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Abstract—Designer productivity is a growing concern as over-
all hardware complexity rises. Design reuse, a key component
in productivity, is underutilized. Not only can existing designs
be reused, but also the patterns and information contained
within them as well. With the increase in the number of circuits
available, there requires a need to analyze and retrieve designs
with ease in order to accelerate design entry. In this paper, a
birthmarking approach using -grams is presented. Using this
technique, design patterns regarding existing circuits can be cap-
tured and used to not only suggest similar and reusable designs,
but functional blocks and code throughout the design phase, with
little to no effort from the user. Preliminary experiments and case
studies of the q-gram birthmarking technique were performed
on over 250 circuits from various sources in order to show the
feasibility of the proposed methods.

I. INTRODUCTION

The productivity gap that exists between silicon density and
design capabilities is too well known. Design reuse has been
a prominent factor in bridging that gap, reducing design time
and increasing overall productivity in not only software, but
hardware as well [1] [2]. However, design reuse has a cost
which depends on the time associate with reusing existing
intellectual properties (IP). This includes the search for IP to
the integration of the IP into the overall design. If a significant
portion of the reduce project time is associated with the cost
of reuse, further improvements can be made.

Traditionally, the reuse flow requires the circuit designer to
explicitly know when and where to search for existing circuits,
forcing the designer to leave the design scope. Considering
that there are no universally accepted standards, IP repositories
may be unorganized with little or incomplete documentation.
Searches may result in no matches found even though the
circuit exists under another “keyword”. In this case, the
designer is simply unaware of the best way to retrieve the
design that is desired. On the other hand, the circuit that is
being searched for may not in fact exist at all.

Figure 1 shows the high-level concept of the proposed infor-
mation reuse model. As the user makes changes to a reference
circuit, the proposed tool will continuously monitor the circuit
during the entry process. A vast number of comparisons are
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Fig. 1. Comparison between the proposed flow and the traditional flow for
reusing designs

performed between the emerging design and an archive of
existing designs. If there exists a proper community structure
of easing contributions and automating access, the number
of existing designs can rapidly rise to tens of thousands or
more. In addition, the underlying characteristics of the circuits
are extracted and compared in order to predict the intent of
the user. Candidate circuits and operations are then suggested
to the user within the design environment in an unobtrusive
manner. The results are ranked based on similarity such that
the most relevant information is presented to the user first.
The user can then integrate the information suggested into the
design or interface with the tool to explore similar circuits and
view design documentations.

In this paper, a methodology for comparing the similarity
of two circuits using a g-gram birthmarking approach is pro-



posed. A birthmark is defined by the inherent characteristics
of a circuit and is constructed such that the structural and
functional information of the circuit is captured. Structural
information includes the components used and the overall
layout of the circuit and functional information pertains to
the dataflow of the circuit. The g-gram birthmarking approach
can be extended and used for analyzing and retrieving relevant
information to help accelerate the design entry process. An
assessment is performed on the quality of the results when
comparing a reference circuit against a compiled database of
cores from various archives for circuit suggestion and code
prediction.

II. RELATED WORK

With essentially every design out there at your fingertips,
methods for analyzing and retrieving information from cir-
cuits become more prevalent and necessary. Reuse systems
commonly use meta-data [3] and case-based reasoning (CBR)
[4] as a way to help manage existing designs. Many of these
approaches require the user to explicitly leave the design
environment and manually search for designs to reuse. The
user will also have to describe the desired circuit in a format
specific to the reuse system. Furthermore, the reuse system has
to be manually built, such as assigning meta-data to circuits,
which can be extremely time consuming, especially for large
repositories. On the other hand, [5] finds existing designs by
using subgraph isomorphism between a query circuit and a
database of circuits. This approach is ideal since no manual
preprocessing is needed; however, the method of comparison is
too restricting and fails to produce a match when two circuits
are functionally equivalent but structurally different.

In terms of circuit comparison, there has been little work
done in assessing the similarity between two circuits. Shi et
al [6] used a modified version of an iterative graph similarity
algorithm for molecular graphs in order to find similarities
between pairs of nodes for placement on FPGAs. InVerS
[7] determines a similarity factor between two netlists based
on signatures of the nets obtained using a fast simulation
technique and is focused more for incremental verification.
Many of these endeavors do not give a good sense of how
similar two circuits are overall.

