
Vivado Design Interface: An Export/Import
Capability for Vivado FPGA Designs

Thomas Townsend and Brent Nelson
NSF Center for High-Performance Reconfigurable Computing (CHREC)

Dept. of Electrical and Computer Engineering
Brigham Young University

Provo, UT, 84602, USA
Email: {thomastownsend523, brent nelson}@byu.edu

Abstract—Research tools targeting commercial FPGAs have
most commonly been based on the Xilinx Design Language
(XDL). Vivado, however, does not support XDL, preventing simi-
lar tools from being created for next-generation devices. Instead,
Vivado includes a Tcl interface that exposes Xilinx’s internal
design and device data structures. Considerable challenges still
remain to users attempting to leverage this Tcl interface to
develop external CAD tools. This paper presents the Vivado
Design Interface (VDI), a set of file formats and Tcl functions that
address the challenges of exporting and importing designs to and
from Vivado. To demonstrate its use, VDI has been integrated
with RapidSmith2, an external FPGA CAD framework. To our
knowledge this work is the first successful attempt to provide
an open-source tool-flow that can export designs from Vivado,
manipulate them with external CAD tools, and re-import an
equivalent representation back into Vivado.

I. INTRODUCTION

Over the past few decades, a significant amount of CAD tool
research for FPGA-based systems has been pursued outside the
confines of vendor software. The most common approach to
creating external tools has been to use the extremely successful
VPR/VTR CAD suite [1] [2]. VTR provides methods for
mapping designs to theoretical FPGA architectures described
in architectural definition files. Using these architecture def-
initions, researchers have been able to explore both new
FPGA architectures as well as CAD algorithms for packing,
placement, and routing on those architectures.

Targeting commercial FPGA devices has traditionally been
more difficult. In recent years, the Xilinx Design Language
(XDL) has been a popular solution for creating external CAD
tools that target Xilinx parts supported in ISE. Tools that target
other vendor parts have been created [3], but are less common.
With the release of Vivado, however, Xilinx no longer supports
XDL, making external tools and frameworks that rely on
the interface incompatible with next-generation Xilinx devices
(such as UltraScale, Ultrascale+, and beyond).

Vivado provides access to its design and device data struc-
tures through a Tcl API exposed to the user. The same
information that was contained within XDL can now be
extracted through Tcl API calls, but there are many challenges

This work was supported by the I/UCRC Program of the National Science
Foundation under Grant No. 1265957.

associated with using Tcl for this purpose. This paper presents
the Vivado Design Interface (VDI), a set of file formats and
Tcl functions that address the challenges of exporting and
importing designs to and from Vivado. VDI is an XDL-like
interface that can be used with external CAD tools targeting
Vivado devices. To demonstrate this, VDI has been integrated
with RapidSmith2 [4], a Xilinx FPGA CAD tool framework
whose data structures closely match those of Vivado. This
paper is intended to give a high-level overview of VDI. A
more complete and detailed description is given in [5].

The remainder of the paper is organized as follows. Section
II provides background on XDL and its many applications.
Section III describes a subset of the challenges encountered
with Vivado’s Tcl interface to export and import design
information. Section IV describes VDI, the main contribution
of this work. Section V discusses how to integrate VDI with
external tools, using RapidSmith2 as an example. Section VI
gives the results of several experiments run using VDI. Section
VII concludes the paper.

II. BACKGROUND

The Xilinx Design Language is a command line interface
into Xilinx’s ISE tool suite. Using a single command, xdl,
both device and design information can be extracted from
ISE for external use. Device specific information is exported
via XDLRC files, which contain a detailed listing of all the
physical components inside of a Xilinx FPGA. This includes
the tiles, sites, BELs, and routing resources (without timing
information) available in the specified part. Design data is
exported via XDL files. XDL files contain both the logical
portion of a design, as well as placement and routing infor-
mation. The combination of XDLRC and XDL files make it
possible to perform design manipulations outside the confines
of vendor tools. Xdl also allows a modified XDL netlist to
be re-imported into ISE’s internal netlist structure.

