IEEE EMBEDDED SYSTEMS LETTERS, VOL. 4, NO. 3, SEPTEMBER 2012

73

Bandwidth-Sensitivity-Aware Arbitration for FPGAs

Lu Hao and Greg Stitt, Member, IEEE

Abstract—Field-programmable gate arrays (FPGAs) commonly
implement massively parallel circuits that require significant
memory bandwidth. Due to I/O and memory limitations, parallel
tasks often share bandwidth via arbitration, whose efficiency
is critical to ensure parallelism is not wasted. In this letter, we
introduce a bandwidth-sensitivity-aware heuristic for arbitration
that analyzes the effect of memory bandwidth on performance for
each application task, and then accordingly allocates bandwidth
to minimize execution time. When compared to round robin (RR)
arbitration, application speedups as high as 6.5 are achieved.

Index Terms—Arbitration, field-programmable gate arrays
(FPGAs), memory bandwidth, reconfigurable computing.

I. INTRODUCTION

IELD-PROGRAMMABLE gate arrays (FPGAs) are com-

monly used in embedded systems and high-performance
computing to speed up applications [4], [6] via pipelines re-
quiring significant memory bandwidth. For many FPGA appli-
cations, insufficient bandwidth is the main bottleneck. To ad-
dress this, FPGA platforms use multiple external memories [3].
However, adding more memory is often not feasible due to I/O
limitations, which are worsened by rapidly increasing FPGA re-
sources that demand even more bandwidth.

As a result, FPGA tasks share memory bandwidth via arbi-
tration. Although arbitration has been widely studied [2], [7],
and [9]-[11], the previous work mainly focused on priority as-
signments that do not consider application-specific behaviors.
The reconfigurability of FPGAs enables application-specialized
arbitration.

In this letter, we introduce the bandwidth-sensitivity-aware
(BSA) heuristic for application-specialized arbitration. One
novel characteristic of BSA is the consideration of bandwidth
sensitivity of application tasks, which defines how task execu-
tion time is affected by memory bandwidth. Based on these
sensitivities, BSA effectively allocates memory bandwidth
by providing highly sensitive tasks (i.e., pipelines) with more
bandwidth than tasks that are less sensitive to bandwidth (i.e.,
control). For example, Fig. 1 compares round robin (RR)

Manuscript received May 18, 2012; accepted June 21, 2012. Date of publica-
tion July 18, 2012; date of current version September 14, 2012. This work was
supported in part by the /UCRC Program of the National Science Foundation
under Grant EEC-0642422. This manuscript was recommended for publication
by J. Ayala.

L. Hao is with the Department of Electrical and Computer Engineering, Uni-
versity of Florida, Gainesville, FL 32611 USA (e-mail: lucia.hao@gmail.com).

G. Stitt is with the Department of Electrical and Computer Engineering, Uni-
versity of Florida, Gainesville, FL 32611 USA, and also with the NSF Center
for High-Performance Reconfigurable Computing, Gainesville, FL 32611 USA
(e-mail: gstitt@ece.ufl.edu).

Color versions of one or more of the figures in this letter are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/LES.2012.2209397

Time

Bandwidth
Sensitivity Aware
(BSA) Allocations

= Task3

10% 33% 80% Allocated

Round-Robin Bandwidth
Allocations

Speedup BSA = max(x,y,z)/max(a,b,c)=2x

Fig. 1. A comparison of round robin and bandwidth-sensitivity-aware arbitra-
tion for three parallel tasks (total execution time is the maximum of all tasks).

arbitration with BSA for an application consisting of three
independent tasks. As shown, Task 1 is highly sensitive to
bandwidth, while Tasks 2 and 3 are much less sensitive to it.
For this example, RR arbitration would simply allocate 33% of
the memory bandwidth to all tasks. However, BSA considers
the higher sensitivity of Task 1 and allocates 80% of the band-
width, while allocating 10% to both Task 2 and Task 3. For this
example, the execution time is the maximum time of all three
tasks, for which BSA achieves a speedup of approximately 2x.

We evaluate BSA using embedded applications, showing ap-
plication speedups up to 3.9x compared to RR. We also sim-
ulate synthetic applications under varying conditions and use
cases, showing speedups up to 6.5x.

