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ABSTRACT

Using On-Chip Error Detection to Estimate FPGA
Design Sensitivity to Configuration Upsets

Andrew Mark Keller
Department of Electrical and Computer Engineering, BYU

Master of Science

SRAM-based FPGAs provide valuable computation resources and reconfigurability; how-
ever, ionizing radiation can cause designs operating on these devices to fail. The sensitivity of an
FPGA design to configuration upsets, or its SEU sensitivity, is an indication of a design’s failure
rate. SEU mitigation techniques can reduce the SEU sensitivity of FPGA designs in harsh radi-
ation environments. The reliability benefits of these techniques must be determined before they
can be used in mission-critical applications and can be determined by comparing the SEU sensi-
tivity of an FPGA design with and without these techniques applied to it. Many approaches can be
taken to evaluate the SEU sensitivity of an FPGA design. This work describes a low-cost easier-
to-implement approach for evaluating the SEU sensitivity of an FPGA design. This approach uses
additional logic resources on the same FPGA as the design under test to determine when the de-
sign has failed, or deviated from its specified behavior. Three SEU mitigation techniques were
evaluated using this approach: triple modular redundancy (TMR), configuration scrubbing, and
user-memory scrubbing. Significant reduction in SEU sensitivity is demonstrated through fault
injection and radiation testing. Two LEON3 processors operating in lockstep are compared against
each other using on-chip error detection logic on the same FPGA. The design SEU sensitivity is
reduced by 27× when TMR and configuration scrubbing are applied, and by approximately 50×
when TMR, configuration scrubbing, and user-memory scrubbing are applied together. Using this
approach, an SEU sensitivity comparison is made of designs implemented on both an Altera Stratix
V FPGA and a Xilinx Kintex 7 FPGA. Several instances of a finite state machine are compared
against each other and a set of golden output vectors, all on the same FPGA. Instances of an AES
cryptography core are chained together and the output of two chains are compared using on-chip
error detection. Fault injection and neutron radiation testing reveal several similarities between the
two FPGA architectures. SEU mitigation techniques reduce the SEU sensitivity of the two designs
between 4× and 728×. Protecting on-chip functional error detection logic with TMR and dupli-
cation with compare (DWC) is compared. Fault injection results suggest that it is more favorable
to protect on-chip functional error detection logic with DWC than it is to protect it with TMR for
error detection.

Keywords: FPGA, SEU mitigation, SEU sensitivity, reliability, error detection, triple modular
redundancy, TMR, duplication with compare, DWC, scrubbing, fault-tolerance, neutron radiation
testing, fault-injection
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CHAPTER 1. INTRODUCTION

SRAM-based field programmable gate arrays (FPGA) are being used increasingly in terres-

trial [1] and space-based applications [2]. Modern FPGAs provide large amounts of programmable

logic, computation resources, I/O, memory and special-purpose functionality. As FPGAs are re-

leased on new technology, they are able to provide this functionality at lower power and operating

frequencies. FPGAs are also increasingly integrating dedicated, hardened IP to provide a mix of

fixed function and programmable function solutions. Their reconfigurability and low overhead for

design development make them an attractive alternative to application-specific integrated circuits

(ASIC).

Because SRAM-based FPGAs use a large set of static configuration memory cells (CRAM)

to support programmability, designs operating on SRAM-based FPGAs are susceptible to failure

induced by ionizing radiation. The value stored in an SRAM memory cell can be inverted by

the passing of a single energetic atomic particle through the device. This is known as a single

event upset (SEU) [3–5]. SEUs are troublesome for SRAM-based FPGA designs because an upset

in configuration memory could alter the behavior of logic, routing, or other utilized resources.

These alterations could cause the design to fail, or deviate from its defined behavior. Ionizing

radiation is a great concern for FPGA applications in harsh radiation environments like space and

high-energy physics experiments, and it is a growing concern for FPGA applications in terrestrial

environments [6, 7].

The susceptibility of an FPGA design to failure caused by SEUs in configuration memory

is discussed throughout this thesis in terms of SEU sensitivity. SEU sensitivity is defined as how

prone to failure a given design is when a random SEU occurs. It is not guaranteed that an SEU will

cause a design operating on an SRAM-based to fail [8]. An SEU may occur in an unused portion

of the FPGA or be masked in such a way that it does not affect the correct behavior of the design.

Or it may alter the design and lead to failure [23, 24]. The likelihood of a random SEU causing a

1



design to fail determines SEU sensitivity. The more likely a random SEU is to cause failure, the

more sensitive the design.

Much research has been done to develop SEU mitigation techniques for SRAM-based FP-

GAs [9–12], which reduce SEU sensitivity. These techniques include structural redundancy such

as: triple modular redundancy (TMR), duplication with compare (DWC), and state machine en-

coding. While expensive from a resource perspective, these techniques can greatly improve the

reliability of a design [13]. Configuration scrubbing is also employed to rapidly repair upsets and

prevent the accumulation of upsets in configuration memory [14].

An improvement in reliability or a reduction in SEU sensitivity of an FPGA design is

referred to throughout this thesis as a ratio between the SEU sensitivity of the design without

SEU mitigation and with SEU mitigation techniques applied. An improvement in reliability and

a reduction in sensitivity are synonymous. For example, a 4× improvement in reliability or a 4×

reduction in SEU sensitivity means that there is a 4:1 SEU sensitivity ratio between the unmitigated

and mitigated version of an FPGA design respectively.

The SEU sensitivity of an FPGA design plays an important part in advancing the state of

the art in FPGA reliability. Knowing the SEU sensitivity of a particular design can help identify

what causes FPGA designs to be sensitive to SEUs. The impact of changes in the fabrication

process, architecture, and applied SEU mitigation techniques can all be better understood through

comparing the SEU sensitivity of various designs. SEU mitigation techniques can be validated and

additional vulnerabilities discovered through the SEU sensitivity of an FPGA design.

The SEU sensitivity of an FPGA design is typically evaluated through fault injection and

radiation testing. Fault injection is the process of artificially introducing a fault and observing the

response. The type of fault injection referred to in this work involves mimicking the behavior of

an SEU in an FPGA [15]. Radiation testing is the process of exposing the FPGA design to an

accelerated radiation source and observing the response. Several types of radiation used for SEU

sensitivity testing include: proton, neutron, and heavy ions [16]. SEU sensitivity is measured in

this work by the percentage of injected faults that caused a failure for fault injection and by the

design cross section for radiation testing.

Many test setups can be used to evaluate the SEU sensitivity of an FPGA design through

fault injection or radiation testing. SEU sensitivity testing is event based, where the event is the
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occurrence of a functional failure. Most SEU sensitivity testing approaches depend on the ability

to detect when a functional failure has occurred. Typically, input stimulus is provided to the design

under test and its outputs are compared against a known golden value to detect failures. Most SEU

sensitivity testing approaches separate error detection logic from the device being tested. These

off-chip error detection approaches sometimes involve creating custom test boards that use multiple

FPGAs.

An on-chip error detection approach provides a cost effective means for rapidly evaluating

the SEU sensitivity of an FPGA design. Implementing off-chip error detection can be expensive

and time consuming. This thesis presents an on-chip error detection evaluation approach that is

low-cost and easier to implement. This approach uses additional logic resources on the same FPGA

as the design under test to determine when the design has failed, or deviated from its specified be-

havior. Although the error detection circuitry is also vulnerable to failure, valuable information

about the SEU sensitivity of a design can still be obtained using this approach. To improve accu-

racy, SEU mitigation techniques are always applied to the on-chip error detection circuitry. This

thesis describes the benefits and limitations of this approach as compared to those of other SEU

sensitivity evaluation approaches.

Using an on-chip error detection approach, the reliability benefits of three SEU mitiga-

tion techniques are evaluated: TMR, configuration scrubbing, and user-memory scrubbing. Two

LEON3 processors operating in lockstep are compared against each other using on-chip error de-

tection logic on the same FPGA. The design SEU sensitivity is reduced by 27× when TMR and

configuration scrubbing are applied; and by approximately 50× reduction when TMR, configu-

ration scrubbing, and user-memory scrubbing are applied together. Using this approach, an SEU

sensitivity comparison is made of designs implemented on both an Altera Stratix V FPGA and

a Xilinx Kintex 7 FPGA. Several instances of a finite state machine are compared against each

other and a set of golden output vectors, all on the same FPGA. Instances of an AES cryptography

core are chained together and the output of two chains are compared using on-chip error detection.

Fault injection and neutron radiation testing reveal several similarities between the two FPGA ar-

chitectures. SEU mitigation techniques reduce the SEU sensitivity of the two designs between 4×

and 728×. Protecting on-chip functional error detection logic with TMR and DWC is compared.
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Fault injection results suggest that it is more favorable to protect on-chip functional error detection

logic with DWC than it is to protect it with TMR for error detection.