Most research experiments and open-source CAD tools tar-
geting Xilinx devices have been built upon XDL. Frameworks
such as RapidSmith [6] and Torc [7] provide easy-to-use APIs
to modify XDL netlists in a variety of useful ways. The
contributions of projects leveraging XDL have been many. [8]
and [9] create partial reconfiguration frameworks, capable of

Authorized licensed use limited to: Brigham Young University. Downloaded on May 11,2022 at 19:47:06 UTC from IEEE Xplore. Restrictions apply.

swapping logic segments at runtime. [10] and [11] look at
ways to decrease the implementation times of FPGA designs
and increase designer productivity. [12] and [13] look to create
reliable, fault-tolerant FPGA systems. And [14] tries to bridge
the gap between the VPR CAD flow with real Xilinx devices.
Many significant contributions have also been made in other
areas of FPGA research such as security and debugging.

Clearly, analyzing and modifying FPGA designs outside of
vendor tools has proven useful. As previously stated, however,
Vivado does not support XDL. This leaves two possibilities for
CAD tools targeting Vivado devices: (1) create a framework
to facilitate design manipulations written directly in Vivado’s
Tcl interface, or (2) create an XDL-alternative for Vivado.
In previous work, the authors of Tincr [15] examined both
options and concluded that option (2) is preferable because
of Tcl limitations. They also demonstrated that it is possible
to extract design and device information out of Vivado with
Tcl commands, but this extraction was far from complete.
For devices, the internal routing structure of sites was not
included. For designs, the extraction was simply a proof-of-
concept since several important implementation details of a
design were omitted from the exported format. VDI builds
upon the initial work done with Tincr to create a complete
CAD flow.

III. VIVADO’S TCL INTERFACE

Vivado’s Tcl interface gives users the ability to script
design flows, set constraints, and perform low-level design
modifications. It is a powerful addition to the Xilinx tool suite,
but is not well suited for the creation of custom CAD tools.
This is for three reasons in particular:

• Tcl, an interpreted language, is slow. Compiled or man-
aged runtime systems are better options for performance.

• Vivado’s Tcl interface does not manage memory well. A
simple Tcl script can cause the memory usage of Vivado
to grow quite large.

• Tcl does not natively support higher-level programming
constructs, making it more difficult to implement complex
algorithms (such as PathFinder).

It is clear that the Tcl API is not intended to be used for large-
scale design manipulations. This motivates our approach: use
the Tcl interface to extract device and design information from
Vivado, and format the information for external CAD tools.

Importing and exporting information through the Tcl inter-
face results in several unique challenges. The remainder of
this section gives an overview for a subset of the challenges
that need to be addressed by a Vivado interface tool.

A. Cell Placement Order

When a cell is placed in Vivado using Tcl API calls, Vivado
automatically configures the routing resources inside of the
corresponding site based on the cell’s connections. Because
of this behavior it is possible to have a valid cell placement
in Series7 architectures, but to place the cells in an order that
causes an illegal routing configuration (i.e. a routing mux is
optionally being used by a net, but is required by a different net

6

6

6

10 8

6

D-LUT

C-LUT

B-LUT

A-LUT CARRY

4

4

4

4

D5FF

C5FF

B5FF

A5FF

4

4

4

4

DFF

CFF	

BFF

AFF

!"#
$%&
'(&
)#*
+#*

Fig. 1: Cell placement order for SLICEL and SLICEM sites

of a cell that has just been placed). This primarily affects sites
of type SLICEL and SLICEM, due to their more complex
internal routing. Experimentation has shown that the proper
placement order for groups of cells mapped to SLICE sites is
as shown in Figure 1. If the required placement order is not
followed when recreating a design, internal routing conflicts
will occur that Vivado will be unable to resolve.

B. Macro Primitives

Xilinx-specific library cells fall into two categories: leaf
primitives and macro primitives. Leaf primitives are the basic
building blocks of a Xilinx netlist, such as LUT and flip flop
cells. Macro primitives are hierarchical, and are made up of
one or more leaf primitives wired together to perform a specific
function. For example, the RAM128X1D macro is a 128-deep
by 1-bit wide LUT RAM that consists of four RAMD64E and
two MUXF7 leaf primitives. A flattened Vivado netlist will
contain a mixture of leaf and macro primitives.

Vivado uses EDIF to export design netlists. Regardless
of whether the design is flattened during synthesis, macro
primitives will remain in the generated EDIF file. However,
the internal structure of each macro is not included. To fully
reconstruct designs in external tools, the internal contents of
macro primitives must be supplied in addition to the EDIF.

