing the active
threads, the used sizes are compared to the allocated sizes.
If the overflow occurs again, the number of active threads is
reduced to 16 threads, and so on until the used sizes fit the
available shared memory. The overhead of this mechanism
will be evaluated in section VI.

2) Reduce with Combiner: To improve the scalability of
the reduce phase with regard to the number of wavefronts
of the map kernel, more than one kernels can be launched.
For instance, instead of having one kernel where one thread
reduces the values of a certain hash entry from all hash
tables, multiple kernels can be launched to reduce entires in
a tree-like manner. Such a design allows more parallelism
to be exploited during the reduction because reducing of a
single hash entry is parallelized.

3) Image memory input: This optimization aims at
improving memory access performance. When the input
dataset is bound to the texture memory, the L1 and L2
texture caches can help reduce access to the global memory.
When the input dataset is heavily reused by the kernel, we
have found that this optimization can significantly improve
performance on AMD GPUs.

D. Discussion
One limitation of using a separate buffer for each wavefront

can cause inefficient memory utilization when the size of
the initial buffer is too large. This limitation can be alleviate
for applications with relatively predictable output sizes. The
multi-buffer design may also cause inefficiency when the
final output is copied back to the host memory. Assuming
the allocated output buffers for all workgroups are stored in
contiguous memory locations in the global memory, there
are two options for transferring the final output back to
the host memory. The first option is to copy only the used
buffer from each workgroup. This requires multiple transfers
i.e., one per workgroup. The second option is to copy all
allocated buffers using only one transfer. In this case other
unneeded buffers will be copied as well. Experiments have
shown that the second option is more efficient, since it
requires communicating with the host only once. However,
the second option is still less perfect. We plan to investigate
more efficient solution for this problem in the future work.

VI. EXPERIMENTAL ANALYSIS

All of the experiments presented in this section are
conducted on a 64-bit server with an Intel Xeon E5405 x2
CPU (2.00GHz) and 3GB of RAM. The equipped GPU is
ATI Radeon HD 5870 (Cypress) with 512MB of device
memory. The server is running the GNU/Linux operating
system with kernel version 2.6.28-19. StreamMR and the
testing applications are implemented with OpenCL 1.1 and
compiled with AMD APP SDK v2.4.

We use three test applications that are commonly used in
other MapReduce studies such as Mars and MapCG. These
applications include:
• Matrix Multiplication (MM). MM accepts two matrices
X and Y as input and outputs matrix Z. Each element zi,j
in Z is produced by multiplying every element in row i of
X with the corresponding element in column j of Y and
summing these products. The MapReduce implementation
of MM includes only the map phase, where each map task is
responsible for calculating one element of the output matrix.



• KMeans (KM): KM is an iterative clustering algorithm.
Each iteration takes a set of input points and a set of
clusters, assigns each point to a closest cluster based on the
distance between the point and the centroid of the cluster,
and recalculates the clusters after. The iteration is repeated
until clustering results converge (In our results we run only
one iteration). The MapReduce implementation of KM
include both map and reduce phases. The map function
attaches the assigned points to their closest clusters, and
the reduce function calculates the new coordinates of a
cluster based on the attached points. Note that the combiner
function is enabled for both map and reduce phases in
StreamMR in our experiments.

• String Match (SM) SM searches an input keyword in
a given document and outputs all matching locations.
The MapReduce implementation of SM includes only the
map phases. Each map task reads a chunk of the input
document, character by character, and outputs the locations
of any found matching words.

For each of the testing application, we use three input data
sets, i.e., Small (S), Medium (M) and Large (L) whose size
are given in Table I.