1.1 Thesis Contributions

This thesis presents an approach for evaluating the SEU sensitivity of a design using on-

chip error detection. The advantages and disadvantages of many evaluation approaches are dis-

cussed, including those of on-chip error detection and other evaluation approaches used in related

works. A generalized composition of an on-chip error detection test fixture is presented and impor-

tant aspects of on-chip error detection are covered. The importance of evaluating SEU sensitivity

and a comparison of various evaluation approaches is discussed in Chapter 3. On-chip error detec-

tion concepts and test fixture composition is covered in Chapter 4.

The work presented in this thesis uses on-chip error detection to evaluate the SEU sensi-

tivity of several FPGA designs through fault injection and radiation testing. Unmitigated and mit-

igated FPGA designs were evaluated on a Xilinx Kintex 7 FPGA and an Altera Stratix V FPGA.

Three SEU mitigation techniques were included in this study: TMR, configuration scrubbing, and

user memory scrubbing. Various integrations of theses techniques were evaluated, by only apply-

ing TMR to mitigate a design, or applying TMR with user-memory scrubbing and no configuration

scrubbing, etc. A LEON3 soft processor, a finite state machine, and a 128-bit AES cryptography

core were used as benchmark designs. A variety of on-chip error detection schemes and mecha-

nisms were used to evaluate SEU sensitivity.

From the results, three main comparisons are made. First, the reliability benefits of various

mitigation schemes are compared, demonstrating the complementary nature of SEU mitigation

techniques. Second, the SEU sensitivity of FPGA designs across two different architectures are

compared, that of an Altera Stratix V FPGA and that of a Xilinx Kintex 7 FPGA. Finally, SEU

sensitivity results obtained from fault injection are used to compare TMR protected and DWC

protected on-chip error detection logic.
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CHAPTER 2. FPGA CONFIGURATION UPSETS AND MITIGATION TECHNIQUES

SRAM-based FPGAs, like application specific integrated circuits (ASICs), are susceptible

to radiation induced failures; fortunately, many mitigation techniques have been developed to im-

prove the reliability of these devices in spite of their vulnerabilities [2]. Most radiation induced

failures in these devices result from non-permanent, soft errors that can be prevented, masked, or

recovered from. Radiation effects observed in an FPGA may or may not cause the design oper-

ating on the FPGA to cease functioning correctly. In developing SEU mitigation techniques and

preparing designs for use on commercial FPGAs in harsh radiation environments, it is important

to understand where radiation comes from, how it effects FPGA designs, and what can done to

improve the robustness of a design.

This chapter motivates the need for evaluating the effects of configuration upsets on FPGA

designs. Configuration upsets are caused by ionizing radiation, which is present in space and

terrestrial environments. Ionizing radiation can come from galactic cosmic rays or impurities in

packing materials. This radiation can cause FPGA designs to fail, or deviate from their specified

behavior. These failures are difficult to reproduce and are becoming a greater issue as features

sizes shrink and more FPGAs are being deployed in data centers and Internet core routers [1,

17]. SEU mitigation techniques can be applied to FPGA designs to make them less sensitive

to configuration upsets. This chapter discusses radiation sources, FPGA architecture, and SEU

mitigation techniques. It provides the background information necessary to fully appreciate the

purpose and challenges behind SEU sensitivity evaluation, and motivates the need for using the

proposed on-chip error detection approach to evaluate the SEU sensitivity of an FPGA design.

In this thesis, on-chip error detection is used to evaluate the SEU sensitivity of various

FPGA designs. Fault injection and radiation beam testing are used to simulate and cause SEUs in

FPGA configuration memory. Specific bits that cause the design to fail are observed and the over-

all sensitivity of the design to configuration upsets is determined. Unmitigated and SEU mitigated
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FPGA designs are evaluated on an Altera Stratix V and a Xilinx Kintex 7 FPGA. The SEU miti-

gation techniques evaluated are: TMR, configuration scrubbing, and user-memory scrubbing. The

collected SEU sensitivity data assists in understanding the effects of radiation on FPGA designs

and the benefits of SEU mitigation techniques.

2.1 Radiation Sources

FPGAs are exposed to radiation present in their operating environments. FPGAs are de-

ployed in a number of applications including terrestrial and space based applications. In terrestrial

environments, there are three main sources of fault-inducing radiation: alpha particles, high-energy

cosmic rays and thermal neutrons [18]. These radiation sources pose a threat to FPGA reliability

in terrestrial [6, 7] and space environments. Other sources of radiation in space environments in-

clude: trapped protons, galactic cosmic rays (GCRs), and heavy ions [19]. The primary concern is

making sure that FPGA designs are able to withstand the type and amount of radiation present in

their operating environments.

A significant source of ionizing radiation are alpha particles emitted from impurities in

device materials. Alpha particles directly ionize the device as they pass through it. The dominant

sources of alpha particles are uranium and thorium found in the packing materials, which makes

shielding difficult. Special considerations can be taken to lessen the influence of alpha particles

emitted from packaging materials on FPGA devices [18].

Another significant source of fault-inducing radiation comes from cosmic rays. Cosmic

rays are high energy atomic particles that mostly originate from beyond the solar system. Less

than 1% of particles directly from cosmic rays ever make it to the earth’s surface. Due to their

density and stability, neutrons are the most likely candidate from cosmic rays to cause an upset

in an FPGA here on earth. Since neutrons are not charged, they indirectly ionize a device by

colliding with other atoms in the device, releasing secondaries [18]. The high energy neutrons flux

(above 10MeV) in New York City is approximately 13 n cm−2h−1 and increases as a function of

altitude [4].

The third significant source of fault-inducing radiation comes from the interaction of ther-

mal neutrons with boron-10 found in borophosphosilicate glass (BPSG), which has been used to

fabricate some FPGAs. Thermal neutrons are relatively slow and have energies of less than .4 eV.
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After boron-10 absorbs a thermal neutron, it breaks apart into an alpha particle, a gamma ray, and

a lithium nucleus. The alpha particle ionizes the device and may cause a configuration upset. To

eliminate the threat posed by low-energy thermal neutrons, FPGAs can be manufactured without

the use of BPSG [7].

Radiation poses a greater concern in harsh radiation environments like space and high-

energy physics experiments [6]. Mission length, environmental radiation, and the number of de-

ployed units are all factors to take into consideration when determining the reliability needs of a

design [16]. The presence of radiation is a concern for FPGA designs because ionizing radiation

can affect the functionality and state of a design.

2.2 Radiation Effects

Radiation effects on SRAM-based FPGAs can be caused by a single energetic particle or

result from the accumulation of charge injected by radiation [19]. When a single energetic particle

creates an observable effect within the FPGA, it is known as a single event effect (SEE) [3]. Long

term effects of radiation exposure include total ionizing dose (TID). There are other radiation

effects such as displacement damage and prompt dose. This overview of radiation effects gives

attention to SEEs and focuses on SEUs, which alter FPGA configuration memory. This work does

not address TID or other radiation effects beyond SEEs. An explanation of various SEEs is given

and their influence on FPGAs is described.

Radiation effects result primarily from the funneling phenomenon. As shown in Figure 2.1,

when an ionized particle passes through a sensitive node in a semiconductor, a path of electron-hole

pairs is produced from the semiconductor material atoms, resulting in funnel-shaped equipotential

surfaces that create a current in the device [19, 20]. This can also occur when secondary parti-

cles from a neutron collision pass through the sensitive region of the device. This phenomenon

contributes to radiation effects and is the primary mechanism behind SEEs. Because of the com-

plexities of this process, simplified fault models have been created to represent the behavior of

these effects at a higher level of abstraction.
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Figure 2.1: Funneling phenomenon in a N-type MOSFET. Adapted from a figure in [19].

2.2.1 Single Event Effects

SEEs are any observable effects caused by single energetic particle [3, 4]. There are two

main types of SEEs: destructive and non-destructive. Destructive SEEs can permanently damage

the FPGA, whereas non-destructive SEEs are transient and can be removed by reconfiguring or

power cycling the device. Destructive SEEs include: single event latchup (SEL), single event

burnout (SEB), and single event gate rupture (SEGR). Non-destructive SEEs include: single event

transient (SET), single event upsets (SEUs), and single event functional interrupts (SEFI). Of these

SEEs, SETs and SEUs are the primary concern for FPGA vulnerability because they occur more

frequently [16, 19, 20].

SELs occur when a particle strike causes an internal short between power and ground within

the FPGA. Only power cycling the FPGA can stop the SELs. If the SELs is not removed in time,

the FPGA can be permanently damaged because of the high-currents induced by the latchup [19].

A thoughtful FPGA fabrication process and layout can mitigate this effect [21]. FPGAs can be

tested for SEL immunity before being used in harsh radiation environments. Devices that are not

immune to SELs are often avoided for use in harsh radiation environments like space [16].

SETs occur when a particle strikes the channel region of an inactive n-type MOSFET or the

drain region of an inactive p-type MOSFET [19,20]. The induced current pulse appears as a glitch
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Figure 2.2: An SEU within an SRAM-cell

and is short lived. SETs are assigned a polarity based on the transition of the output of the CMOS

device. Positive SET pulses transition from 0 to 1 and back to 0; negative SET pulses transition

from 1 to 0 and back to 1. SETs can be latched by memory elements as they propagate through the

device, which becomes a greater issue at faster clock speeds.