Birthmarking approaches have been commonly used for
assessing the similarity of software. Tamada et al [8] first
introduced the idea of a birthmark which is a simplified
representation of the software that is extracted from only the
source itself. A wide variety of representations for birthmarks
have been explored. Myles et al [9] modeled the instructions
at the opcode level using a k-gram approach to detect software
theft. On the other hand, Chen et al [10] used a sequence of
system calls as their birthmark with sequence alignment tech-
niques to assess the similarity of the software. One distinction
between hardware and software is that software is inherently
sequential whereas the structure of hardware is much more
complex. Therefore, different techniques and methods are
needed in order to apply the concepts and ideas of birthmarks
to hardware designs.

III. HARDWARE BIRTHMARKS

A hardware birthmark is defined here as a set of features
or characteristics that describes the underlying structure and
functionality inherent to a specific circuit. A birthmark is
formally defined as follows:

Definition 1. Let x and z be two programs and let b be the
function that extracts the birthmark from a given program.
b(x) is a birthmark of z if:

1) b(x) is obtained from z itself

2) if z and z are copies of each other, then b(z) = b(z)

Due to the complex nature of digital circuits, the problem
of analyzing the similarity of two designs is a difficult task.
Circuit functions can be represented in countless different
ways. In addition, different designers may also have differ-
ent definitions of what is considered similar. Digital circuits
are commonly described in a hardware description language
(HDL) such as Verilog. All programming languages have an
inherent structure to them and can typically be represented as
an abstract syntax tree (AST). Comparing the AST directly
can be computationally expensive for very large designs and
unfruitful due to the diverse ways of describing a given
function. Therefore, the AST is broken down into smaller parts
and modeled using a path-based g-gram approach [11]. Figure
2 shows the overall system flow for the proposed reuse model.

IV. ¢-GRAM HARDWARE BIRTHMARKS

A g-gram (n-gram) approach is commonly used in natural
language processing (NLP) when trying to assess the similarity
of two documents. The text of each document is decomposed
into sequences of ¢ length using a sliding window approach
resulting in a model that represents the overall document.
Similarity between two documents can be determined based
on the number of shared g-grams found. The g-gram model
can also be used for text prediction by using a Markov model
[12]. This idea can be leveraged to predict the next most likely
operation or design pattern to be used in the circuit. More
ambitiously, this approach could potentially be used to predict
the intent of the circuit the user is designing.
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A. Path-based q-gram

The idea of g-grams works well with sequential data such as
text in a document. For non-sequential data such as graphs, ¢-
gram can be extended by using a path-based g-gram approach.
Instead of a sliding window of size ¢ across a sequence,
paths of length q are selected. Path-based g-grams are formally
defined as follows:

Definition 2. Let G(V,E) be a graph that represents the
circuit. A path-based ¢-gram model of G is a collection of
simple paths starting from v € V' of length ¢, for all nodes in
V9

Figure 3 shows a path-based ¢-gram model for a basic 1-
bit counter with the bigrams (2-gram) and trigrams (3-grams)
extracted. The nodes of the AST correspond to primitive
operations such as add, shift, multiply, logic operators and
more. Therefore, the elements of the g-gram are the operations
themselves. Each operation is assigned a letter in the alphabet
for simplicity.

1) Path-based q-gram Schemes: The accuracy or tightness
of the match can also be decided based on the representation
of the g-gram. Three different schemes for path-based ¢-grams
were explored: list-based, set-based, and frequency-based. In
a list-based scheme, the ordering of each element inside the g-
gram is maintained. Figure 3 shows a strict list-based scheme
where the order of the items in the g-gram is preserved. The
set-based scheme is an extension of the list-based scheme
where the frequency and the ordering of the elements are
ignored. The frequency-based scheme maintains the frequency
information but ignores the order of the elements.

Depending on the goal of the application, a different path-
based g-gram scheme might be chosen. For example, the list-
based scheme is useful for plagiarism and theft detection
because it maintains ordering and frequency which can reduce
the number of false-positives. On the other hand, if one was
searching for a similar circuit in general, a looser search
criteria might be desired. For the remainder of this paper, the
frequency-based g-gram approach is used.

