
1

A Research Platform for Custom Memory Cube
Gongyu Wang, Herman Lam, Yu Zou, Riju Xavier, Shefali Gundecha, Alan George

NSF Center for High-Performance Reconfigurable Computing (CHREC),
Department of Electrical and Computer Engineering,

University of Florida, Gainesville, FL
{wangg, hlam, zou, rxavier, sgundecha, george}@chrec.org

1. INTRODUCTION
With the continuing and escalating demands from big data and

extreme-scale computation as we head towards the Exascale realm,

memory technology with higher bandwidth and power efficiency

have become major considerations in the design of HPC

architectures. The emergence of 3D stacked-memory technologies

such as hybrid memory cube (HMC) [6] is driving new research on

processor-in-memory (PIM), processor-near-memory (PNM), and

computational RAM (C-RAM) [2][4][8] for modern data-intensive

computing architectures. In HMC architecture, a base logic layer

controls multiple layers of DRAM arrays, which can provide much

higher memory bandwidth and power efficiency than existing

memory modules. Custom memory cube (CMC) is a novel and

promising extension to HMC, in which customized data-processing

capabilities can be embedded in the logic layer of the HMC to take

advantage of the high bandwidth and low latency in the package,

enabling new forms of PIM, PNM, and C-RAM.

The concept of CMC has already been studied in several recent

works [1][3][7]. Ahn et al. [1] presented a CMC-like architecture

to facilitate large-scale, graph-processing apps, which has shown

an order of magnitude performance improvement and 87% average

energy savings over conventional systems. DRAMA [3] and AMC

[7] are two forms of research on CMC, both of which reported

much higher performance and power efficiency over conventional

systems across multiple high-performance computing kernels and

apps. Since CMC devices do not exist, the aforementioned work

relied upon simulators to evaluate performance and power

consumption of their notional CMC architectures. However, as new

HMC parts become available, a cost-effective hardware-based

platform becomes an attractive alternative to simulators for CMC

researchers and designers to explore and evaluate the design space

of CMC architectures and apps.

In this extended abstract, we present the design, implementation,

and evaluation of a research platform for the emulation and study

of CMC architectures and apps based on an FPGA-HMC board

(MA-100 board developed by Micron). Details on this platform are

presented in Section 2, with operations of the Data-Rearrangement

Engine (DRE) [5] kernel from LLNL as an initial CMC prototype.

In Section 3, we report progress and preliminary results from a

page-rank app running on a DRE on the research platform and

discuss future plans.

2. RESEARCH PLATFORM FOR CMC
For hardware-based, design-space exploration of CMC

architectures, the research platform is required to support (1)

development of custom data-processing logic, (2) design and

execution of apps on CMC, (3) performance and power

measurement of the execution, and (4) customization of key

platform parameters (e.g., frequency, HMC packet size, etc.) for

accurate emulation of CMC architectures. In this section, we

describe key aspects of the CMC research platform that fulfill these

requirements.

Architecture and programming. The architecture of the research

platform with the DRE example is shown in Fig. 1. The host is

connected to the MA-100 board through an 8-lane PCIe (gen 3)

interface. On the board resides an Altera Arria-10 GX1150 FPGA

connected to a 4GB HMC device through two serial 16-lane links.

Infrastructure logic components (gray blocks in Fig. 1) are provided

by Micron within the FPGA to enable communication among the

host, FPGA, and HMC. The FPGA can be programmed by

designers to house data-processing logic of the CMC, conceptually

serving as an extension to the logic layer of the HMC. For example,

we implemented DRE logic on the FPGA, with the DRE view

buffer in the HMC for a CMC prototype.

The research platform supports a high-level programming language

and toolset (i.e., hybrid-threading (HT) toolset) for efficient

implementation of the CMC data-processing logic onto the FPGA.

HT has a C/C++ form of syntax and a thread-based programming

model with intrinsic support from the infrastructure components.

Using HT, we were able to implement DRE as a CMC prototype

on the platform more quickly than using the traditional HDL-based

design flow.

Further customization of the platform parameters is possible by

modifying the infrastructure components on the FPGA. Micron

provided us with access to the source code (in Verilog) of these

components. With their help, we are actively building new features

for the platform while enhancing existing ones.

Performance and power measurement. Performance and power

monitoring logic is available on the research platform for detailed

inspection of the CMC architecture. As shown in Fig. 1, there are

three types of performance monitors: clock-cycle counters for the

CMC logic (ClkCount); performance monitors for CMC memory

accesses (CMC_PERFMON); and performance monitors for the

memory controllers (MC_PERFMON). The latter two types of

monitors can produce a statistical summary of the total and average

clock cycles associated with memory loads and stores. These

monitors have a separate clock signal and control path and thus can

be accessed independently from the CMC logic.

Power consumption of the FPGA and HMC devices is measured

and recorded periodically by an on-board device. The measurement

data can be read back through the system driver of the MA-100

board, using a pre-installed utility executable or programmatically

within the app code.

Execution modes. Two execution modes of apps on the emulated

CMC platform are supported: the baseline mode and the CMC

mode. The former has the app running on the host, accessing the

data structures allocated in the HMC, which is allowed by the

unique capability of the MA-100 board for direct HMC memory

accesses from the CPU (marked by blue arrows in Fig. 1). The latter

has the data-intensive part of the app running on the emulated CMC

platform (in the FPGA) and the other part on the host. For an app,

designers can evaluate the benefits of running on the CMC

architecture by comparing the measured performance and/or power

2

between the CMC execution mode and the baseline mode.