C. Directed Routing Strings

The structure of a physically routed net in Vivado is repre-
sented by a directed routing string. This string represents the
tree structure of a physical route by using nested brackets (“{“)
as branches. It is stored in the ROUTE property associated
with the corresponding logical net. By default, ROUTE strings
contain only partial wire names. A wire in Vivado is uniquely
identified by a tile name combined with a wire name. ROUTE
strings only contain the wire name portion, making them
ambiguous in some situations. That is, a source wire can
connect to two sink wires with the same name, but in different
tiles. This makes it impossible to reliably reconstruct routes
in external tools using ROUTE strings.

Authorized licensed use limited to: Brigham Young University. Downloaded on May 11,2022 at 19:47:06 UTC from IEEE Xplore. Restrictions apply.

D. Configurable Pin Mappings

When a cell is placed onto a physical BEL, the pins of
the cell are mapped onto the pins of the BEL. However, this
mapping changes based on how the cell is configured. For
example, the pin mappings for a BRAM cell with a data
width of 72 bits differ from the pin mappings of a BRAM
cell with a data width of 9 bits, even if they are placed
at the same physical location. When exporting placement
information from Vivado, it is not enough to only give the
cell-to-BEL mappings. Cell-pin mappings are also required.

E. Incomplete Tcl Representation

Some aspects of Vivado devices and designs are inaccessible
through the Tcl interface. One example is that the internal rout-
ing structure of a site cannot be programmatically determined
through Tcl API calls. Most objects have an associated get
method (such as [get tiles]), but there is no such method for
site wires. This indicates that the routing structure of sites
must be created a different way.

Another example involves alternate site pins for Series7
architectures. In Xilinx FPGAs all physical sites have a default
type, but some can be configured to be one of many types. For
example, a BUFGCTRL site can also be configured to be of
type BUFG. When the type of a site is changed in Vivado,
the site pins attached to the site may get renamed to match
the correct type. However, the Tcl function [get site pins -of
$site] will always return the default site pin names, even if
the type of the site has changed.

F. Logical and Physical Representation Mismatches

Besides their use in implementing logic equations, LUT
BELs can also act as signal routethroughs and static signal
sources. Figure 2 shows an example of each of these alternate
uses. A routethrough LUT passes the signal on an input
pin directly to the output pin. A static source LUT outputs
either 0 or 1. In both cases, the LUT is simply a physical
implementation detail of the design, and is not represented in
any way by the logical netlist.

Fig. 2: Routethrough (left) and static source (right) LUT

A second mismatch involves power (VCC) and ground
(GND) nets. In general, a design can have more than one
VCC net in the logical netlist. Each of these nets should have
their own unique ROUTE string once the design is routed
(based on which wires they use), but this is not the case
with Vivado. Instead, they all have the same ROUTE string

which corresponds to a combination of all VCC nets. This
also applies to GND nets. There are two possible solutions
to resolve this discrepancy. The first is to merge all logical
VCC (or GND) nets in the netlist into one net, matching
the merged physical routing. The second is to partition the
physical information so that each logical net has a unique
ROUTE string.

In summary, there are a number of challenges when using
Vivado’s Tcl interface to export and import device and design
information. Only a representative subset of challenges have
been presented in this section. A complete export/import
solution should abstract the low-level details of these issues
away from the end user to facilitate the creation of custom
CAD tools for Vivado.

IV. VIVADO DESIGN INTERFACE

This section introduces the Vivado Design Interface (VDI), a
Vivado export/import capability that provides solutions to han-
dle the many challenges discussed in section III. As Figure 3
shows, VDI defines a set of file formats that can represent
Vivado designs and devices for external use. Xilinx devices
are represented with a XDLRC file and a series of XML files
that add additional useful information about a device. Xilinx
designs are represented with RSCP and TCP files.

VDI has been added to Tincr [15], and is available
at https://github.com/byuccl/tincr. For each intermediate file
shown in Figure 3, a Tincr command has been created
to parse or generate the file. VDI users can utilize these
commands to generate device and design files that can be
loaded into the data structures of external tools. After an
algorithm is run in an external tool, a modified design can
be formatted into a TCP and imported into Vivado to com-
plete the implementation flow. VDI currently supports fully-
flattened designs from Vivado version 2016.2. The remainder
of this section details each Tincr component of VDI and its
purpose.