2) Extension to (q to 1)-gram: The notion of a g-gram is
extended further to include the g-grams less than ¢. In other
words, the g-gram model is a combination of n-grams where
1 < n < g. This model was chosen because paths of length
¢ may not exist in certain circuits. For example, the circuit in
Figure 3 does not have a 5-gram since the longest path from
any node in the circuit is 4. By taking the smaller g-gram
models into account, this problem can be alleviated.

B. Computing Similarity Between Birthmarks

To calculate the similarity of the two birthmarks, Jaccard’s
index is used. Jaccard’s index is commonly used to compare
the similarity of two sample sets. It is also used as a way
to quantitatively measure the resemblance of two documents
[17]. Jaccards index is defined in Equation 1.
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Fig. 3. Path-based 2-gram and 3-gram model for a basic 1-bit counter

Using Jaccards index, the g-gram models of two circuits
are compared with each other such that the similarity between
the two circuits are the number of g-grams that they share in
common. Greater weight is placed on the g-grams that have a
higher q.

C. Predicting Design Patterns

The g-gram model can be extended such that future elements
in a sequence can be predicted by utilizing Markov models.
The intuition behind using a Markov model is that future states
can be predicted with certain probability based on the what
the current states are. This is typically done by recording the
frequency of each ¢-gram observed and using a maximum
likelihood estimator (MLE) to predict the next most likely
function. More formally:

Definition 3. The MLE is defined to be
C(wz:;+1wn)
C (wZiéﬂ)
where w is the element that represents an operation in the

AST, C(z) is the frequency of occurrence of sequence x, and
n is the index of the element of interest.

2

P(wy ‘wZ:;+1) =

In other words, the MLE is the probability that the next
item in the sequence is w,, given the current sequence. This
is computed by dividing the frequency of the concatenation of
the current sequence and w,, by the frequency of the current
sequence.

V. RESULTS AND ANALYSIS

The concepts were implemented using the methods de-
scribed above in C++ and Python. The open-source synthesis
tool, Yosys [18], was used to extract the AST from a design
described in Verilog. Verilog was chosen as the input to the
system due to its wide use and preference in the hardware com-
munity. Furthermore, graphical environments such as LabView
can be leveraged since their overall programming paradigm
can be seen as an AST. Once the AST is obtained, the g-gram
model is extracted and analyzed such that reusable designs as
well as design patterns can be suggested to the user.



RANKING RESULTS FOR VARIOUS MODULES OF DIFFERENT TYPES

TABLE 1

[ Rank || mmuart [ cf_fft_256_18 || altera_sig_mult [[ generic_dpram
1 mmuart_transceiver® cf_fft_256_16* sig_altmult_add [13] ram_sp_sr_sw [14]
2 rtfSimpleUartRx* cf_fft_256_8* unsigned_mult [13] ram_sp_ar_sw [14]
3 rtfSimpleUart* cf_fft_512_8* qmult2* true_dpram_sclk [13]
4 uart_rx_only cf_fft_512_16* clock_divider* generic_mem_small*
5 tiny_spi* cf_fft_512_18%* addsub [13] generic_mem_medium*
6 RS232_uart_t300 o spiraldft_4_4_stream_date [15] counter [13] dpram [16]
7 SPI_XIF* usbf_top* up_counter [14] behavelp_mem*
8 rtfSimpleUartTx* pipelined_fft_64* clk_div [14] behave2p_mem*
9 RS232_uart_t200 © minimac* ternary_addtree [13] ram_dual [13]
10 RS232_uart_t500 o dsp_core [16] single_port_ram [13] ram_infer [13]

Reference: (*) Opencores database, (¢) Trust-Hub database. The rest are circuits that had been manually designed and/or obtained internally.

To evaluate the validity of the birthmarking approach, a
database of circuits was constructed. The circuits in the
database were extracted from a variety of sources such as
OpenCores and Trust-Hub, totaling more than 250 circuits
with varying levels of complexity and size [13] [19] [14] [20]
[16].

