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Abstract— The current trend in computing has been to add 

more and more to the CPU; especially bigger and bigger caches 
and more cache levels. Based on these observations, we sought to 
see if bigger is always better. We test this by performing an 
architectural design space exploration of various cache and 
frequency configurations for ARM processors. Analyzing the 
data, we made the surprising discovery that bigger is not always 
better and we should in fact be taking a step back in the 
architectural evolutionary roadmap for some applications. 

In this study, we performed an analysis of the performance of 
web-browsers versus the architectural configuration and related 
it to end-user satisfaction. In the end, we were able to determine 
that a scaled back modern core would not only be sufficient, but 
improve the performance of the web-browser. 

In doing this, we have also developed GW-GEM5 a set of 
tools for the creation, monitoring and analysis of concurrent 
gem5 simulations on computer clusters for use in design space 
parameter studies. 

Keywords—Simulation, performance, application specific, 
web browser, design space exploration, ARM, Android, gem5 

I. INTRODUCTION 

As we’ve moved into and adapted to the digital age, email, 
social media, ecommerce, and the internet as a whole have 
become integral parts of our day-to-day lives and a never 
ending source of knowledge, but also of frustrations. The most 
used application to this end is the computer web-browser [1]. 
Unfortunately, it has been shown that average webpage load 
time experienced by users of the top 2000 websites was 10.0 
seconds (median 8.4 seconds), and a recent research study 
found that the average computer user is often unwilling to wait 
for more than three seconds for a web page to load, with ~57% 
of users abandoning a webpage before the 4 second mark [2]. 
Clearly, there is a disparity between user preferences and 
reality, a disparity which causes frustrations for users and could 
cost emerging E-businesses new customers and therefore 
money [3]. While not possible to redesign all websites, it is 
possible to tailor the architecture of the new slew of tablets and 
smartphone devices to cater to this gap by designing them to 
load webpages faster. 

There has been a recent trend in computing with movement 
towards heterogeneous multicores, or more specifically, 
weakly heterogeneous multicores [4]. They are weakly 
heterogeneous in that they are identical in ISA and most major 
microarchitectural features, but vary in some key features. A 
key example of this architecture is NVIDIA’s Tegra 3 and 
upcoming Tegra 4’s variable SMP architecture; their so-called 
4-PLUS-1architecture which makes use of four high-power 

cores and a separate low-power companion core. The 
companion core is used to save on power when the system 
does not require the power of all 4 cores, such as for displaying 
already-rendered web-pages. The companion core is nearly 
identical to the other cores except that it runs at a much lower 
frequency and is made using a special low-power process. The 
net result is performance equivalent to the high-power quad 
cores, but with less net power consumption [5] [6].  

There has been a good deal of research performed using 
simulators, including design space explorations [4]; but up 
until now previous work involving design space exploration 
has only looked into the effects of varying one parameter, was 
limited to the running of synthetic benchmarks (which are of 
little importance to users and user-satisfaction) and/or testing 
out one new architectural parameter [7] [8]. This shows a 
significant lack in research with regards to leveraging the full 
capabilities of performance modeling in these simulators. This 
is especially true with regards to gem5 [9], the simulator used 
in this study, which has proven to be extremely accurate [10]. 

It is due to these observations that we decided to conduct 
this exploration of the design space for processors in order to 
determine and recommend what architectures chip makers 
should look into for designing a browser application-specific 
core for inclusion in a set of weakly heterogeneous multicores.  

As of submitting this paper, we know of no user 
satisfaction-oriented design space exploration parameter 
studies that make use of highly accurate architectural 
simulators. 

The structure of the paper is as follows: Section II discusses 
the methodology used for the generation of simulations and for 
the collection and analysis of their output data; in section III 
we show the runtime results collected for the various 
architectures as well as an explanation for the variations in 
runtimes, and in section IV we conclude by making design 
recommendations to chipmakers for use in a browser-oriented 
core. 

II. METHODOLOGY 

We utilize the simulator gem5 [9], as it allows us to test 
different hardware configurations at minimal cost, it provides a 
large amount of useful statistical data for run-time analysis, and 
because it provides a full-system simulation which can be used 
for a true performance assessment [10]. Bbench was chosen 
because it is a fully self-contained web-rendering benchmark 
that represents many of the popular websites existing today. Of 
the sites in Bbench, we chose to run Amazon, Craigslist, eBay, 
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Google, MSN, and Twitter, which are respectively number 8, 
52, 16, 1, 19, and 10 on Alexa.com’s list of the world’s most 
popular websites and because they represent a good cross-
section of the type of websites available on the web – E-
commerce, search engines, email, social media, and etc. 