Fig. 3: The Vivado Design Interface

A. XDLRC Files

The original Tincr distribution included a command to
generate XDLRC files for Vivado devices. However, these
files are missing a key part: the primitive definition section. A
primitive definition details all pins, BELs, and routing muxes
inside of a site, and how they are connected. As described in
section III, all of these physical components can be extracted

Authorized licensed use limited to: Brigham Young University. Downloaded on May 11,2022 at 19:47:06 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: VSRT GUI for creating primitive definition connections

through the Tcl interface except the site wires. To give a
complete device description for external tools, the intrasite
connections need to be generated another way.

Our solution is the Vivado Subsite Routing Tool (VSRT),
shown in Figure 4. Using VSRT a user can bring up a
primitive site in both Vivado’s device browser and the VSRT
GUI, and manually draw the site wires. Once the connections
have been drawn, VSRT will generate the required primitive
definition file automatically which can be integrated with the
corresponding XDLRC. It is important to note that this is a
time-consuming process, but only needs to happen once for
each device family (usually once per series). Also, many of the
sites can be done automatically without manual intervention.

B. Vivado Import Format

To import designs into Vivado, the Tincr Checkpoint (TCP)
format introduced in the original Tincr distribution is used.
TCPs use XDC constraint files which support a subset of
Vivado Tcl commands. There are four primary parts of a TCP:

• netlist.edf - EDIF netlist
• contraints.xdc - User defined XDC constraints
• placement.xdc - Placement XDC constraints
• routing.xdc - Routing XDC constraints

Vivado has a dedicated Tcl command [read xdc] that can
parse and apply XDC constraint files to a design. This com-
mand is significantly faster than running each individual con-
straint which is why XDC files are chosen. XDC constraints
are processed sequentially from the start of the file, meaning
that the placement.xdc file of a TCP needs to be properly
formatted according to the placement rules in subsection III-A.

There are some limitations to importing designs into Vivado
using XDC. One example is that LUT BELs cannot be
configured as routethroughs using Tcl commands. Another is
that internal cells of a macro primitive cannot be explicitly
placed within XDC. Because of these limitations it is the
responsibility of external CAD tools to handle some tasks
while generating TCPs. A more detailed description of these
tasks, along with solutions for each, is discussed in section V.

C. Vivado Export Format

RapidSmith Checkpoints (RSCP) are used to export design
information out of Vivado at any stage of implementation
(post-synthesis, post-place, or post-route). RSCPs are created

to be easily parse-able, and include all implementation details
of a design. It is important to note that the name “RapidSmith
Checkpoint” does not make this export format exclusive to
RapidSmith. It was simply chosen to match the external
framework that was used to test the interface. Any external
tool can use RSCPs. A brief overview of the files included in
a RSCP is given in this section.

1) netlist.edf: An EDIF netlist representing the logical
portion of a design. It details all cells, nets, and ports within a
design (with their corresponding properties), and is generated
from Vivado using the Tcl command [write edif].

2) constraints.rsc: Contains all constraints on a design.
This includes the clock frequency, top-level port to package
pin mappings, and other physical implementation properties.

3) placement.rsc: Contains all placement information for a
design. This includes which package pin every port is mapped
to, which BEL each cell is placed on, and the logical-to-
physical pin mappings for each placed cell-pin. If a design
has not yet been placed, this file will be empty.

4) routing.rsc: The routing.rsc file is the most complex file
in a RSCP, and stores all routing information for a Vivado
design. This includes:

• The intrasite routing configuration for each site in the
form of site pips (routing muxes).

• A list of LUT routethroughs. This includes the input pin,
output pin, and BEL of each routethrough.

• A list of BEL LUTs that are VCC or GND sources
• A list of PIPs used in each routed net. To overcome

the ROUTE property ambiguities described in subsec-
tion III-C, each PIP in the list includes the tile names and
relative names for the wires connected together through
the PIP. An algorithm to reconstruct a routing tree from
this list is described in section V.

• The merged physical routing information for VCC and
GND nets. This includes all VCC/GND drivers.

If a design has not yet been routed, only the intrasite routing
information will be included in this file. If the design has not
yet been placed, this file will be empty.

5) macros.xml: Contains template information about macro
cells in a Vivado design that were not fully flattened, and do
not exist in the default Vivado cell library (described next).