1) Circuit Similarity Matching: Table I presents the top ten
existing circuits that are similar to the query in ranked order.
Four different reference circuits are observed, each in one
of four domains: communications, digital signal processing,
arithmetic, and memory. To quantify and evaluate the per-
formance of the ranking system, a mean average precision
(MAP) was used to assess how well the birthmarking model
ranks relevant circuits. The MAP of the results provided in
Table I with a precision of 10 is 0.812. Figure 4 shows an
autocorrelation between several domain specific circuits.

2) Evaluation of Model Using Cross Validation: The appli-
cation of ¢g-gram models to predict digital circuits is evaluated
using two measures that are commonly used in assessing
information retrieval applications: precision and applicability.

precision = — 3)
P,
applicability = Fn @)

Precision indicates the number of correct predictions over all
predictions. Applicability is the number of predictions made
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Fig. 4. Autocorrelation heatmap of a subset of circuits where red represent
dissimilarity and green represents similarity.

out of the total number of attempts made to search for the
prefix [21]. Typically, recall is used instead of applicability;
however, for a prediction system, the recall measure is not well
suited because it measures the ratio of relevant items retrieved
over all possible relevant items. The concept of relevance is
obscure in this type of system because the interest is not to
determine if a circuit is relevant or not, but rather how relevant.

A k-fold cross validation is performed on the g-gram model
where k£ = 10. During the cross validation, both the precision
and the applicability of the test set is calculated. Figure 5
shows the precision and applicability for various g. Due to the
extension of m-grams smaller than g, the applicability hardly
changes as ¢ increases. This is desired because for almost
every search query, a prediction can be generated. On the other
hand, a higher ¢ decreases performance of the system shown
in Figure 6.

If the time between when the circuit snapshot was taken and
when the result is ready is too long, the current state could
have changed significantly such that the prediction is no longer
valid. Generally, most studies [22] conclude that ten seconds
is around the typical waiting time for any user. With the intent
of balancing precision and performance, a 6-gram model will
be used for the subsequent case studies and experiments.

M Precision

Precision and Applicability
W Applicability

Percentage (%)

2 4 6 8 10

g-gram

Fig. 5. The precision and applicability for different values of ¢ obtained from
cross validation of the circuit database.
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Fig. 6. Performance of extracting g-grams from circuits of different sizes
with varying ¢ values.

A. Case Study: Functional Block Prediction

A case study was designed to investigate the use of extend-
ing the g-gram model in attempting to aid the designer by
predicting future operations. The reference circuit in design
is a Sobel operator, commonly used in image processing
applications to detect edges by approximating the gradient of
the intensity function of the image. The module takes in a 3x3
pixel block from the image and approximates the derivatives
for changes in both the horizontal and vertical direction by
using a 3x3 spatial mask.

In Figure 7, the Sobel operator code is partitioned into five
time steps in order to mimic different stages of the circuit
under design. The top two results of the functional block
prediction can be seen in Table II. At 71, a simple two
block path consisting of a subtraction and a shift can be seen.
With AS (add shift (line 10)) as the current ¢-gram, the tool
predicted the next node as an add operation, reflected in the
addition on line 17.

It is important to note that the circuits used to train the
g-gram can heavily influence the prediction model. Models
can be trained and used depending on the domain of the
application. For example, for a filter design, one would want
to use a model that best captures design patterns and trends
associated with filter or DSP designs.

TABLE II
FUNCTIONAL BLOCK PREDICTION AT DIFFERENT TIME STEPS

Timestep | Q-Gram Prediction 1 | Prediction 2

I AS A (Adder) | M (Mux)

2 ASAA M (Mux) L (Logic)

3 ASAA E (Equality) | X (Multiplier)
4 SAANLAMA | M (Mux) L (Logic)

1 module sobel_t7(p0, pl, p2, p3, pS, p6, p7, p8, out);

2 input [7:0] pO.pl,p2,p3,p5,p6.p7.p8; // 8 bit pixels inputs
3 output [7:0] out; // 8 bit output pixel
4 wire signed [10:0] gx,gy;

5  wire signed [10:0] gx1,gx2,gx3, gyl, gy2, gy3; // Intermediate
6  wire signed [10:0] abs_gx,abs_gy;