SEUs occur when ionizing radiation inverts the value stored in a memory element, such

as a configuration bit of an FPGA. An illustrative example, depicted in Figure 2.2, shows how a

single particle is able to upset the value stored in an SRAM cell. In this example an SET occurs

within a transistor of the feedback loop used to maintain the value of the SRAM-cell. With enough

amplitude, this SET disrupts the feedback loop of the cell and causes it to take on the inverted value.

When this occurs in an SRAM-based FPGA it can have many adverse effects (see Section 2.3).

SEFIs occur when elements of the FPGA that control its functionality as a whole are af-

fected by a single particle strike. SEFIs can cause the entire FPGA to malfunction [19]. SEFIs are

temporary but could prevent reprogramming the FPGA until the next power cycle. There is some

state within an FPGA that, if upset, could disrupt the global functionality of the FPGA. While SE-

FIs are a concern to FPGA reliability, more SRAM-based FPGA design failures are due to SEUs

and SETs.

2.3 FPGA Architecture and SEU Failure Modes

Understanding FPGA architecture and design flow helps explain how SEUs, induced by

ionizing radiation, can adversely affect an FPGA design. This section describes basic FPGA ar-

chitecture and how SRAM-based FPGAs support programmability. An overview is given for an

FPGA design flow from hardware description to configuration, and then common SEU failure
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Figure 2.3: Island-style FPGA Architecture Layout. Adapted from a Figure in [16].

modes are discussed. This background information motivates the need for SEU sensitivity evalua-

tion of FPGA designs by explaining how an SEU can cause a design to fail.

An FPGA consists of basic logic building blocks and specialized hard IP blocks orga-

nized into a specific architecture. Lookup-tables and flip-flops are grouped into slices or cells

with other supporting hardware (e.g., carry-chains, multiplexers, control signals). Some lookup-

tables are read only, while others can have their values changed by the design (e.g. LUTRAMs,

shift-registers). Additional hard IP blocks can include: large user-memories (BRAMs), arith-

metic units (DSPs), analog-to-digital converters (ADCs), high-speed serial I/O (MGTs), and clock-

managers (DCM). The available resources and architecture are vendor specific, but many popular

FPGA architectures are island-style meaning that groups of logic resources are surrounded by pro-

grammable routing interconnects in a 2D matrix like formation [22]. This layout is depicted in

Figure 2.3.

There are two major types of bits within an FPGA’s programming data: configuration

(CRAM) bits and internal block memory (BRAM) bits. Data associated with programmable inter-

connects, lookup tables, control signals, and the contents of smaller user-memories (e.g., flip-flops,

LUTRAMs, shift-registers) are stored in CRAM bits. Data associated with the contents of larger

blocks of user-memory are stored in BRAM bits. Although the percentage is small, there are other
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types of bits within the FPGA’s programming data (e.g., global status registers, test control logic).

The contents of user-memories may be altered by the design during operation. The configuration

of specific designs are loaded into the FPGA’s programming data.

Figure 2.4 shows the generalized FPGA design flow. Digital designs are described in a

hardware description language (HDL) and synthesized into a netlist, which describe the cell in-

stances and connections needed to implement a given user-design. Computer aided design tools

(CAD) map the cell instances to technology specific primitives (e.g. a six input look-up-table).

These primitives are then placed, or assigned to a specific location in the FPGA. All of the con-

nections are then routed using programmable interconnects. This information is used to generate

a bitstream, which is the contents of the CRAM bits and the initial value of the BRAM bits used to

program the FPGA. When the bitstream is configured onto the FPGA, all of its information, (the

lookup-table contents, interconnects, initial state, and other configuration), is loaded into the re-

spective memory cells. SRAM-based FPGAs use SRAM-cells to store this information. Once the

FPGA is loaded, the design begins to operate on the FPGA fabric. Some memory cells maintain

their value throughout the operation of the design, others are user-memory resources and change

their values according to the design.

Logic 
Synthesis

HDL Netlist
Technology

Mapping
Placement 
& Routing

Bitstream
Program

FPGA

Figure 2.4: Basic FPGA Design Flow

Since FPGA programming data stores circuit configuration and state, SEUs in an FPGA’s

programming data can alter the design operating on the FPGA and lead to failure. The main cause

of SEU failure modes in FPGAs are SEUs in routing resources, lookup tables, control signals,

and user-memories. SEUs in lookup tables and control signals can corrupt logic and alter the

functionality of primitive blocks used by the design. SEUs in user-memories can corrupt the state

of a design (see Figure 2.5). SEUs in routing resources may cause nets to disconnect, short to

power or ground, or bridge with other nets in the design (see Figure 2.6) [23, 24].
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Figure 2.5: SEU failure modes. SEUs can alter correct logic (a), control (b), or state (c).

To support all of the resources and possible interconnect configurations many CRAM cells

are needed to store the programming data. The specific role of each bit in the data is proprietary, but

a large portion of configuration memory is dedicated to functionality beyond user flip-flops, BRAM

content and LUT contents [25]. One study found through fault injection that approximately 80%

of FPGA design failures originate from SEUs in routing structures [23].
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0 0 0
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0 0 1

1 0 0
0 1 0
0 0 1

(a) (b) (c) (d)

Figure 2.6: SEU routing failure modes. SEUs can alter correct routing (a) by shorting to ground
(b), disconnecting a route (c), or bridging two routes together (d).

2.4 Reliability: Faults, Errors and Failures

A reliable FPGA design is one that can withstand environmental factors, such as radiation,

without ceasing to provide its defined service. Unreliability stems from faults, errors and failures.
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A fault is the lowest level problem that occurs within the FPGA, such as an SEU. An error is the

manifestation of a fault, and a failure occurs when the provided service deviates from the intended

service [26]. It is important to understand that in any FPGA design, a fault may lead to failure but

the occurrence of a fault does not guarantee that an FPGA design will fail. A fault-tolerant FPGA

design can withstand more faults without failing.

Techniques can be applied to an FPGA design that will reduce its sensitivity to SEUs. These

SEU mitigation techniques typically mask or detect faults within the system through redundancy,

checkpoints, or some type of error correction code. By correctly masking or handling fault within

the design, the design becomes more fault-tolerant, meaning that it can tolerate more faults without

failing.

Radiation can cause faults within SRAM-based FPGAs. Any SEU in configuration memory

is a fault. Not all faults will affect an active design on an FPGA; a fault may or may not manifest as

an error. If an SEU occurs in an unused portion of the FPGA or in such a way that its effect on the

design is masked, it will not alter the operating design. For example, if an SEU causes the contents

of a LUT to change at a lookup address that is unused or otherwise masked, it will have no effect

on the operating design. This is significant because FPGA designs only utilize a portion of the

FPGA. As covered in Section 2.3, a fault can change the behavior and state of an FPGA design in

many different ways such as: changing the logic in a LUT, altering routing within the circuit, and

modifying the behavior of components. If an SEU does alter a configuration bit associated with

the proper operation of a design, it may cause an error in the design such as: providing incorrect

output, halting its operation, or otherwise deviating from its specified behavior.

An error is a deviation from expected behavior. Some errors can be detected and recovered

from or simply ignored. It is possible for an error to occur without being considered a failure. An

example of this is when the checksum of a communication interface does not check out but after

re-transmission, the correct data is received. Here the defined service is still provided even though

an error has occurred. Unacceptable errors are considered failures.

A failure occurs when an error causes a service to deviate from its defined specification. A

major concern when it comes to failure is that of silent data corruption (SDC). SDC occurs when

output or state is incorrect, but the error goes undetected. This can be particularly troublesome

for missile guidance systems, file-compression, and encryption algorithms. The on-chip error
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detection evaluation approach used in this thesis focuses on detecting SDC of output signals for

selected benchmark circuits.

2.5 SEU Mitigation Techniques

Adverse affects of SEUs on FPGA designs can be reduced by applying various SEU miti-

gation techniques to the design. Many post-manufacturing SEU mitigation techniques have been

developed for SRAM-based FPGAs. Generally, concepts of redundancy, repair, error detection

and correction (EDAC), or the elimination of single point failures (SPF) are used to design SEU

mitigation techniques. The three SEU mitigation covered in this thesis are: TMR, configuration

scrubbing and user-memory scrubbing. While other SEU mitigation techniques exist, these SEU

mitigation techniques are common examples of ways to improve the reliability of an FPGA design,

and they are used in the experiments of this thesis.

2.5.1 Triple Modular Redundancy

TMR is a well-known SEU mitigation technique that involves triplicating the original cir-

cuit and inserting voters (see Figure 2.7). There are many ways TMR can be applied [27]. TMR can

be applied spatially or temporally [10]. Majority voters mask SEUs by propagating the dominant

output of the triplicated circuit. If at least two of three redundant circuits are operating correctly,

the output of the system will be correct as well. To avoid single point failures, voters themselves

are often triplicated as well [12]. TMR protects the designs from errors in the routing resources,

lookup tables, control signals, and internal state. While TMR overhead is at least 3× in area, it has

been shown to provide significant improvements in reliability on a number of FPGA circuits [28].