II. PREVIOUS WORK

Previous studies focused on arbitration for shared resources
such as memory and buses. Much of that work statically as-
signs access priorities for each task, using algorithms such as
static priority, TDM, Lottery, and RR [10], [11]. Arbitration
is also common in real-time systems, which focus on meeting
hard real-time constraints (i.e., RT Lottery [2] and Warning-
zone [9]). Other approaches focus on soft requirements such
as slack-based bus arbitration for streaming multimedia pro-
cessors [7]. These earlier approaches assume that all tasks are
equally sensitive to bandwidth from the shared resource. In ad-
dition, they generally assume that bandwidth has a linear effect
on the performance of tasks. Our work instead considers dif-
ferent bandwidth sensitivities, which can vary significantly be-
tween tasks in FPGA applications. For example, for a pipelined

1943-0663/$31.00 © 2012 IEEE

74

FPGA

g

Time (us)
g

o
S

=Y

52 104 156 208 260 312 364 416 468

Bandwidth (MB/s)

Fig. 2. An example application task graph with time—bandwidth curves.

task, the throughput is proportional to the allocated bandwidth,
up to some maximum bandwidth. The resulting execution time
is the total amount of data divided by the throughput, resulting
in anonlinear curve. By considering bandwidth sensitivity, BSA
is able to specialize arbitration to different applications based on
these curves. Furthermore, BSA supports specialization for dif-
ferent phases of execution.

Yang et al. [13] scheduled multiple tasks on a single processor
to meet task deadlines while minimizing energy and considered
an energy-time Pareto curve for each task, which is analogous
to a time-bandwidth curve in application-specialized arbitra-
tion. To solve the scheduling problem, Yang ef al. mapped their
problem to the multiple-choice knapsack problem and used a
greedy heuristic. Because the heuristic from [13] could poten-
tially be used for application-specialized arbitration, we com-
pare it with BSA and show performance improvements aver-
aging 1.8x.

III. PROBLEM DEFINITION

The input to the application-specialized arbitration problem
is an application task graph, where each task executes when-
ever inputs are available and completes after a number of in-
puts. Each task has a bandwidth sensitivity represented by a
time—bandwidth curve that shows task execution time for dif-
ferent arbitration-allocated bandwidths.

Fig. 2 shows an example time—bandwidth curve for Task 3.
Although in this letter we assume the time—bandwidth curves
are an input to the problem, such curves could be determined
in a variety of ways. For example, high-level synthesis could
estimate the curves based on memory-access patterns. Alterna-
tively, device vendors could benchmark IP cores. In our exper-
iments, we physically measured curves for tasks.

With these definitions, we define the application-specialized
arbitration problem as follows. Given an application in the form
of a task graph and a set of time—bandwidth curves for each task,
create an arbitration policy that allocates a specific bandwidth
to each task at all points during execution, such that the total
execution time of the application is minimized.

IV. BANDWIDTH-SENSITIVITY-AWARE HEURISTIC

To consider bandwidth sensitivity, we initially considered
existing greedy heuristics [13]. However, there was no clear
greedy strategy because to optimally allocate bandwidth, the
heuristic needs the number of concurrent tasks at any point
in time, but to determine the number of concurrent tasks, the

IEEE EMBEDDED SYSTEMS LETTERS, VOL. 4, NO. 3, SEPTEMBER 2012

01| MAIN FUNCTION

02| Solution s = Randomly select bandwidth priority (BP) for all tasks;
03] for N, initial solutions

04 Time[s] = GetSolutionTime(s);

05| s=Randomly change the BP of one task;

06| endfor

07| Compute temperatures 7., and 7,,, according to all Time/[] values;
08 TC!IV"L’I": TTI{""; sClll‘l‘Bﬂl = SJ

09| while 7..en > Topa

10| s=Randomly change the BP of one task;

11 Time[s] = GetSolutionTime(s);

12 if Time[s] < Time[Scurren:] then

]3 SCHVV@I” = s’

14 else if exp((Time[s] — Time[Scurrent]) ! Teurrent) > random() then
15 Scurrent = S5

16 endif

17 if reached maximum number of solutions at 7, e

18 Teurrent = QT current;

19 endif

20| endwhile
21| return Seurens;
22| function GetSolutionTime(Solution s)

23 time = 0;

24] do

25 for each task 7 that has not executed

26 if predecessors of # have executed

27 Identify # as a candidate;

28 endif

29 endfor

30 for i = 0 to number of candidates

31 Bandwidth[i] = Total bandwidth x BP[i]/ } BP;
32 endfor

33 time += time until first candidate completes;

34 until all tasks have executed;
35 return time,
361 endfunction

Fig. 3. Overview of BSA heuristic.

heuristic needs to have already allocated bandwidth. To deal
with this circular dependency, BSA uses simulated annealing.