7  wire [10:0] sum;

8

9

assign gx1=(p2—p0);
10 assign gx2=((pS—p3)<<1);
11 assign gx3=(p8—pb);

//Time Step 1

13 assign gyl=(p0—p6);
14 assign gy2=((pl—p7)<<1);
15 assign gy3=(p2—p8);

17  assign gx=(gxl+gx2+gx3);
18  assign gy=(gyl+gy2+gy3);

//Time Step 2

20  assign abs_gx = (gx[10]? “gx+1 : gx); //Time Step 3
21  assign abs_gy = (gy[10]? “gy+1 : gy);

22

23 assign sum = (abs_gx+abs_gy); //Time Step 4
24

25  assign out = (|sum[10:8])?8" hff : sum[7:0];

26

27 endmodule

Fig. 7. The reference design of a Sobel operator

B. Case Study: HDL Code Prediction

For HDL design, functional block prediction can have
little meaning or effect since many of the operations can
be combined into one line. Therefore, instead of predicting
functional blocks, lines of similar HDL code can be suggested.
Each functional node has a source attribute which indicates the
associated line in the HDL source. The current line position is
noted in the reference design and only the g-grams associated
with the current line position are compared with the g-gram
model of each circuit.

The lines of HDL predicted for the Sobel operator under
design at T'1 are shown in figures 8 and 9. The lines suggested
in Figure 8 were extracted from a 4-point casual moving
average filter where the operations are very similar to the
reference. The code suggested in Figure 9 was extracted
from a complete Sobel operator. Both suggested lines of code
consist of an adder and a shifter block similar to the statement
extracted from the incomplete reference circuit.

The limitation and difficulty in HDL code prediction from
the g-gram model is that the lines of code associated with
a particular sequence are usually different regardless which
circuit the sequence was found in. For example, the bigram
AS associated with the current line position in the reference
design was found in two different circuits: firfilter and
sobel. Line 3 in Figure 8 and lines 3 and 4 in Figure 9 are
associated with that bigram. One way to provide more relevant
code prediction is to rank the predicted HDL code based on
how similar the reference circuit is to the circuit the code is
extracted from.



1
2 DO <= DI;
3 Dout <= ( (DO) + (D1) + (D2) + (D3) ) << 2
4 end
5
6
Fig. 8. First-ranked predicted HDL code from a 4-point causal moving

average filter

mwire [10:0] sum;
assign gx=((p2—p0)+((p5—p3)<<1)+(p8—p6));
assign gy=((p0—p6)+((p1—p7)<<)+(p2—py));
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Fig. 9. Second-ranked predicted HDL code from Sobel operator

VI. CONCLUSION

A birthmarking technique based on the g-gram model for
extracting and analyzing circuits was presented. The g-gram
model was used to show that fine-grain reuse prediction can
provide design patterns and hints as well as similar designs
throughout the design phase.

Future work could explore various ¢-gram schemes such
as using k — AT trees [23] where instead of paths, a tree-
based g-gram is constructed such that each vertex in the g-
gram can be reached in g hops. Furthermore, the g-gram
prediction model can be extended to module prediction based
on hierarchy information. In other words, based on the IPs
and modules being used, what is the most likely module to
be next in the datapath. This then becomes a system-level
design. The raise in abstraction level is a common method to
increasing overall productivity of a designer. Many of these
ideas can be extended towards software productivity in term
of extracting information out of existing software in order to
aid programmers when coding.

The key challenge in terms of analyzing and extracting
information out of digital circuits is how to best represent
a hardware design such that meaningful data can be extracted
and easily compared. Key contributions in this paper are

1) A birthmarking technique using g-grams was presented
as a means to efficiently extract and compare hardware
designs.

2) Methods for analysing circuit information in order to
predict similar designs, future operations, and HDL
code, given snapshots of the reference design, were
described.

Preliminary experiments and results show that this approach
yields promising results in suggesting similar circuits as well
as predicting subsequent operations. The intuition is the de-
signer is unaware of emerging circuits and design patterns
that can be applied and the goal of this work is to empower
designers with the combined knowledge of all the circuits in
the world.
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