Moreover, various CMC designs can be evaluated by executing the

app with each design in CMC mode and comparing the measured

performance and/or power.

Using this research platform, we can quickly implement CMC

architecture ideas, develop and execute test apps in hardware, and

evaluate the ideas through in-hardware performance and power

measurements. We have implemented DRE as a CMC prototype on

the platform and gathered some preliminary runtime results for

both execution modes.

3. PROGRESS & FUTURE WORK
This work is still in its early stages. The progress we have made

includes: (1) development and tests of performance and power

measurement methods for the research platform; (2) development

of a CMC prototype for DRE on the platform; and (3) initial

validation and tests of the DRE. Our tests with the performance

monitors have shown inconsistent results, which are being

inspected and validated. Initial test results of our DRE

implementation using a page-rank app running on the research

platform is shown in Table 1. The app is first executed in baseline

mode, in which the DRE is bypassed and the host directly reads

data from the HMC device. Then, the app is run in CMC mode with

the DRE activated. The results show that the app runs nearly two

times faster in CMC mode than baseline mode. Further breakdown

of the CMC-mode runtime shows that the DRE runtime (including

runtime of DRE commands: setup and fill) takes less than 1% of

the total app runtime.

Currently, we are conducting experiments to validate the

performance monitors using established memory benchmarks.

Next, we will use DRE for further testing of the research platform:

(1) applying the validated performance monitors to the DRE to

gather and study the results; and (2) optimizing our DRE

implementation then checking if the platform shows expected

performance improvement. Based on the results and lessons

learned, we will continue to enhance the platform and explore how

best to use it. For example, we plan to add the following features:

(1) enabling access to internal FPGA buffers using virtual

addresses from the host that can reduce the latency for CMC apps

to get access to the computed results of the processing logic (e.g.,

lower latency to access DRE view buffer as shown in Fig. 1); (2)

creating a software library that allows CMC designers to use the

research platform without extensive expertise in FPGA

programming; and (3) calibrating the research platform for timing-

accurate emulation of CMC using the statistical latency data

gathered by the validated performance monitors.

4. ACKNOWLEDGMENTS
This research was supported by CHREC members and by the

I/UCRC Program at NSF under Grant No. IIP-1161022. We are

grateful for the feedback, collaboration, and support provided by

Laboratory of Physical Sciences, Micron, and Lawrence Livermore

National Laboratory.

5. REFERENCES
[1] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable

processing-in-memory accelerator for parallel graph

processing,” SIGARCH Comput. Archit. News 43, 3 (June

2015), 105-117.

[2] J. Draper, J. T. Barrett, J. Sondeen, S. Mediratta, C. W.

Kang, I. Kim, and G. Daglikoca, “A Prototype Processing-

In-Memory (PIM) Chip for the Data-Intensive Architecture

(DIVA) System,” J. VLSI Signal Process. Syst. 40, 1 (May

2005), 73-84.

[3] A. Farmahini-Farahani, J. Ho Ahn, K. Morrow and N. Sung

Kim, "DRAMA: An Architecture for Accelerated Processing

Near Memory," in IEEE Computer Architecture Letters, vol.

14, no. 1, pp. 26-29, Jan.-June 1 2015.

[4] M. Gokhale, B. Holmes, and K. Iobst, “Processing in

Memory: The Terasys Massively Parallel PIM Array,”

Computer 28, 4 (April 1995), 23-31.

[5] M. Gokhale, S. Lloyd, and C. Hajas, “Near memory data

structure rearrangement,” In Proceedings of the 2015

International Symposium on Memory Systems (MEMSYS

'15). ACM, New York, NY, USA, 283-290.

[6] Micron. Hybrid Memory Cube.

http://www.hybridmemorycube.org/, 2011.

[7] R. Nair et al., "Active Memory Cube: A processing-in-

memory architecture for exascale systems," in IBM Journal

of Research and Development, vol. 59, no. 2/3, pp. 17:1-

17:14, March-May 2015.

[8] H. S. Stone, “A logic-in-memory computer,” Computers,

IEEE Transactions on, C-19(1):73-78, Jan 197.

Table 1: Runtime results of DRE app (page rank) running in

baseline and CMC modes on the research platform
Graph scale 2^19 2^20 2^21 2^22 2^23 2^24

33.08 72.62 148.60 280.20 617.04 1274.39

19.14 41.57 81.84 156.32 357.40 666.50

DRE time 1.36 2.86 6.50 7.23 23.84 33.18

non-DRE time 17.78 38.71 75.34 149.09 333.56 633.32

CMC mode

Baseline mode

Fig. 1: Concept diagram of the CMC research platform based on MA-100 board with DRE as an example

H
o

s
t

P
C

Ie
G

e
n

3
 X

8

Arria 10 GX1150 (extended logic layer) 2-link x16 4GB HMC

H
IX

H
M

C
C

H
M

C
C

… …

VC

#0

S
w

it
c
h

VC

#N

……

Link

#0

Link

#1

D
R

E
 v

ie
w

 b
u
ff

e
r

MA-100 board

D
R

E

lo
g

ic

Future view

buffer

…

V
ir
tu

a
l M

C
s

C
ro

s
s
b

a
r

…
…

base logic layer DRAM layers

…

ClkCount CMC_PERFMON MC_PERFMON

3