D. Cell Library XML

A Vivado netlist is composed of Xilinx primitives that
have been instanced from template library cells. To do any
netlist manipulation, such as adding cells to a design, detailed
information about these library cells is required by external
tools. This includes the name, pins, properties, and valid
placement locations for each cell. VDI stores this information
into a Cell Library XML. External CAD tools can parse
the XML into their own data structures to be used for logic
manipulation and design reconstruction. Information about the
available macro primitives is also included.

There is, however, one problem when generating a Cell
Library. The Tcl function [get lib cells] is used to get a
list of all library cells that should be included, but this function

Authorized licensed use limited to: Brigham Young University. Downloaded on May 11,2022 at 19:47:06 UTC from IEEE Xplore. Restrictions apply.

does not return all macro cells that could possibly appear in
a flattened Vivado netlist. For example, the macro primitive
RAM128X1D referenced in subsection III-B is not returned
from [get lib cells]. A part of the RSCP generation process
is to create the macro XML for these missing library cells, and
store them into a macros.xml file. The Cell Library XML
combined with a macros.xml file provides a full representation
of all cells in a given design.

E. Family Info XML

XDLRC device files only contain the basic physical in-
formation of a device. They do not include other relevant
information such as:

• Possible alternate types of a site
• Pin renamings for alternate site types
• Compatible sites (the same group of cells can be placed

on multiple site types)
• The distinction between logic BELs and routing muxes
• BELs that can be used as routethroughs

VDI stores this information into a Family Info XML file.
External CAD tools can parse this XML to create a more
complete device representation

V. INTEGRATING VDI WITH RAPIDSMITH2

Using VDI, RapidSmith2 [4] now supports importing and
exporting Vivado designs. RSCPs can be parsed and loaded
into RapidSmith2 data structures, where CAD tools can oper-
ate on the design. Also, TCPs can be generated from Rapid-
Smith2 and then imported back into Vivado. Figure 5 depicts
all possible design flows using RapidSmith2 in conjunction
with VDI. The RapidSmith2 project is available for checkout
and collaboration at https://github.com/byuccl/RapidSmith2.

Integrating VDI with RapidSmith2 demonstrates that VDI
provides all required information to recreate Vivado designs in
external tools. However, as Figure 3 suggests, there are some
tasks that external tools are responsible for to create a complete
design flow. The remainder of this section enumerates these
tasks, and how RapidSmith2 chooses to handle them.

A. Importing RSCPs

1) VCC and GND Nets: As described in subsection III-F,
the logical representation of VCC nets in Vivado does not
match the physical representation. For simplicity, RapidSmith2
chooses to collapse all logical VCC nets in the EDIF netlist
into one global VCC net during design import. An identical

Fig. 5: RapidSmith2 Design Flows

process occurs for GND nets. This is the suggested approach
for external tools that use VDI.

2) Recreating Routing Trees: As described in subsec-
tion IV-C, a routed net is exported in a RSCP as a list of PIPs
with no information about branching. Given a source wire,
the routing tree of a net can be reconstructed by using these
PIPs. A basic algorithm for this (shown in Listing 1) uses a
simple breadth-first search through the wires of the device,
connecting wires whose PIPs are enabled. Nets with multiple
drivers (such as VCC) call this function for each driver.

Listing 1: Algorithm to Import Routing Tree
Set<PIP> usedPipSet = all PIPs in route (from RSCP)
Wire source = first wire in route;

Queue<Wire> queue = new Queue();
queue.enqueue(source);

while(!queue.isEmpty())
Wire currentWire = queue.dequeue();
for each pip sourced by currentWire
if (usedPipSet.contains(pip))
wire.makeConnection(pip.getSinkWire());
queue.enqueue(pip.getSinkWire());

return source;

B. TCP Export
1) Routethrough LUTs: As described in subsection IV-B,

LUT BELs in Vivado cannot be configured in Tcl. Before
generating a TCP, external tools must configure routethroughs
themselves. RapidSmith2 does this by first identifying all
BELs that are being used as a routethrough. For each
routethrough, a LUT1 cell is created and inserted into the
RapidSmith2 netlist and then placed onto the corresponding
BEL. This forces Vivado to recognize the LUT BEL as a
routethrough, but doesn’t affect the final circuit behavior.