TMR cannot protect against SEU accumulation across more than one redundant copy. The

granularity of TMR affects the amount of SEUs a design can tolerate before failing; fine grain TMR

(i.e., TMR of the smallest components) is able to withstand more faults at the cost of additional

area and delay due to the insertion of more voters [29]. By placing voters throughout the design,

the granularity of TMR is made smaller. Figure 2.8 shows a fine grain TMR scheme that places

majority voters in feedback paths [12]. By triplicating a design into smaller partitions, SEU are

allowed to accumulate in ways that would otherwise cause the design to fail. That being said,
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Figure 2.7: Triple Modular Redundancy (TMR).

SEUs can still accumulate within the same partition causing TMR to fail. In order to prevent this

kind of failure, an SEU repair mechanism, such as scrubbing, must be combined with TMR [30].
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Figure 2.8: Fine-grain TMR with Voter Synchronization in the Feedback Path. So long as no more
than one TMR domain per partition is damaged, the output will be correct.

It is possible for a single SEU to cause the entire system to stop functioning correctly.

Any aspect of the design that is not protected with redundancy or fault tolerance presents an SPF

vulnerability. Within an FPGA’s architecture, it is also possible that an SEU breaks redundancy by

causing failures in multiple circuit copies [31, 32].
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2.5.2 Duplication with Compare

Another SEU mitigation technique based on redundancy is duplication with compare (DWC).

DWC involves duplicating a module and comparing the outputs of the two copies against each

other to detect errors. Similar to voters in TMR, detectors are inserted into the circuit to detect any

discrepancies. A major distinction between TMR and DWC is that TMR is able to mask errors by

propagating the majority vote of the three redundant circuits whereas DWC is only able to detect

that an error has occurred; DWC cannot mask errors. DWC has lower overhead than TMR because

only two copies are made rather than three. When DWC is employed, detectors themselves are

often duplicated as well to prevent errors in detection logic from being reported as errors in the

design under-test (i.e., a false-positive). When duplicate detectors are used, their output is encoded

so that an error is only reported with both detectors detect an error. Using DWC for on-line er-

ror detection has been shown to be an effective means of detecting errors caused by configuration

upsets in FPGA-based designs [33].

2.5.3 Configuration Scrubbing

Configuration scrubbing involves the rapid and continuous repair of upsets in configuration

memory as they occur [34]. Configuration scrubbing is performed without interfering with the

operation of an active design. In other words the application loaded onto the FPGA does not have

to go off line for configuration scrubbing to take place. As such, configuration scrubbing can only

repair upsets that affect bits of the programming data that are not changed by the design. User-

memories are not protected by configuration scrubbing. Bits that are protected include the contents

of look-up tables used to implement logic, interconnect and multiplexer configurations for routing

nets between components, and other constant configuration values.

Configuration scrubbing prevents the accumulation of more than one upset in configuration

memory that may break TMR. Configuration scrubbing can be performed in many different ways.

External readback configuration scrubbing compares the current configuration of the FPGA against

a golden copy to detect and repair SEU. External scrubbing has been shown to greatly reduce the

sensitive cross section of a design [35]. Internal configuration scrubbing uses frame-based error

correction codes (ECC) and global cyclical redundancy check (CRC) calculations to detect SEUs
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and correct them when possible [14]. SEUs that affect user-memory bits cannot be repaired by

configuration memory scrubbing. To repair SEUs that affect these bits, additional SEU mitigation

techniques need to be applied.

2.5.4 User-Memory Protection

Internal memories that contain large amounts of state pose a unique challenge when faced

with SEUs. Although a number of memory coding techniques can be used, these techniques do not

adequately protect the memory from the accumulation of multiple upsets within a single memory

word. This problem is especially prevalent in memories whose contents do not change very often

(such as read only memories) as there is greater potential risk of SEU accumulation. In order to

prevent the accumulation of upsets that may invalidate memory coding techniques, such as ECC,

some form of memory scrubbing may be used in environments where soft error rate (SER) is high

(e.g. space environments) [11].

Scrubbing BRAM bits repairs SEUs as they occur and prevents the failure of additional

protection mechanisms, such as TMR or ECC, that can result from the accumulation of SEUs.

One of the most common memories that may need to be protected with scrubbing are user block

memories called BRAM modules. These modules are user configurable and provide a limited

number of access ports to the associated BRAM bits. Protecting BRAM modules with scrubbing

can be challenging if all available ports are already in use. Figure 2.9 shows the contents of a

dual-port BRAM module being scrubbed. One port is dedicated to scrubbing and another port

is a dedicated access port for the design. In this case, the memory module is triplicated and the

majority vote between the three copies is written back to the memory to scrub away SEUs.

Scrubbing is performed in a three step process. First, a memory word is read out of mem-

ory. Second, the word is decoded and corrected through ECC or another form of memory protec-

tion. Finally, if an error is detected in the word, the corrected word is written back to memory to

overwrite the upsets. Scrubbing can be performed deterministically by iterating through all of the

words in memory, or probabilistically by scrubbing a memory word only when it is used by the

design [36].

Other memory protection techniques, such as ECC, can also benefit from scrubbing. En-

coding is used to mask SEUs in ECC protected memory. Without correcting upsets in memory, by
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either overwriting them with new values or scrubbing them, eventually enough SEUs will accumu-

late to cause the ECC method to fail [11]. By providing memory scrubbing, memories affected by

SEUs will not accumulate upsets.
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Figure 2.9: Internal BRAM Scrubbing

There are some limitations to the benefits that user-memory scrubbing provides. Additional

resources are consumed by scrubbing logic. This logic may also be vulnerable to failure if not

protected with SEU mitigation techniques. Also, memory that changes value often benefits less

from scrubbing because the risk of accumulating SEUs that would invalidate ECC is lower. The

benefits of scrubbing memory caches are limited because when an error is detected in a cache, the

cache can be easily be flushed and refreshed instead of being scrubbed [37]. Another limitation

of user memory scrubbing is that it can only repair errors that occur within a memory; it cannot

prevent a error from being written to memory.

2.5.5 Complementary SEU Mitigation

Complementary SEU mitigation and repair techniques work together to improve an FPGA

design’s fault-tolerance and prevent SEU failure modes from occurring. TMR masks SEUs to

prevent failure. Scrubbing repairs SEUs to prevent accumulation that would break TMR. The
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reliability of a system can be significantly improved when both TMR (fault masking) and config-

uration scrubbing (repair) are used together [28]. Without configuration scrubbing, the benefits of

TMR are limited (especially for long missions).

2.6 SEU Sensitivity Estimation

The likelihood of a design failing when a random upset occurs is the SEU sensitivity of an

FPGA design. There are many factors that contribute to the SEU sensitivity of an FPGA design

such as the size of the design and whether or not any SEU mitigation techniques were applied to

it. The main idea is that there are bits within an FPGA design that will cause the design to fail

if upset. These sensitive bits exist within the FPGA configuration memory for a particular design

and are most likely different for each FPGA design. Upsets in these bits cause a design to fail by

introducing the SEU failure modes discussed earlier into the design. The ratio of sensitive CRAM-

bits to non-sensitive CRAM-bits reflects the SEU sensitivity of a design. The likelihood of an SEU

occurring from radiation exposure also affects a design’s SEU sensitivity. This term attempts to

provide common ground between fault injection and radiation testing.

Knowing the SEU sensitivity of a design provides great insights to the potential risks of

radiation exposure for FPGA designs and the benefits of SEU mitigation techniques. Every design

has a different level of SEU sensitivity. SEU mitigation techniques need to be proven and the SEU

sensitivity of a mitigated design can provide supporting data or reveal vulnerabilities. As newer

FPGAs are released, changes in FPGA design SEU sensitivity can reflect the impact of changes

in the fabrication process, and FPGA architecture on reliability. The SEU sensitivity of a design

provides insight into every change and each new design.

SEU sensitivity of an FPGA design is often estimated by sampling a portion of CRAM-bits

on the FPGA for sensitivity. Because newer FPGAs now have tens of millions or more CRAM bits

and each design has numerous possible states, it is nearly impossible to exhaustively test each bit to

estimate the SEU sensitivity of a design. Instead, a portion of CRAM cells are sampled for sensi-

tivity through fault injection and radiation testing. Fault injection involves artificially emulating an

SEU by altering the contents of CRAM-bits [15]. Radiation testing involves exposing the FPGA

design to accelerated radiation that causes SEUs [16]. A key component of most SEU sensitivity

testing approaches is being able to detect that a functional failure has occurred in the design. The
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next chapter discusses aspects of SEU sensitivity testing and the benefits and limitations of various

testing approaches.
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CHAPTER 3. SEU SENSITIVITY TESTING APPROACHES

SEU sensitivity estimation plays an important role in radiation hardness assurance (RHA),

SEU mitigation technique validation, and in improving the fault-tolerance of FPGA designs. Mission-

critical space applications have rigid requirements for system reliability. Radiation hardness as-

surance seeks to qualify devices for space. So much goes into qualifying an integrated circuit

for space [38]. Part of qualification includes SEU testing. Test guidelines and standards have

been written for radiation testing [4, 39]. The benefits of SEU mitigation techniques can be

proven through SEU sensitivity estimation. Additional unanticipated vulnerabilities can be ex-

posed through SEU sensitivity estimation.