Fig. 3 illustrates BSA, which creates an initial solution
(Line 2) by randomly assigning a bandwidth priority (BP) to
each task (using cstdlib rand()) that BSA later uses to allocate
bandwidth. Although random priorities may seem counter-in-
tuitive, BSA uses this strategy due to the previously mentioned
circular dependency between concurrency and bandwidth.
Next, BSA calculates the application execution time based on
this solution (Line 4), as discussed in the following paragraph.
BSA then explores N; (the number of tasks) other initial solu-
tions (Lines 3—6), which are used later to calculate starting and
ending temperatures (Line 7). Each one of these initial solutions
randomly selects one task and randomly changes its BP. The re-
mainder of BSA iterates over neighboring solutions consisting
of a randomly changed BP for one task. If the solution is better
than the current best, BSA always accepts it (Lines 12-13);
otherwise, BSA accepts it with a probability (Lines 14—15) that
decreases based on temperature. For each temperature, BSA
generates a number of solutions and then updates the temper-
ature using a cooling schedule (Lines 17-18), discussed later.
The anneal ends when reaching the final temperature 7T.,,;.

To calculate execution time for a solution (Lines 22-36),
BSA selects execution candidates (i.e., tasks whose prede-
cessors have executed) and then allocates bandwidth for each
candidate by multiplying the total memory bandwidth by the
candidate’s BP, divided by the sum of all candidate BP values

HAO AND STITT: BANDWIDTH-SENSITIVITY-AWARE ARBITRATION FOR FPGAS

(Lines 30-32). BSA then determines the first candidate task
to complete and increases the time based on that task’s curve
(Line 33). The algorithm iteratively repeats these steps, referred
to as a round, until all tasks are complete.

To optimize simulated annealing, we used existing
strategies [8]. BSA sets the starting temperature Tsiap (Line
7) to accept any solution by using either 20 times the standard
deviation or 10 times the average of the first Ny solutions,
whichever is larger. At each temperature, BSA evaluates
30 x (N4)13 solutions, as suggested in previous work [1],
which we empirically adjusted by 3x.

The authors in [8] recommend keeping the acceptance ratio
near 0.44 for as long as possible. To achieve this goal, BSA
adapts the cooling schedule from [1], Tcurrent = @Tcurrent,
where « ranges from 0.1 for high acceptance ratios values to
between 0.8 and 0.95 for smaller ratios.

We empirically evaluated different 7,4 values and chose the
average time for the first neighboring N, solutions divided by
50 000. A different set of task graphs might benefit from a dif-
ferent T.,4. Although a complete analysis of the tradeoffs of
different 7...,4 values is outside the scope of the letter, our exper-
iments also showed that by gradually reducing the number of so-
lutions by 10% at each temperature, the total heuristic time was
reduced by 55%, whereas the speedup was only reduced 0-5%
for streaming applications. For non-streaming applications, the
total heuristic time was reduced by 27%, whereas the speedup
was only reduced 0-0.6%.

V. EXPERIMENTS

We implemented BSA in C using approximately 4000 lines of
code. Bandwidth allocation was determined offline using BSA.
We also created a VHDL arbiter that uses a time— division mul-
tiplexing method, where the size of each time slot corresponds
to the priority determined by BSA for each round. We com-
pared BSA with RR, in addition to the heuristic from [13], which
we refer to as the Yang heuristic. To perform this comparison,
we regenerated Yang’s work and mapped it onto the arbitra-
tion problem. We treated every round as an instance of the mul-
tiple-choice knapsack problem, and then used Yang’s heuristic
to solve each round. During each round, Yang uses the time
value of the leftmost point of each curve as the initial band-
width allocation and then uses a greedy heuristic to minimize
the sum of times for all candidates. Yang’s work finds a solu-
tion for each round and adds them together without considering
dependencies between rounds, whereas BSA instead finds a so-
lution for the entire task graph. Therefore, in general, Yang’s
work cannot guarantee as efficient a solution for the entire ap-
plication because of task dependencies.