2) Macro Cell Placement: As discussed in subsection IV-B,
internal cells to macro primitives cannot be placed in XDC
files. There are two possibilities to alleviate this. The first
is to fully flatten the design netlist when exporting a design
(remove the macros completely). The second, and more com-
plex option, is to support relatively placed macros (RPMs)
in the external tool. Supporting RPMs involves understanding
all possible placement configurations for a macro (and its
internal cells), and how to place macro cells through XDC.
RapidSmith2 implements the first option — macro cells are
supported, but are ultimately flattened on design export.

3) Sorting Cells: As described in subsection III-A, cells
mapped to SLICEL or SLICEM sites need to be placed
in a very specific order to prevent routing conflicts. When
generating the placement.xdc of a TCP, external tools need
to ensure that placement constraints for these cells match the
required order shown in Figure 1. RapidSmith2 uses a bin
sorting algorithm to sort the cells in the required order before
generating a TCP.

VI. RESULTS

To show the validity of VDI, several different experiments
and tests were run using RapidSmith2 for both Series7 and

Authorized licensed use limited to: Brigham Young University. Downloaded on May 11,2022 at 19:47:06 UTC from IEEE Xplore. Restrictions apply.

UltraScale architectures. A set of 21 benchmarks which range
in size from 59 cells and 80 nets, to 68,376 cells and 68,451
nets were used primarily for testing. 11 of the benchmarks
targeted the Artix7 part xc7a100-tcsg324, and 10 of the bench-
marks targeted the Kintex UltraScale part xcku025-ffva1156.
The benchmarks were chosen to range in size and FPGA
resource component usage. Specifically, it was important to
have benchmarks that used LUTs, FFs, BRAMs, DSPs, IOBs,
and other FPGA components. For the sake of brevity, most
benchmarks will not be listed here, but are available in [5].
The remainder of this section details the VDI experiments and
their results, using representative benchmarks as needed.

A. RapidSmith2 Design Verification
The VivadoConsole is a Java class included in the

RapidSmith2 distribution that is capable of creating a new
instance of Vivado, sending Tcl commands to the instance,
and reading back the results of the command. Using this
utility, unit tests (written in the JUnit5 framework) have
been created that automatically verify the correctness of a
design imported from a RSCP. Figure 6 demonstrates how
the VivadoConsole is used for these tests.

Fig. 6: RapidSmith2 Testing Flow

As the figure shows, the first step in the testing process
is to load the same design into both RapidSmith2 (through
RSCPs) and Vivado (through DCPs, Vivado’s native check-
point format) in parallel. Information about the Vivado de-
sign is extracted through Tcl commands sent through the
VivadoConsole, and compared to the RapidSmith2 rep-
resentation. For example, the Tcl command [get bel -of “my-
Cell”] will return the name of the BEL object that “myCell”
is placed on in Vivado. This value can be compared against
where RapidSmith2 thinks “myCell” is placed, and an error
thrown if there is a mismatch. All logical and physical aspects
of a design are tested in a similar manner.

Once the design is verified in RapidSmith2, it is exported to
a TCP and loaded back into Vivado. This is a crucial step in
the testing process because, as referenced in section V, several
netlist modifications are performed when a TCP is generated
from RapidSmith2. In Vivado, if all cells are placed and all
nets are routed, then design import is declared successful. All
21 benchmarks passed these verification tests.

B. Hardware Tests
The testing process described above verifies that Vivado

designs can be exported and imported without error. However,

it does not test if the designs are still functionally equivalent
and implement the same digital circuit. To test this, a set
of simple FPGA designs were used. Sample applications
include a VGA controller, SRAM controller, and image frame
buffer (a complete list is given in [5]). Each design was first
implemented and run on a Digilent Nexys4 DDR evaluation
board with an Artix7 FPGA. Once the design worked on the
evaluation board, it was exported from Vivado, imported into
RapidSmith2, and directly exported from RapidSmith2 with
no modifications. The resulting TCP was then imported back
into Vivado for bitstream generation, and loaded onto the
evaluation board again. If the circuit still worked as expected,
the new bitstream was declared functionally equivalent to
the original bitstream. All designs that were tested in this
manner still executed correctly after being passed through
RapidSmith2. Hardware testing is a promising first step in
verifying VDI, but future work will create a more complete
verification by using simulation models and test benches.

C. Case Study: Series7 Simulated Annealing Placer

To demonstrate VDI, a Series7 simulated annealing site-
level placer has been implemented in RapidSmith2. The pur-
pose of this case study is three-fold.

1) Provide an example CAD tool that operates on Vivado
designs through VDI.