In order to estimate the SEU sensitivity of an FPGA design, there must be a means of

observing failure events caused by SEUs, and the factors that lead up to failure must be recorded

for analysis [16]. Many approaches have been developed to estimate the SEU sensitivity of an

FPGA design through fault injection and radiation testing. Fault injection mimics the behavior of

an SEU on the FPGA under test, and radiation testing exposes the FPGA to accelerated radiation

sources that cause SEUs within the FPGA. Various test setups have been created to configure fault

injection and radiation testing towards SEU sensitivity estimation of FPGA designs. This chapter

discusses common elements found in FPGA SEU sensitivity testing approaches. SEU sensitivity

testing approaches used in related works are presented and an on-chip error detection approach is

introduced. The limitations and benefits of each approach are discussed.

3.1 General Approach for SEU Sensitivity Testing

SEU sensitivity testing is event based, where the event is usually the occurrence of a func-

tional failure within the design. Most SEU sensitivity testing approaches depend on the ability

to detect when the design under test is not operating correctly [16]. Testing approaches for SEU

sensitivity estimation create an environment where a design can fail, and they measure and record
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the factors that lead up to failure for analysis. Common elements are found in most SEU sensitivity

testing approaches to support SEU sensitivity estimation.

There are five common elements found in most SEU sensitivity testing approaches. First,

the design under test must be active. Second, the output of a design under test is usually monitored

for errors. Third, the environment is set up to create possible failure conditions through fault

injection or radiation testing. Fourth, factors leading up to failure, such as the number of of injected

faults or amount of radiation exposure, are recorded for analysis. Finally, a method is provisioned

to place the design back into a known good state so that additional failure events can be observed.

In SEU sensitivity testing, the design is kept active so that functional failures can occur and

be detected. If a design sits idle, the effects of SEUs on the design may go unnoticed. Keeping

as much of the design active during SEU sensitivity testing as possible allows failures caused by

SEUs to propagate to the outputs of the design where they may be observed. Designs are typically

kept active using a set of input vectors [16]. A clock signal is also usually provided to the design

as well.

Two main methods are used to monitor the outputs of a design for errors. First, the outputs

of a design may be compared against a set of golden output vectors that match the expected behav-

ior of the design. Second, the outputs of a design may be compared against those of an identical

design instance that operates in lockstep with the design under test. If any disagreement is found,

a functional failure is detected and reported. Other methods for monitoring outputs could include

monitoring checksums produced by the design.

Failure conditions are introduced to the active design through fault injection or radiation

testing. Typically, only the design under test is exposed to factors that cause SEUs. Test control

unit, functional error detection logic, and the golden output vectors or lockstep design instance are

commonly separated from the design under test to make them fault-immune. For example, many

SEU sensitivity testing approaches place the design under test on a separate FPGA. This FPGA is

then injected with faults or placed in an accelerated radiation beam so that SEUs only occur within

the design under test and not in other parts of the test setup.

The factors that lead up to a functional failure are recorded for analysis. For fault injection,

the total number of fault injected and the total number of failures observed may be collected. This

can be used to estimate the sensitivity of the design. Also the particular bit injected prior to a
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functional failure may be recorded for reproducibility and failure characterization. For radiation

testing, the total radiation exposure of the design and the total number of observed failures may

be collected. Radiation exposure is usually measured in terms of fluence, and the SEU sensitivity

of the design is approximated by the cross section of the design, or number of failures divided by

total fluence.

Many failure events must be observed for the collected data to be statistically significant

and representative of the SEU sensitivity for a particular design [15,16]. To support the observation

of multiple failure events, most SEU sensitivity testing approaches provision a method of resetting

the design, or resynchronizing it into a known good state so that additional failure events can be ob-

served. Any necessary control signals are provided to the design. The process of resynchronizing

the design for the next test run is often automated to assist in rapid data collection.

Most testing approaches organizes these five common elements into a test setup with an

accompanying test fixture to support SEU sensitivity testing. The general setup for SEU sensitivity

testing is described in the next section.

3.2 General Setup for SEU Sensitivity Testing

While each approach is different, the test setup for many SEU sensitivity estimation ap-

proaches is very similar. Each test setup typically has a host computer that interfaces with a test

fixture. The test fixture holds the FPGA design under test and contains additional components to

support the experiment. Figure 3.1 depicts the general setup of an SEU sensitivity test and the

common components of a test fixture. Clock and control signals drive the design under test and

provide a means to reset or resynchronize the design. A test control unit orchestrates the operation

of the design under test with the rest of the test fixture. It keeps the design active by managing

input vectors or can make sure the design operates in lockstep with a golden design instance if

used. Functional error detection mechanism provides the means of detecting functional errors in

real time. This mechanism usually compares the output of the design under test against a set of

golden output vectors, or a fault-immune instance of the design operating in lockstep outside the

scope of fault injection or radiation testing. If a disagreement is found, a failure is reported. This

mechanism is especially important because most approaches depend on the ability to detect errors

in order to collect good data. The external interface provides a way to communicate with the host
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computer. Other common aspects incorporated into a test setup may include automated logging on

the host computer and using heartbeats or watchdogs, (e.g., provided by the test control unit), to

ensure that the design is still operational [16].

Test Fixture

Scope of Fault Injection
and Radiation Testing

External 
Interface

Design Under Test

Golden Output Vectors 
or

Design Instance in 
Lockstep

Functional
Error 

Detection
Mechanism
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Clocking
and

Control
Signals

Host 
Computer

Figure 3.1: General Setup for SEU Sensitivity Test

It is important that design instances operate in lockstep so that they can be compared against

each other to detect functional failures. When designs operate in lockstep, no instance advances

to next computation until all instances have completed the previous computation, and all instances

produce outputs in the same order. For many FPGA designs this is not hard to accomplish since

computations usually have a predictable data flow path. So long as predictable design instances

begin execution on the same clock cycle, they will operate in parallel. When design instances

use roll back check pointing or perform out-of-order computation, a more complicated mechanism

must be used to keep the design instances in sync [40]. The state machine can be used to ensure the

synchronous operation of design instances and tag the appropriate signal samples for comparison

in the case of out-of-order computation.

One of the most important SEU evaluation elements is the functional error detection mech-

anism. When evaluating the SEU sensitivity of a design, failure events are collected and recorded.

To evaluate the sensitivity of a design to configuration upsets, there must be some way of know-
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ing when the design has experience a functional failure. Many mechanisms can be used to detect

functional failures but their primary goal is the same: to detect when an error has occurred within

the design.

Many testing approaches separate the design under test from the other test fixture com-

ponents so that the scope of fault injection or radiation testing only extends to the design under

test and nothing else. This is typically done by placing the design under test on its own FPGA.

Approaches that do not place the test control unit, error detection logic, golden output vectors,

etcetera on the same FPGA as the design under test will be referred to as off-chip error detection

approaches; whereas an on-chip error detection approach places additional test components on the

same FPGA as the design under test.

3.3 SEU Sensitivity Testing Examples

The approaches discussed in this section specifically focus on estimating SEU sensitivity

of SRAM-based FPGAs in harsh radiation environments and estimating the reliability benefits of

SEU mitigation techniques. These approaches use an FPGA in fault injection or radiation testing

to estimate the reliability of an FPGA design on a specific target FPGA. The reliability benefits

of SEU mitigation techniques are estimated by comparing the estimated SEU sensitivity of a miti-

gated and an unmitigated version of the same design.

Fault injection and radiation testing are common methods for estimating the SEU sensitivity

of a design operating on an FPGA. SEU sensitivity is defined as how prone to failure a given

design is when an SEU occurs. The design operates on the FPGA while the FPGA undergoes

fault injection or radiation testing. The rate of design failure with respect to injected faults or

radiation exposure is the primary indicator used to determine SEU sensitivity. For fault injection,

SEU sensitivity is typically measured in terms of mean upsets to failure (MUTF) but can also be

measured in terms of the percentage of upsets that cause the design to fail. A lower MUTF or

a higher percentage of sensitive bits means a greater SEU sensitivity. For radiation testing, SEU

sensitivity is typically measured in terms of cross-section. The larger the cross section, the greater

the SEU sensitivity.
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Several testing approaches used in related works to estimate SEU sensitivity are presented

in this section. Their test setup is describe and some results are included from experiments that use

them. Benefits and limitations of each approach are discussed compared against each other.