To evaluate BSA, we tested streaming and nonstreaming ap-
plications, due to different arbitration requirements. The former
represents pipelined applications on FPGAs; the latter repre-
sents unpipelined tasks. All results include both computation
and communication times.

A. Application Case Studies

We evaluated BSA using three applications: 1) sum of ab-
solute difference (SAD) image comparison; 2) 2D convolution;
and 3) an MPEG-2 encoder/decoder. We determined each task’s

75

31.9 |
olb -
313 1+~
i ‘
v Y o™ = 32
> E o o 4
9 = %9 o o (=5 o 5
S X8 g a8 § &%
m I x8 % g o
£ © 2 o g 2 e
er,’ a = 9 0 o
e/J./ — 8 - @Q’e
%o 4] @
(@) EN/A E1316 m16-19

Speedup (x)
=
00
N g
a s
xX U
N x
[0, I~
(%2}

L7 B, < 16x16 &
M ¢ axa &
S LN g
&S &P
P
(b) Imag, >
agesize '&

Fig. 4. BSA application speedup compared to Yang for (a) SAD and (b) 2D
convolution input sizes.

time—bandwidth curve using physical measurements and then
determined application speedup via simulation of the task graph,
using each type of arbitration.

SAD measures similarity between a region of an image and
a different kernel image. We extracted the task graph from
[5], a streaming implementation. To measure time—bandwidth
curves, we provided tasks with input data from SODIMMs on
a GiDEL PROCStar III with an Altera Stratix III E260. We
stored this data in first-in-first-out (FIFO) buffers where we
restricted the bandwidth and measured the corresponding task
execution time. We varied image sizes and kernel sizes from
240 x 160 to 1920 x 1080, respectively. For this version of
SAD, the algorithm slides a feature-sized input window over
the entire input image, regardless of the number of matches.
Fig. 4(a) shows the application speedup of BSA compared
to Yang. The speedup was highest (1.75x) when the image
and kernel size had the biggest differentials (i.e., 1920 x 1080
image with 240 x 160 kernel), and was 1x when the kernel
and the image had the same sizes. These trends were caused by
higher bandwidth sensitivities for larger differences in image
and kernel sizes. When using a large image and a small kernel,
the task reading the image is more sensitive, and vice versa.
For similarly sized images and kernels, the task sensitivities are
similar, which limits BSA improvements. Speedup compared
to RR was higher, peaking at 2x.

For 2D convolution, as shown in Fig. 4(b), we extracted
the task graph and time—bandwidth curves for 2D convolution
from the implementation described in [5], which is also a
streaming implementation. Task graphs and curves were built
the same as they were with SAD. The image sizes were varied
from 640 x 480 to 1920 x 1080, and kernel sizes were varied
from 4 x 4 to 45 x 45. BSA speedup remained around 1.75x%
compared to Yang, again due to differences in bandwidth
sensitivities between image sizes and kernel sizes. Speedup
compared to RR was approximately 2x.

76

MPGdec-NS
MPGdec-S
MPGenc-NS
MPGenc-S
|
0 1 2 3 4 5
Speedup (x)
HRR Yang

Fig. 5. BSA application speedup for MPEG encoding/decoding for streaming
(S) and nonstreaming (NS) implementations compared to Yang and RR.

We evaluated MPEG encoding/decoding both with and
without streaming because both models are common. The
MPEG-2 encoder/decoder was from the ALPBench benchmark
suite. We used Simics and CETA to extract task graphs and
to trace data transfer patterns between tasks. Fig. 5 shows the
speedup comparison for a video with 128 x 128 resolution. For
the streaming version, BSA provided speedups of 1.3x and
1.5% compared to Yang’s work, and 1.9x and 2.4x compared
to RR. For nonstreaming results, BSA performance was much
better for the encoder (4x compared to RR) due to more
tasks and highly varied curves. For the decoder, BSA speedup
was only 1.01x compared to Yang due to few tasks and little
variance among curves.

B. Simulated Arbitration Results

To complement the previous case studies, we use synthetic
applications with widely varying, randomly generated task
graphs and time—bandwidth curves. To stress test BSA, we did
not include tasks that are completely independent of memory
bandwidth (i.e., control tasks). The nonstreaming synthetic
applications were communication bound, with approximately
95% of execution time spent communicating.