2) Show that VDI contains useful and sufficient information
for external frameworks. When doing a site-level placement,
groups of cells can generally be placed onto more than one site
type. For example, a group of cells targeting a SLICEL site
can also target a SLICEM site. In this case, the site types are
said to be compatible. It is important for a site-level placer
to understand which site types are compatible to create a
complete list of candidate site placements for a group of cells.
One aspect of VDI is to export information about compatible
sites, which can be used in external tools.

3) Demonstrate the productivity advantages of using VDI
with an external framework. Writing a complex simulated-
annealing placer would be significantly more challenging
using Vivado’s Tcl API. Not only does Tcl lack higher-level
programming constructs, but the placement algorithm itself
would need to handle many of the challenges introduced in
section III. VDI, in conjunction with RapidSmith2, abstracts
much of the unnecessary detail away from the designer, and
allows them to focus on the actual algorithm. Because of these
abstractions, it took a student researcher about a week to create
and test an initial version of the placer. It is also important to
note that a placer written in Java is much faster.

After placing a design in RapidSmith2, the design is re-
imported into Vivado for routing and bitstream generation.
Table I shows the results of the RapidSmith2 placer vs.
Vivado’s default placer for a variety of designs. Figure 7
shows placement results for a Leon-3 soft processor. Source
code for the placer is available in the RapidSmith2 distribution
repository under the examples.placerDemo package.

Authorized licensed use limited to: Brigham Young University. Downloaded on May 11,2022 at 19:47:06 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Placer Results

Benchmark Cell Routed In RS2 Max Vivado Max
Name Count Vivado? Path Length Path Length

SSD 59 14.304ns 14.047ns
UART TX 143 7.124ns 7.183ns
FIR Filter 238 4.977ns 5.220ns

DiffEq 592 16.335ns 17.031ns
CORDIC 2420 6.211ns 5.554ns

Leon-3 [16] 12391 13.105ns 8.95ns

Fig. 7: Leon-3 soft processor placed by Vivado’s placer (left)
and RapidSmith2’s simulated annealing placer (right)

D. Performance

Table II shows the import and export times of VDI for
three representative benchmarks of varying sizes. As the table
shows, Vivado import and export times are slow, and do not
scale well. For the Leon-3 and Sha TMR designs, routing
contributes to about 90% of the total export time and 95% of
the total import time. One hypothesis for this behavior is that
Vivado performs design rule checks for the entire design after
each physical constraint is imported. This means that after
each wire is assigned to a net, the entire routing structure is
checked for illegal configurations. Future work will focus on
improving routing import and export times for large designs.
In many use cases, however, the design import/export time is
not critical to the final application. The more important part
is exporting and importing functionally correct designs. The
initial version of VDI focuses on correctness, without concern
for long import/export times.

TABLE II: Vivado Design Interface Performance1

Benchmark Cell Net Slice Export Import
Name Count Count Utilization Time Time

CORDIC 2420 3362 1.91% 36.66s 34.09s
Leon-3 12391 13461 15.16% 310.13s 528.88s

Sha TMR 68376 68451 84.63% 1728.66s 8110.79s
1Measurements were recorded on a Windows 7 64-bit workstation with a Core i7-860

processor, 8GB of DDR3 RAM and 1TB 7200RPM SATA hard disk.

VII. CONCLUSION

This paper presents the Vivado Design Interface, a utility to
extract device and design information out of the Vivado design
suite. It is meant to serve as an XDL-alternative, and has been
demonstrated with the RapidSmith2 CAD tool framework.
As far as we know, this work is the first successful attempt

to provide an open-source tool-flow to export designs from
Vivado, manipulate them in external CAD tool frameworks,
and re-import an equivalent representation back into Vivado.
We hope it will provide researchers a framework to explore
novel CAD tools for next-generation Xilinx FPGAs.

REFERENCES

[1] V. Betz and J. Rose, “VPR: A New Packing, Placement and Routing Tool
for FPGA Research,” in Proceedings of the 7th International Workshop
on Field-Programmable Logic and Applications, ser. FPL ’97. London,
UK: Springer-Verlag, 1997, pp. 213–222.