Our simulations were run on the ARM CPU architecture 
provided by gem5 using Android 2.3 (Gingerbread) and the 
native browser provided therein. ARM was chosen due to its 
95% dominance in the smartphone market [11] and Android 
2.3 because it is currently being run on 45.6% [12] of all 
Android phones, and Android currently encompasses 75% of 
all smartphones worldwide [13]. There are of course, many 
microarchitectural features which can be varied, but we 
focused on core frequency, L1 cache size, and L2 cache size. 
Frequency was chosen because it is strongly correlated to the 
relative processing power of a core. L1 and L2 caches were 
chosen because web browsing requires significant amounts of 
data to be carried from memory to the CPU, making the 
memory hierarchy key to performance, as per the suggestions 
in the study of Kim et al [14]. All configurations were chosen 
to be representative of common parameters in devices existing 
today, since that is what chipmakers can most easily and 
cheaply produce. Overall we collected 288 data points 
representing the full permutations of the  6 webpages from 
Bbench, three L1 cache sizes (32kB, 64kB, 128kB), four L2 
cache sizes (none, 512 kB, 1024kB, 2048kB), and four core 
frequencies (500MHz, 750MHz, 1.0GHz and 1.5GHz). The 
datapath configuration used with L2 caches can be seen in Fig. 
1; systems without an L2 cache are identical except that the L1 
caches go directly to main memory. It should be noted that L1 
cache size was split equally between an L1 instruction cache 
and an L1 data cache, as can be seen in the figure. 

From the collected data points, we sought to beat the 8.4 
second median load time discussed earlier by determining 
which architectures were able to render all six websites in less 
than 8.1 seconds each, assuming an average consumer’s 
network (bandwidth 5 Mbps down / 1Mbmp up, RTT 28ms). 

From this we were able to reduce the design space from 36 
architectural possibilities to 10 “acceptable” architectures and 
from there define a singular optimal architecture. 

Simulation was carried out using one of gem5’s ARM CPU 
models, specifically the ‘detailed’ model which models a 
modern, Out-of-Order processor [15]. Bbench was modified to 
run one web page per simulation to efficiently utilize parallel 
environment of our computer cluster, which has hundreds of 
processors. Each web page was loaded twice so that the effects 
of both hardware and browser caching could be better 
understood, the first loading being referred to as the “cold 
render” and the second as the “warm render.” This led to 6 
websites being run with 48 configurations, resulting in 288 
simulations overall.  

For each website, a delay was then added to simulate 
latency due to the transfer of the website across a real-world 
network. For this, we used WebPagetest.org, an open-source 
webpage rendering test and analysis suite maintained by 
Google [16], to determine what typical network utilization and 
performance was to be expected for the websites used, so that 
the run-time reported is the actual expected time it would take 
from a user clicking on a link or launching a web-browser until 
the time the web-page is fully loaded and readable. For our 
testing, a cable network connection (5 Mpbs down / 1 Mbps 
28ms RTT) was chosen, as defined by WebPagetest.org. This 
configuration was chosen because according to NetIndex.com, 
a results aggregator for speedtest.net, a popular internet 
connection speed test tool, the average connection speed 
worldwide was 13.09 Mbps over the past 30 days when the 
mean distance between the client and the server was less than 
300 miles. It should be noted, that while we estimate realistic 
networks delays and transfer times, we employed a simplistic 
model which attempts to model the intricate dynamics between 
network loading and browser rendering, since elements can be 
loaded while others have already begun rendering. Therefore 
they should be taken as tools used to estimate feasible total 
loading times, and not absolute truths. 

Next, results were analyzed to determine which 
architectural configurations were able to run all six websites in 
the allotted time for a real network, respectively 

To determine which parameter causes the biggest 
performance gain for Bbench websites, we also analyzed the 
output by keeping all but one parameter constant, measuring 
the percent decrease in run-time per website, per configuration, 
then averaging across all websites and then all parameter sets 
and then determining which parameter overall, when varied, 
cause the largest percent decrease in runtime for the benchmark 
(see TABLE I). 

Finally, after further analysis, we are able to make some 
interesting observations regarding the performance of the 
benchmark and the size of the caches. 