For streaming applications, we varied the tasks from 3 to
19, which we found to be representative of previous FPGA
applications [5], [12]. The solid lines in Fig. 6 show the av-
erage speedup obtained by BSA compared to both Yang (1.3x)
and RR (4.4x). Compared to RR, BSA performance increased
rapidly with increasing tasks due to more parallelism and curve
variance exploration, whereas a stable speedup was achieved
compared to Yang.

For nonstreaming applications, we varied the tasks from 20
to 180, represented by the dashed lines in Fig. 6. We evaluated
larger numbers of nonstreaming tasks because unpipelined tasks
tend to use less area on FPGAs. The average BSA speedup was
3.5x compared to RR and 2.1x compared to Yang. Speedup
gradually decreased because the larger task graphs had longer
paths through the task graph without a similar increase in
parallelism.

IEEE EMBEDDED SYSTEMS LETTERS, VOL. 4, NO. 3, SEPTEMBER 2012

Speedup (x)

O N WAV
o
(4

D WY

S W @ &
PALEIRA\GEEPA (A \}\

of tasks (streaming/non-streaming)

Yang-S =———RR-S Yang-NS = = RR-NS
Fig. 6. BSA application speedup for streaming (S) and nonstreaming (NS) ap-

plications compared to Yang and RR.

VI. CONCLUSION

In this letter, we introduced the BSA arbitration heuristic,
which considers bandwidth sensitivity of application tasks to re-
duce execution time. Compared to the more commonly used RR
arbitration, BSA achieved application speedups as high as 6.5x.
We also adapted an existing scheduling heuristic as a potential
arbitration solution and showed that BSA provided a speedup
averaging 1.8x.

REFERENCES

[1] V. Betz and J. Rose, “VPR: A new packing, placement and routing
tool for FPGA research,” in Proc. Int. Workshop Field Program. Logic
Appl., Aug. 1997, pp. 213-222.

[2] C.-H. Chen, G.-W. Lee, J.-D. Huang, and J.-Y. Jou, “A real-time and
bandwidth guaranteed arbitration algorithm for SoC bus communica-
tion,” in Proc. ASP-DAC, 2006, pp. 600—605.

[3] K. Compton and S. Hauck, “Reconfigurable computing: A survey of
systems and software,” ACM Comput. Surveys, vol. 34, no. 2, pp.
171-210, Jun. 2002.

[4] A. DeHon, “The density advantage of configurable computing,” Com-
puter, vol. 33, no. 4, pp. 41-49, 2000.

[5] J. Fowers, G. Brown, P. Cooke, and G. Stitt, “A performance and en-
ergy comparison of FPGAs, GPUs, and multicores for sliding-window
applications,” FPGA, pp. 47-56, 2012.

[6] Z.Guo, W. Najjar, F. Vahid, and K. Vissers, “A quantitative analysis of
the speedup factors of FPGAs over processors,” FPGA, pp. 162-170,
2004.

[7] M. Jun, K. Bang, H.-J. Lee, N. Chang, and E.-Y. Chung, “Slack-based
bus arbitration scheme for soft real-time constrained embedded sys-
tems,” in Proc. ASP-DAC, 2007, pp. 159-164.

[8] J.Lam and J. M. Delosme, “Performance of a new annealing schedule,”
in Proc. DAC, 1988, pp. 306-311.

[9] H.-K. Peng and Y.-L. Lin, “An optimal warning-zone-length assign-
ment algorithm for real-time and multiple-QoS on-chip bus arbitra-
tion,” ACM Trans. Embed. Comput. Syst., vol. 9, no. 4, pp. 1-39, Apr.
2010.

[10] E. Poletti, D. Bertozzi, L. Benini, and A. Bogliolo, “Performance anal-
ysis of arbitration policies for SoC communication architectures,” J.
Des. Autom. Embed. Syst., pp. 618-621, 2003.

[11] C. H. Pyoun, C. H. Lin, H. S. Kim, and J. W. Chong, “The efficient
bus arbitration scheme in Soc environment,” in Proc. Int. Workshop
System-on-Chip Real-Time Appl., 2003, pp. 311-315.

[12] V. M. Tuan, N. Katsura, H. Matsutani, and H. Amano, “Evaluation
of a multicore reconfigurable architecture with variable core sizes,” in
Proc. IEEE Int. Symp. Parallel Distrib. Process., 2009, pp. 1-8.

[13] P. Yang and F. Catthoor, “Pareto-optimization-based run-time task
scheduling for embedded systems,” in Proc. CODES+ISSS, 2003, pp.
120-125.