[2] J. Rose, J. Luu, C. W. Yu, O. Densmore, J. Goeders, A. Somerville, K. B.
Kent, P. Jamieson, and J. Anderson, “The VTR Project: Architecture
and CAD for FPGAs from Verilog to Routing,” in Proceedings of the
ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, ser. FPGA ’12. New York, NY, USA: ACM, 2012, pp. 77–86.
[Online]. Available: http://doi.acm.org/10.1145/2145694.2145708

[3] C. Wolf and M. Lasser, “Project icestorm,” http://www.clifford.at/
icestorm/.

[4] T. Haroldsen, B. Nelson, and B. Hutchings, “Rapidsmith 2: A framework
for bel-level cad exploration on xilinx fpgas,” in Proceedings of the
2015 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays. ACM, 2015, pp. 66–69.

[5] T. Townsend, “Vivado Design Interface: Enabling CAD-Tool Design
for Next Generation Xilinx FPGA Devices ,” Master’s thesis, Brigham
Young University, 2017. [Online]. Available: http://scholarsarchive.byu.
edu/etd/6492

[6] C. Lavin, M. Padilla, J. Lamprecht, P. Lundrigan, B. Nelson, and
B. Hutchings, “RapidSmith: Do-It-Yourself CAD Tools for Xilinx
FPGAs,” in Proceedings of the 2011 21st International Conference
on Field Programmable Logic and Applications, ser. FPL ’11.
Washington, DC, USA: IEEE Computer Society, 2011, pp. 349–355.
[Online]. Available: http://dx.doi.org/10.1109/FPL.2011.69

[7] N. Steiner, A. Wood, H. Shojaei, J. Couch, P. Athanas, and M. French,
“Torc: towards an open-source tool flow,” in Proceedings of the 19th
ACM/SIGDA international symposium on Field programmable gate
arrays, ser. FPGA ’11. New York, NY, USA: ACM, 2011, pp. 41–44.
[Online]. Available: http://doi.acm.org/10.1145/1950413.1950425

[8] A. Sohanghpurwala, P. Athanas, T. Frangieh, and A. Wood, “OpenPR:
An Open-Source Partial-Reconfiguration Toolkit for Xilinx FPGAs,”
in Parallel and Distributed Processing Workshops and Phd Forum
(IPDPSW), 2011 IEEE International Symposium on, 2011, pp. 228–235.

[9] A. Otero, E. de la Torre, and T. Riesgo, “Dreams: A tool for the design
of dynamically reconfigurable embedded and modular systems,” in
Reconfigurable Computing and FPGAs (ReConFig), 2012 International
Conference on. IEEE, 2012, pp. 1–8.

[10] C. Lavin, B. Nelson, and B. Hutchings, “Impact of hard macro size
on fpga clock rate and place/route time,” in Field Programmable Logic
and Applications (FPL), 2013 23rd International Conference on. IEEE,
2013, pp. 1–6.

[11] A. Love, W. Zha, and P. Athanas, “In pursuit of instant gratification
for fpga design,” in Field Programmable Logic and Applications (FPL),
2013 23rd International Conference on. IEEE, 2013, pp. 1–8.

[12] A. Das, S. Venkataraman, and A. Kumar, “Improving autonomous soft-
error tolerance of fpga through lut configuration bit manipulation,”
in Field Programmable Logic and Applications (FPL), 2013 23rd
International Conference on. IEEE, 2013, pp. 1–8.

[13] M. Wirthlin, J. Jensen, A. Wilson, W. Howes, S.-J. Wen, and R. Wong,
“Placement of repair circuits for in-field fpga repair,” in Proceedings of
the ACM/SIGDA international symposium on Field programmable gate
arrays. ACM, 2013, pp. 115–124.

[14] E. Hung, F. Eslami, and S. Wilton, “Escaping the Academic Sandbox:
Realizing VPR Circuits on Xilinx Devices,” in Field-Programmable
Custom Computing Machines (FCCM), 2013 IEEE 21st Annual Inter-
national Symposium on, April 2013, pp. 45–52.

[15] B. White and B. Nelson, “Tincr A Custom CAD Tool Framework for
Vivado,” in ReConFigurable Computing and FPGAs (ReConFig), 2014
International Conference on. IEEE, Dec. 2014.

[16] C. Gaisler, “Leon3,” http://www.gaisler.com/index.php/products/
processors/leon3.

Authorized licensed use limited to: Brigham Young University. Downloaded on May 11,2022 at 19:47:06 UTC from IEEE Xplore. Restrictions apply.