3.3.1 FT-UNSHADES

FT-UNSHADES [41] emulates fault injections in ASIC circuitry using an FPGA as a fault

injection emulation platform. This evaluation approach uses a formal verification tool to ensure

that the ASIC netlist and its corresponding FPGA netlist maintain and guarantee equivalence, and

then uses partial reconfiguration to inject faults into the user flip-flops. This approach places a

golden and a faulty instance of the design on the same FPGA along with comparison and test

control logic. Test vectors are loaded externally and faults are limited to flip-flops within the faulty

instance of the design. Figure 3.2 shows the test setup used by FT-UNSHADES. Notice that only

a single FPGA is used to implement this fault emulation approach.

Figure 3.2: FT-UNSHADES test setup. Figure taken from [41].
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Using this approach a LEON2 soft processor without mitigation was compared against

an XTMR version (i.e., Xilinx automated TMR), and a fault tolerant (i.e., LEON3-FT) version.

The most sensitive components of the processor were identified and protection provided by the

mitigated version was verified [41]. This platform is used in [42] to prepare designs for radiation

testing. The fault injection emulation approaches presented in [43] and [44] are similar to that of

FT-UNSHADES.

This is an on-chip error detection approach, and is similar to the on-chip error detection

approach described in Chapter 4. It is on-chip because the test control logic, lockstep golden design

instance and the error detection mechanism are all on the same FPGA. The biggest difference

between this approach and the one described in Chapter 4 is that this approach limits faults to the

design instance under test and the other approach allows faults anywhere on the FPGA.

Using an FPGA to emulate fault injection in ASIC circuitry accelerates ASIC fault-tolerance

testing, but since faults are limited to flip-flips, only a small portion of FPGA architecture is in-

cluded in an SEU sensitivity estimation obtained through this approach. This approach does not

consider the effects of SEUs on logic or routing in an FPGA design. This approach is not designed

for use in radiation testing. However, only a single FPGA is needed to implement this approach

making it less expensive to implement than a multi-FPGA test setup. The approach could also

feasibly be implemented on a ready made FPGA evaluation board.

3.3.2 FLIPPER

FLIPPER [45] is a fault injection approach that injects a fault using partial reconfiguration

and uses stimuli and golden values derived from HDL simulation to determine when the design has

failed. If the output of the FPGA does not match the expected golden values for the provided input

stimulus, a failure has occurred. FLIPPER consists of two boards: the main board that manages

fault injection, and a device under test board that contains the FPGA under test (see Figure 3.3).

In a case study, faults were injected every 18ms and allowed to accumulate until a func-

tional fault was detected. For each injected fault, 26,000 testbench cycles are executed. Using

the approach, the MUTF of various mitigation schemes were evaluated for an FPGA design. The

plain design, without mitigation, had a MUTF of 337 accumulated faults. The Xilinx TMR version
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(a) Main Board (b) DUT Board

Figure 3.3: FLIPPER test fixture consisting of two boards. Images taken from [45].

had a MUTF of 1,330 accumulated faults. Based on these results, Xilinx TMR without scrubbing

reduced the SEU sensitivity of the evaluated design 3.9×.

Having a separate test board provides for extendability of the approach to newer devices

and helps reduce reoccurring engineering costs [15]. The main board contains an FPGA which

can be reused for new FPGAs, but at some point the main board would need to be updated with

a newer FPGA. This approach leverages HDL simulation tools to provide stimulus and compare

device outputs against golden output vectors. An advantage of using test vectors is that only a

single target FPGA is needed.

3.3.3 SLAAC-1V

The SLAAC-1V board [46] is an FPGA fault injection and radiation testing approach that

utilizes three FPGAs: one as the FPGA under test, one as a golden FPGA that runs in parallel

lockstep with the FPGA under test and is failure-immune, and one for comparison, reconfigura-

tion, and control logic of the other two. This approach allows for off-chip error detection of very

complex designs without having to precompute golden test vectors. So long as the inputs are the

same, the outputs of the golden and the device under test FPGAs should be the same also, except

in the case of failure. This is an off-chip error detection approach because error detection logic is

not on the same FPGA as the design under test. The golden lockstep design is also not on the same

FPGA as the design under test.

A linear feedback shift register (LFSR) design was evaluated for SEU sensitivity using this

approach. A fault was injected in the device under test every 267us. Between faults the circuit is
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Figure 3.4: SLAAC-1V setup diagram. Figure taken from [46]. X1 and X2 are the golden and
device under test FPGAs respectively. X0 is the comparator FPGA.

cycled and tested for discrepancies with the golden. All 5.9 million configuration bits on Xilinx

Virtex XCV1000 were exhaustively fault injected. It was found that the tested LFSR design was

relatively insensitive to injected faults.

The SLAAC-1V board was used in a later experiment that compared the SEU sensitivity

found in fault injection against that found in proton radiation testing [25]. In this experiment,

several versions of a multiplier and LFSR were tested. A 36-bit and 72-bit multiplier, and a 72-

bit LFSR circuit demonstrated a 4.0%, 14.7%, and a 4.8% sensitivity rate respectively in fault

injection, and a 4.9%, 17.2&, and 5.0% sensitivity rate in radiation testing respectively. This

experiment helps to validate this approach by showing that fault injection data agrees with the

radiation testing data.

In [10] several SEU mitigation techniques were compared using the SLAAC-V1 board

approach to gather fault injection data. The fault injection campaign used in this experiment sim-

ulated configuration scrubbing by correcting the injected fault after checking for output errors.

TMR and scrubbing in this experiment reduced the SEU sensitivity of a 36-bit counter and two

finite state machine 2-3×.

One advantage of this approach is that allows two test designs to operate in lockstep. For

complex FPGA designs, comparing the output of two designs operating in lockstep can be easier
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than comparing the output of a single instance against a set of golden output vectors. Unlike

FT-UNSHADES, this approach places comparison logic on a separate FPGA. Doing so allows

faults to be injected anywhere in the FPGA under test without disrupting the operation of the test

setup. It also makes it possible to use the test setup in radiation testing. Some drawbacks of this

approach are that multiple target FPGAs are needed and that a entire new board would need to be

re-engineered to test newer FPGAs.

3.3.4 XRTC-V5FI

The XRTC-V5FI [47] approach consists of three main boards: the XRTC motherboard, the

Xilinx Vertex 5 FPGA under test daughter card, and an external memory card (see Figure 3.5).

There are two FPGAs on the mother board: the ConfigMon, and the FuncMon. The ConfigMon

FPGA controls all of the reconfiguration and rapid fault injection, and the FuncMon is dedicated

to detecting functional failures in the FPGA under test. Rather than compare the outputs of a

design against external golden values to detect failures, this approach compares the outputs of

two identical designs instances on the FPGA under test against each other. Several signals are

compared externally between the two, these signals are sent to the FuncMon FPGA. It is not likely

that a single fault will affect both instances in exactly the same way, and since the comparison

logic is separated from the FPGA under test, failure of the error-detection logic is unlikely as well.

Because the comparison and error detection logic is not on the same chip as the FPGA

design being tested, this approach is considered an off-chip error detection approach. However,

the concept of having two instances of the same design on the FPGA under test, operating in

lockstep, where both instances are vulnerable failure is an important aspect of the on-chip error

detection approach presented in Chapter 4. Rather than have one design instance serve as the design

under test and another instance serve as a golden copy that is failure-immune for comparison, both

instances are placed under test. If either copy fails, than a failure has occurred. This is an important

concept that is also central to DWC SEU mitigation [33]. It is the driving concept behind an on-

chip error detection approach for SEU sensitivity estimation.

The XRTC-V5FI board has been used in several experiments. One experiment evaluated

the SEU sensitivity of various soft-core processors [47]. This experiment used fault injection to

exhaustively test each bit on the target FPGA for SEU sensitivity. Several benchmark programs
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Figure 3.5: XRTC-V5FI test fixture. Image taken from [47]. The XTRC motherboard (a), a Xilinx
V5QV daughter card(b), and a PROM memory card (c) are displayed.

were tested on each of the soft-core processors. In another experiment [28], three circuits were

tested using this approach with fault injection and one design was further tested with radiation

testing. It was found that TMR data from fault injection matched radiation data within the error

bounds. A slight discrepancy was found between non-TMR fault injection data and radiation data,

but that was attributed to radiation exposure during book keeping activities.

Like FLIPPER, the XRTC-V5FI SEU sensitivity testing approach uses a separate daughter

card for the device under test. This reduces reoccurring engineering costs and allows the same

motherboard to use when testing additional target FPGAs. Unlike the SLACC-V1 approach, which

places identical FPGA design instances on two separate FPGAs, the XRTC-V5FI approach places

identical FPGA design instance on the same FPGA. This reduces the number of target FPGAs

needed to do lockstep comparison for functional error detection, but it also reduces the size of

FPGA designs that can be tested using this approach since both instances must fit on the same

FPGA together. This approach also allows for separate biasing of the test daughter card, which is

helpful for SEE testing in an accelerated radiation beam tests [16].
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3.3.5 Multiple Development Boards

[48] reduced the overhead of developing a custom test platform by using two ready-made

Xilinx KC705 development boards to evaluate the feasibility of using the GTX transceivers on

Xilinx 7-series FPGAs in high energy physics experiments. This experiment used one development

board as a service board and the other development board as the device under test board. There

were 13 multi-gigabit transceiver lanes between the two boards used to send and receive data. At

least one custom crossover board was made to enable coupling of the available transceivers. Both

boards had frame generator and frame checker logic operating on the FPGA fabric to continuously

fill the 3.125 Gb/s of available bandwidth for each lane. It was found through proton radiation

testing that the MTTF of a single lane is 2.02 ×107 seconds or 234 days of continuous operations.