Applications Dataset Size
MatrixMultiplication(MM) S: 256, M: 512, L:1024
KMeans(KM) S: 4096 points, M: 16384, L: 65536
StringMatch(SM) S: 16MB, M: 64MB, L: 100MB

TABLE I
DATASET SIZES PER APPLICATION

A. Applications Performance
1) Comparison to Mars: We first evaluate the performance

of StreamMR against Mars with three test applications. In
order to execute Mars, which is originally implemented in
CUDA, on AMD GPUs, we have reimplemented Mars with
OpenCL. The bitonic sort and scan algorithms available in
the AMD Stream SDK are used to implement the sorting and
scanning phases of Mars.

As shown in Figure 7, StreamMR outperforms Mars for
almost all testing applications with speedups between 0.96 to
4.7. For applications with the map phase only, i.e. MM and
SM, the advantage of StreamMR comes from the reduced
preprocessing overhead (counting and prefix summing
phases as detailed in Section V). To better understand the
performance gain of StreamMR over Mars, we break down
the execution time of the large input dataset into five phases,
i.e., preprocessing, map, group, reduce, and copy result (from
GPU to CPU), as shown in Figure 8. To get normalized times,
the execution times of each phase is divided by the total
execution time of the corresponding Mars run. For MM, the
Mars preprocessing overhead is 9.7% of the total execution
time in Mars. Since the output size is fixed, the preprocessing
time of MM is negligible in StreamMR. As a consequence,
StreamMR outperforms Mars by 1.1 times on the average. On
the other side, in SM, since the size of the output is variable,
Mars preprocessing phases, especially the counting phase
consumes significant portion of the map time. Specifically,
the counting phase passes through the whole file and searches
for matches to accurately determine the size of the output of
each map task. These preprocessing phases represent 30.54%

of the total map time. So our framework better improves the
performance by 1.3-fold speedup on the average.

For KM, as shown in Figure 8, although the overhead
of Mars preprocessing kernels is small i.e., 3.54% of the
total time, the speedup of our framework over Mars is the
highest among all applications i.e., 3.9-fold speedup on the
average. This returns to two reasons; first, the efficiency of
the hashing-based grouping over sorting-based one which
results in reducing the number of accesses to the global
memory. Second, the larger number of threads contributing in
the reduce phase through the combiner function which result
in improving the reduce time.
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Fig. 7. Speedup of StreamMR over Mars using small, medium, and large
datasets
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Fig. 8. Execution time breakdown of Mars and StreamMR using Large
dataset

2) Comparison to Atomic-based MapReduce: As we
discussed earlier, state-of-the-arts MapReduce frameworks
in CUDA use atomic operations to coordinate the output
from different threads. To evaluate atomic-based MapReduce
designs on AMD GPU, we modified Mars by removing
the preprocessing kernels and using atomic operations to
determine write locations of each map and reduce thread
in global memory. For MM and KM, the atomic operation
is used in a wavefront granularity, where only one thread
per wavefront executes the atomic operation. For SM,
since threads in a wavefront may execute divergent paths,
the atomic operation is issued per thread. We named this
modified version of MapReduce AtomicMR.

As we discussed in Section II, atomic operations on
AMD GPUs can force all memory access to use a slow
CompletePath instead of the normal FastPath, can thus can
result in severe performance degradation for memory-bound
applications. StreamMR addresses this issue with an atomic-
free design. As shown in Figure 9 and Figure 10, for MM,



StreamMR significantly outperforms AtomicMR, i.e., with an
average speedup of 30.3-fold. It turns out that the ALU:Fetch
ratio (measured by AMD APP Kernel Analyzer v1.8) of MM
is 0.4. Such a low ALU:Fetch ratio suggests that MM is
indeed a memory-bound application. On the other hand, the
ALU:Fetch ratio of SM is very high, i.e. 9.89, suggesting that
SM is more compute-bounded. Consequently, SteamMR does
not show performance improvements over AtomicMR for SM.
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Fig. 9. Speedup of StreamMR over Atomic-based MapReduce using small,
medium, and large datasets
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Fig. 10. Execution time breakdown of AtomicMR and StreamMR using
large dataset

For KM, the average speedup of SteamMR over AtomicMR
is 44.4-fold. Again, one of the reason is that KM is also
memory-bounded, as indicated by an ALU:Fetch ratio of 0.9.
In addition, the map phase of KM contributes to more than
90% of the total execution time as shown in Figure 10.