 
Fig. 1. Datapath configuration when there is an L2 cache. 
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III. RESULTS AND ANALYSIS 

The results we obtained were very instructive. As there are 
too many design points to show them all here, two 
representative examples can be seen in Fig. 2 and Fig. 3 which 
show the render times (excluding network load times) for 
Google and Amazon which are a small, simple website with a 
few elements and a large, complex site with many elements, 
respectively. Labels along the y-axis are in the format “Site-
ID:Frequency:L1-Size:L2-Size;” for example 
“G:1.50G:128K:2.0M” represents Google run on a 1.50 GHz 
core with a 128kB L1 cache (64kB data and 64kB instruction). 
This leads to some interesting performance patterns. In order to 
save space, only two frequency configurations are shown, but 
the pattern of results is roughly the same for all frequencies. As 
can be seen with Google, being so small, speeds up greatly 
during its warm run, whereas Amazon experiences little to no 
improvement for its warm render. While interesting, warm runs 

are of little importance to users and not the direct focus of this 
study. 

Since the parameters are varied in the order of L2 cache 
size, L1 Cache size, core frequency and then website, it can be 
seen that the greatest net effect on the core performance is the 
frequency parameter. This is further seen in TABLE , where 
we see that going from 500MHz to 1.5 GHz speeds up the load 
time by 23.98% on average, making it a key performance 
indicator.  

In the case of Google, its worst-case render time was 
612ms and best-case was only 154ms, which represents only 
7.7% and 1.9% of the 8 seconds page load time goal, 
respectively, whereas Twitter had a worst-case of 5.57 seconds 
and a best-case of 2.57 seconds, which are 69.6% and 32.1% of 
the goal. Clearly, while all sites can benefit from optimization 
it is more critical for some, especially larger ones which 
contain many elements, and therefore necessarily have longer 
load times.  

Fig. 4 shows a cube representing the three-dimensional 
design space in which we were working. Squares represent 
failed architectures (unable to load in the allotted time). Stars 
represent successful architectures and the big, white star 
represents an optimal configuration for chipmakers, as it 
minimizes both frequency and cache size [17]. 

It may seem odd that 64kB L1 caches generally fail when 
any L2 cache is present, even at 1.5GHz, but upon analysis of 
the output statistics files from the gem5 simulations, we 
determined that this is due to a “Goldilocks” effect of the 
mismatch between L1 and L2 size being just right, so as to 
cause a larger relative number of cache misses. In fact, the 
existence of high L2 cache miss rate is the main cause of such 
high render times for all architectures with an L2 cache. This 
can be observed in Fig. 5. L2 cache miss rates for data were 
found to be as high as 71.5% in some cases (ave 49.8%, stdev 
10.8%). Instructions cached far better, with a 9.9% max miss 
rate, (7.8% ave, 0.8% stdev).  

The reason behind this is that webpages, data-wise, do not 
cache well at all because they are essential a stream of new 
data, where little to none of it is reused. On the other hand, 
instructions cached reasonably well. Since L1 caches are 

 
Fig. 2. Render times per architectural configuration for a ‘small’ 
webpage. Y-axis label format: “Site-ID:Frequency:L1-Size:L2-Size.” 

 

 
Fig. 3. Render times per architectural configuration for a ‘large’ 
webpage.  
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Fig. 4. 3-D Visualization of the results 
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TABLE I. AVERAGE PERCENT CHANGE IN RENDER TIME FOR EACH 
PARAMETER 

Parameter Average Speedup Standard Deviation 
Core Frequency 23.98% 8.65% 
L1 Cache Size 5.43% 2.45% 
L2 Cache Size 10.69% 6.86% 
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distinct, data does not affect the caching of instructions; but the 
L2 cache is unified and this allows the browser to pollute the 
cache with data, affecting the fast caching of instructions. It 
also adds additional delay to the data path, and with L2 miss 
rates greater than 70%, greatly adds to the total run time. It is 
for this reason that we recommend “upgrading” core designs 
by removing the L2 cache altogether.  

IV. CONCLUSION 
In conclusion, we have gleaned some very interesting 

details about the design space for web browser applications. 
We found that core frequency is still the key parameter in 
terms of determining performance, as one would expect. It was 
also proven that if the number of levels in the memory 
hierarchy is kept the same, but the cache sizes are increased, 
performance does in fact improve, especially for warm render 
times for smaller websites.  

Most interestingly, we found that web browsers have poor 
data caching, since their memory accesses are essentially a 
stream of new data with little reuse, L2 caches are actually a 
large detriment to the performance of web browsers. We 
recommend its removal for a web-browser-oriented core 
design. From this, we were able to recommend a unique 
architecture which is performance optimal. We found that a 
lower-frequency core with an appropriately-sized L1 cache and 
no L2 cache can outperform a higher frequency chip with 
large, 2-level caches. We have also developed a rich set of 
tools, referred to as GW-GEM, for working with gem5 design 
space explorations and parameter studies on very large clusters. 
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Fig. 5. Comparison of render times to L1and L2 data cache misses for 
Amazon. 
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