This was lower than the acceptable failure rate for the targeted application. However, some of

the failures were attributed to unmitigated FPGA logic on the device under test board used to

capture and log multi-lane errors. This experiment shows ready made FPGA boards being used

for SEU sensitivity estimation and suggests that any on-chip test logic should have SEU mitigation

techniques applied to it where possible.

Figure 3.6: Multiple development board test setup. Image taken from [48].
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One advantage of this approach is that it uses ready-made FPGA development boards,

which can be more cost effective than designing custom test boards. A disadvantage of this ap-

proach is that two development boards are needed. Interfacing between two development boards

can be challenging and would need to be redesigned for each new development board used. Also,

as newer FPGAs are made available, the cost of a single development board may increase, making

a multiple development board approach cost prohibitive.

3.4 Motivation for an On-Chip Error Detection Approach

Each of the approaches presented carry with them a number of advantages. Using on-

chip error detection to estimate SEU sensitivity of FPGA designs is driven by the possibility of

combining the advantages from all of these approaches into a low-cost single FPGA solution that

is easier to implement. The on-chip error detection approach proposed by this thesis combines the

following advantages from each of the approaches covered in this chapter.

• FT-UNSHADES – the entire test fixture is on a single FPGA.

• FLIPPER – test vectors can be used to stimulate a design and detect errors.

• SLAAC-1V – two or more complex designs can operate in lockstep for error detection.

• XTRC-V5FI – multiple designs instances can be placed on the same FPGA.

• Multiple Development Boards – ready-made development boards can be used.

Each of these aspects reduces cost and increases the flexibility of the on-chip error detection

approach for estimating SEU sensitivity of FPGA designs. By only using a single FPGA and by

using ready-made development boards, the cost of entry is greatly reduced, especially for higher

end FPGAs. Being able to use test vectors or another design instance operating in parallel to detect

errors makes this approach easier to adapt and implement for various designs. Like the other

approaches covered in this chapter, valuable SEU sensitivity estimations can be collected using an

on-chip error detection approach.

Another strong advantage of using on-chip error detection to estimate SEU sensitivity of a

design is that many instances of a smaller FPGA design can be tested all at once. Smaller FPGA
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designs are typically less sensitive to configuration upsets due to their reduced area usage in the

FPGA. Gathering statically significant data from fault injection and radiation testing of a single

instance can be challenging. This is due to the high number of random upsets that must occur

before the design fails and the large number of failures that must be observed for the data to be

significant. One way to work around this issue is to fill up the FPGA with many design instances

and record whenever an instance fails. This effectively parallelizes testing and accelerates data

acquisition for fault injection and radiation testing. This approach is hard to implement with off-

chip error detection due to the limited number of I/O ports available on an FPGA. On-chip error

detection compares the outputs of design instances internally without using I/O resources.

On-chip error detections comes with some disadvantages. Because multiple instances are

placed on the same FPGA, designs that consume more than half of the available resources cannot

be evaluated using this method. A false-positive is an error reported by the error detection logic

that did not actually occur in the design under test. A false negative occurs when an error in the

design under test goes undetected by the error detection logic. The error detection logic itself

is vulnerable to failure (e.g. returning false-positives or false-negatives) because it too is on the

FPGA under test and within the scope of fault injection and radiation testing. Few I/O resources

are not included in the evaluation because outputs of the design under test are compared internally.

Because no external golden value is available, it is difficult to validate the on-chip error detection

logic. While off-chip error detection approaches may provide a more accurate evaluation, on-

chip error detection is a useful means of roughly approximating the reliability benefits of SEU

mitigation techniques and identifying issues that limit the benefits of SEU mitigation techniques.

In the on-chip error approach proposed, the components found in the test fixture of Fig-

ure 3.1 are all placed on the same FPGA as the design under test. The entire test fixture is placed

within the scope of fault injection and radiation testing. This presents interesting implications for

collecting good data. For example, since the error detection logic is also exposed to fault injection

and radiation exposure, confidence of results may be negatively affected. Challenges and proposed

solutions for using on-chip error detection to estimate the SEU sensitivity of FPGA designs are

discussed in the next chapter. Test implementations for three FPGA designs using on-chip error

detection logic are also included in the next chapter.
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CHAPTER 4. ON-CHIP ERROR DETECTION APPROACH

On-chip error detection has the same basic elements as other SEU evaluation approaches,

but it places most of the needed logic on the same FPGA as the design under test. The basic layout

of an on-chip error detection test fixture is shown in Figure 4.1. Clocking and control signal are

used to drive the design instances and the additional circuitry needed for on-chip error detection. A

test state machine is used to orchestrate the parallel operation of design instances and provide for

other needs. The design instances are copies of the design under test and functional error detection

logic is used to determine if an error has occurred in any instance. To monitor the error status

within the flow of fault injection or radiation testing, an external monitor interface is provided.

This chapter describes the implications of placing most of the test fixture on the same FPGA

as the design under test. Doing so places the test circuitry within the scope of fault injection and

radiation testing. To maximize the utility of this approach, special design consideration must be

made. To reduce SEU induced failures within the on-chip error detection circuitry, SEU mitigation

techniques such as TMR and scrubbing are applied to all SEU evaluation elements. State machines,

functional error detection mechanisms, external interfaces, etc., all have some type of redundancy

or fault tolerance built into them. To make sure that the test fixture and design under test are not

halted by an SEU, a heartbeat is also made available for external monitoring. Every effort is made

to maximize the accuracy of this approach. Implementing each of the basic components of an SEU

sensitivity test fixture for on-chip error detection is discussed in this chapter. Designs used in the

experiments of this thesis are also presented and the configuration of the on-chip error detection

test fixture for each design is discussed.

4.1 Clocking and Control Signals

Clocking and control signals are typically high fanout nets within an FPGA that connect to

many parts of an FPGA design and have a large impact on functionality. For on-chip error detec-
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Figure 4.1: Components of On-Chip Error Detection

tion, clock signals drive SEU evaluation elements as well as all of the design instances. Control

signals, such as reset or clock enable, can also cover a large area of the FPGA. Because these nets

are so large, special care must be taken to make sure that when an SEU affects these signals it

does not cause a system wide failure. If no redundancy is applied to these signals, they present a

significant SPF vulnerability to the functionality of the system.

Using redundant clock signals improves on-chip error detection, but also introduces chal-

lenges. If redundant clock signals are used, it is important that all signals are in phase with each

other. TMR in FPGAs requires that all three TMR domains operate synchronously with each

other. If the TMR domains are out of phase with each other, majority voters will not be able to

select the correct output between the TMR domains. TMR across clock domains requires special

considerations as well [49]. For on-chip error detection, redundant clocks should be used where

applicable.

Most FPGA development boards provide readily available clock sources that can be used

for on-chip error detection through mitigation. A single clock source can be split into three in-

phase clock networks by passing the incoming signal through three separate global buffers after

entering the FPGA. This is similar to the mitigation approach used for global signals in [42] where

singular signals are triplicated after being registered. This mitigation method can be used for other

control signals as well and provides redundant in-phase clock networks with a reasonably low
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impact on SEU sensitivity. Using this mitigation method removes the overhead of creating three

separate sets of in-phase signals.

4.2 Test State Machine

A test state machine is used by on-chip error detection to control design instances and

provide for other needs. The state machine will ensure that the design instances operate in lockstep.

A heartbeat is also managed by the test state machine to indicate the continued operation of the

test fixture and design instances. If the design instances are dependent on input stimulus or golden

output vectors are available, the test state machine can manage provided input stimulus and select

the appropriate golden output vector for comparison. The test state machine can also arbitrate

between on-chip error detection and external monitoring by managing the error status registers

and capturing samples for off-chip error verification.

A heartbeat is used by on-chip error detection to filter out common mode failures (e.g.

design instances failing in exactly the same way). The heartbeat indicates the continued operation

of the test fixture and design instances. It is possible for a single SEU to halt the operation of the

test fixture, disrupt the operation of more than one design instance, or adversely affect the entire

system. If an SEU affects all design instances in exactly the same way, it is likely that the design

instances have ceased operation. In the case of halting design instances, functional error detection

may not report an error because their output signals may still agree, but the heartbeat signal would

reflect the failure. The heartbeat signal can be a counter that is incremented by the state machine

only when the design instances have reached a certain checkpoint (e.g., finished a computation,

completed a set of input vectors, concluded a program run). This counter is made available for

external monitoring. Having a heartbeat signal indicates that the experiment is still operational.