B. Overflow Handling Overhead
In this experiment, we aim at quantifying the overhead

of the overflow handling mechanisms i.e., global and local
buffers overflow. For SM, there is a high probability for
the global overflow to occur since the size of the output
is nondeterministic and depends on the input file and the
keyword. For KM, if the local buffer is not set appropriately, a
local overflow may be encountered. For MM, since the size of
the output is deterministic, then the overflow can be avoided.

We run SM using medium-size dataset and varied the
global buffer size to study the effect of global overflow
on the performance. we reduce the size of the preallocated
output buffer, so overflow occurs, and another map kernel
is executed. The overflow percentage is the ratio between
the number of matches emitted by the second map kernel
and the total number of matches. As shown in Figure 11,
the speedup of StreamMR over Mars slightly decreases from

1.37 to 1.29 when the percentage of overflow reaches 18%.
As the overflow percentage increases to 88%, the speedup
drops further to 0.94. This is because StreamMR will incur
more and more counting overhead as the overflow percentage
increases. However, the above performance results also
suggest the overhead of global overflow is tolerable.
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Fig. 11. Effect of global overflow on the speedup over Mars using
StringMatch

For KM, we varied the allocated local buffer, so instead of
running all threads per wavefront concurrently, they run on
two and four consecutive iterations. As a result, the map kernel
execution time increases as shown in Figure 12. Specifically,
the speedup compared to overflow-free case is 0.87 and 0.78
for two and four consecutive iterations respectively.
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Fig. 12. Effect of local overflow on the Map kernel execution time of KMeans

C. Impact of Using Image Memory
In this experiment, we evaluate the effect of using texture

memory instead of global memory to store the input dataset.
Since the data retrieved from the texture memory are cached,
we expect applications with data locality to benefit from this
feature. MM is an example of such applications since a single
row is accessed by several map tasks. For SM and KM, since
each thread works in a different piece of input data, texture
caching may not be beneficial.

For MM, we have found that using texture memory to
store the input matrices, improves the performance of the
map kernel significantly. More specifically, the speedup of the
map kernel over non-texture map kernel is 9.77 and 3.84 for
256 X 256 and 512 X 512 matrices respectively. Moreover,
the overall application speedup is 3.92 and 2.63 for 256 X
256 and 512 X 512 matrices, respectively.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we revisit the design of MapReduce frame-
work on AMD GPUs. We found that the atomic operations



used in state-of-the-arts GPU MapReduce frameworks, e.g.,
MapCG, can cause severe performance degradation on AMD
GPUs. Existing atomic-free implementation of MapReduce,
i.e. Mars, has several disadvantages i.e., preprocessing kernels,
and the time-consuming sorting in grouping intermediate
results. Consequently, we designed StreamMR, an atomic-free
implementation of MapReduce optimized for AMD GPUs.
StreamMR uses opportunistic preprocessing and groups
intermediate results with global-atomic-free hash tables.
Experiments have shown that our implementation provides
significant improvement compared to Mars and atomic-based
MapReduce frameworks. For future work, we plan to study
the performance using more applications and evaluate the
performance of StreamMR on NVIDIA GPUs.

ACKNOWLEDGMENT

This work is supported in part by 1) the VTMENA
program, 2) AMD Research Faculty Fellowship, and 3)
NSF grants IIP-0804155 for NSF I/UCRC CHREC and
CNS-0916719. The authors would like to thank Feng Ji for
his comments and feedback that helped develop this work.

REFERENCES
[1] Amazon.com. Amazon Elastic Compute Cloud.

http://www.amazon.com/gp/browse.html?node=201590011.
[2] AMD. Stream Computing User Guide. http://www.ele.uri.edu/

courses/ele408/StreamGPU.pdf, December 2008.
[3] AMD. OpenCL Programming Guide rev1.03.

http://developer.amd.com/gpu assets/ATI Stream SDK
OpenCL Programming Guide.pdf, June 2010.

[4] Bingsheng He, Wenbin Fang, Naga K. Govindaraju, Qiong
Luo, and Tuyong Wang. Mars: a MapReduce Framework
on Graphics Processors. In 17th International Conference
on Parallel Architectures and Compilation Techniques, pages
260–269. ACM, 2008.

[5] Chuntao Hong, Dehao Chen, Wenguang Chen, Weimin Zheng
,and Haibo Lin. MapCG: Writing Parallel Program Portable
Between CPU and GPU. In 19th International Conference
on Parallel Architectures and Compilation Techniques, pages
217–226. ACM, 2010.

[6] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary
Bradski, and Christos Kozyrakis. Evaluating MapReduce
for Multi-core and Multiprocessor Systems. In IEEE 13th
International Symposium on High Performance Computer
Architecture, pages 13–24, 2007.

[7] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified
Data Processing on Large Clusters. In 6th Symposium on
Operating Systems, Design, and Implementation, 2004.

[8] Marwa Elteir, Heshan Lin, and Wu-chun Feng. Performance
Characterization and Optimization of Atomic Operations on
AMD GPUs. In IEEE Cluster 2011, Austin, TX, USA,
September 2011.

[9] Feng Ji and Xiaosong Ma. Using Shared Memory to Accelerate
MapReduce on Graphics Processing Units. In IEEE 25th Inter-
national Parallel and Distributed Processing Symposium, 2011.

[10] Khronos Group. The Khronos Group Releases OpenCL 1.0
Specification. http://www.khronos.org/news/press/releases,
2008.

[11] Hung-chih Yang, Ali Dasdan, Ruey-Lung Hsiao, and D.
Stott Parker. Map-Reduce-Merge: Simplified Relational Data
Processing on Large Clusters. In ACM SIGMOD International
Conference on Management of Data, pages 1029–1040, New
York, NY, USA, 2007. ACM.

[12] Marc de Kruijf and Karthikeyan Sankaralingam. Mapreduce
for the Cell Broadband Engine Architecture. IBM Journal of
Research and Development, 53(5):10–1, 2009.

[13] Marwa Elteir, Heshan Lin, and Wu-chun Feng. Enhancing
MapReduce via Asynchronous Data Processing. In IEEE 16th
International Conference on Parallel and Distributed Systems,
pages 397–405. IEEE, 2010.

[14] Matei Zaharia, Andy Konwinski, Anthony D. Joseph, Randy
Katz, and Ion Stoica. Improving MapReduce Performance
in Heterogeneous Environments. In USENIX Symposium on
Operating Systems Design and Implementation, 2008.

[15] NVIDIA. NVIDIA CUDA Programming Guide-2.2. http://
developer.download.nvidia.com/compute/cuda/2.2/toolkit/docs/,
2009.

[16] Richard M. Yoo, Anthony Romano, and Christos Kozyrakis.
Phoenix Rebirth: Scalable MapReduce on a Large-Scale
Shared-Memory System. In IEEE International Symposium on
Workload Characterization, pages 198–207. IEEE, 2009.

[17] Steven Y. Ko, Imranul Hoque, Brian Cho, and Indranil Gupta.
On Availability of Intermediate Data in Cloud Computations.
In 12th Workshop on Hot Topics in Operating Systems, 2009.

[18] Jeff A. Stuart and John D. Owens. Multi-GPU MapReduce
on GPU Clusters. In IEEE 25th International Parallel and
Distributed Processing Symposium, 2011.

[19] Steffen Viken Valvag and Dag Johansen. Oivos: Simple
and Efficient Distributed Data Processing. In IEEE 10th
International Conference on High Performance Computing and
Communications, pages 113–122, Sept. 2008.