If the design instances depend on input stimulus vectors or golden output vectors, the test

state machine can control which input vector is provided to the design instances, or which output

vector is used for functional error detection. These test vectors may be available off-chip from

memory modules, JTAG or UART interfaces, etc., or they can also be placed on-chip with the test

fixture. On-chip test vectors must be small enough to fit into the FPGA, and they must be protected

by TMR and scrubbing or some other type of fault-tolerance. Mitigation is applied so that SEUs

in on-chip test vectors have minimal influence on error detection results. The state machine can
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act as a memory controller into provided test vectors and orchestrate the administration of the test

vectors.

The test state machine also arbitrates the interaction between on-chip error detection and

the external monitor interface. The error status register and heartbeat signal are made available for

external monitoring. A design output sample may be wanted for external error verification, or the

external monitor may want to reset the design instances. The test state machine can capture the

heartbeat signal for external monitoring and reset the error state register after it has been sampled.

It can also capture a design output sample at set intervals for external error verification and reset the

design instances as requested by external monitoring. The state machine enhances the interaction

of on-chip error detection with external observation of the experiment.

Like the other SEU evaluation components of on-chip error detection, the test state machine

must also be mitigated to improve the functionality of the test fixture. There are many ways to

mitigate a finite state machine. State encoding can be used or TMR can be applied to the entire state

machine. TMR has demonstrated significant improvement in reliability of finite state machines

over alternate encoding methods [10]. Figure 4.2 shows how TMR can be applied to the test state

machine. The output signals and registers of the state machine are fed into redundant copies and

the majority vote between all three copies are used in the next state logic of the state machine.

Configuration scrubbing also benefits the reliability of the test state machine by repairing upsets

as they occur. This prevents the accumulation of upsets that might break TMR. By mitigating the

test state machine in this manner, error detection results are less likely to be adversely influenced

by SEUs in the test state machine.

4.3 Design Instances

On-chip error detection is used to evaluate the effects of SEUs on a target design. The

entire test fixture is built to detect failures within an FPGA design caused by an SEU in the design.

Significant effort is made to ignore SEUs within the test fixture itself, as the effects of SEUs in the

target design is of primary interest. The design under test is integral to the purpose of on-chip error

detection and must be instanced within the test fixture.

One or more instances of the design under test may be placed within the on-chip test fixture.

If input and output test vectors are provided, a single instance of the design under test can be used
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for SEU evaluation. When test vectors are not available, two or more instances of the design must

be used. Either golden output vectors are used for comparison or the redundant copies of the design

act as golden copies for each other. If ever the design instances disagree with the each other, or

with the expected output vectors, a functional failure is detected. Typically, more than one design

instance is used for on-chip error detection.

Placing more instances within the test fixture increases data acquisition but also increases

functional error detection complexity. More design instances consume a larger area on the FPGA,

thus as SEUs occur they are more likely to affect an instance of the design. Increasing the number

of instances increases the SEU sensitivity of the entire test fixture; more failures can be observed

with the same number of injected faults or exposed radiation. Thus smaller designs can be in-

stanced hundreds of times in a single test fixture to accelerate data acquisition. Collecting data

faster is useful because of time limitations and the cost of radiation testing. However, increas-

ing the number of instances complicates functional error detection, control signal distribution, and

timing closure as more signals need to be handled.

The design instances and the rest of the on-chip error detection test fixture must fit on the

same FPGA. If a design consumes too many resources, there will not be enough available for
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multiple design instances and the additional logic needed for on-chip error detection. This limits

the number of designs that can be tested using this approach.

When evaluating multiple version of the same design, the same test fixture should be used

for each evaluation. It is common to test an unmitigated version of a design and compare it against

an SEU mitigated version [42]. Either multiple instances of the unmitigated design or multiple

instances of the mitigated design are instanced together. Versions are never mixed for testing,

(e.g., one instance of unmitigated and one instance of mitigated in the same test fixture). If a

simplex design were being tested the triplicated control signals from the test state machine would

be reduced to a singular signals to drive the design under test, and output comparison signals

would fan out to redundant error detection mechanisms; only one of the triplicated clock networks

would drive the design. For a TMR version of the same design, the same test fixture would be used;

however, since the top level ports and output comparison signals of the TMR design are triplicated,

triplicate test logic signals are not reduced to singular signals to drive the design under test. The

same number of instances could be used when testing different versions of a design to keep the

on-chip error detection overhead roughly the same.

4.4 Functional Error Detection

On-chip error detection uses comparison logic to detect functional failures within a design.

Design instances are compared against each other, or outputs of the design are compared against

golden test vectors. If any disagreement is found, an error is detected. The concepts covered

here are very similar to those used by DWC [33]. Select signals from the design are used for

comparison. Thanks to the flexibility of FPGA fabric, the design space for comparison schemes

and comparison logic implementation is very large. This section covers important aspects and

possible implementations of comparison logic for use in on-chip error detection.

4.4.1 Signal Selection

Select signals from an FPGA design are used for comparison, to detect functional failures.

These signals will be compared against those of other design instances, or golden output vectors,
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on a clock-by-clock basis to provide fast error detection. There is no standard as to which signals

should be selected for comparison.

Not every signal within a design instance can be compared against those of other instances

at the same time. Doing so would consume too many resources and not provide accurate results

because not all of a design is active at once. If an error occurs within an FPGA design, it is likely

that it will propagate to the outputs of a design [16], or be reflected in other significant signals such

as the bus lines of a soft core processor. On-chip error detection selects significant signals of a

design for comparison. These signals are compared on a clock-by-clock basis synchronous to the

operation of the design. If a disagreement is found among these signals, the error status register is

set and remains set to signify that an error has occurred.

Whichever signals are selected for comparison should reflect the operation of the design.

Selected signals should be active when the design is active. The output signals of a design are a

good candidate for selection, but do not necessarily reflect proper operation of the design. Consider

for example the output signals of a soft core processor. If only the console output is compared,

computations that never reach the console will not be compared. Too granular a selection may be

an unwise choice as well. If intermediate computation is done out of order, but the result is the

same, comparing individual registers may not produce accurate results either.

Selecting fewer signals for comparison reduces the size of functional error detection logic,

but also reduces the chance of detecting an error. Selecting more signals for comparison increases

the likelihood of detecting and error, but also increases the size of comparison logic. If many

signals are compared, a large reduction network is needed to reduce the error flags to a single

output [33].

4.4.2 Comparison Schemes

The selected signals of design instances can be compared in a variety of ways. Three of

primary interest are: a one-to-one comparison scheme, a one-to-many comparison scheme, and

a cascaded one-to-one comparison scheme. In a one-to-one comparison scheme there are only

two instances of the design, and their selected signals are compared against each other. This is

good choice for large designs. In a one-to-many comparison scheme, the selected signals of one

instance are compared against those of many other instances. This is helpful when a small design
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must be replicated many times to fill the FPGA. Finally, a cascaded one-to-one comparison scheme

creates two chains of design instances, where the output of one instance feeds into the inputs of

another, and only compared the selected signals of the last instances on each chain. This reduces

the size of comparison logic by allowing errors to propagate through the individuals chains to the

last instances on the chains. These three comparison schemes are later used in the evaluation of

three benchmark designs.

4.4.3 Functional Error Detection Mechanisms

One of the most important parts of the on-chip error detection test fixture is the functional

error detection mechanism. Having this mechanism on-chip provides great flexibility, but like the

other components it too must be protected from the negative effects of SEUs that could skew the

reported error results. There are two main methods that can be used to protect on-chip functional

error detection from SEUs: through TMR or DWC. Figure 4.3 shows a functional error detection

logic that if protected with TMR and another mechanism that is protected by DWC. Functional

error detection logic compares and reduces the outputs of the design under test and the golden

design to a single bit that indicates whether or not a functional error has occured. The TMR

protected circuit triplicates the functional error detection logic and votes on the output of the three

copies to mask any SEU within the error detection logic. The DWC protected circuit duplicates the

functional error detection logic and masks SEU in the detection logic by only reporting an error

when both copies report an error at the same time.

The protection method that reports the fewest false-positive or false-negative results is the

one that should be used for on-chip error detection. Several of the experiments included in this

thesis are set up to estimate the SEU sensitivity of a design using either a TMR protected or a DWC

protected functional error detection mechanism. A comparison is made between the approaches

based on the returned results.

4.5 External Monitor Interface

To facilitate external monitoring of the error status, an error status register is used to indi-

cate whether or not an error has occurred. Functional error-detection logic operates on-chip at the
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Figure 4.3: TMR Protected and DWC Protected Functional Error Detection Mechanisms

same rate as the design under test. An error may only be detected for a single clock cycle. The

error status of the design under test is typically polled at a much slower rate through the external

monitor interface. The error status register begins low and when an error is detected by the on-chip

functional error detection logic the register is then set and remains set so that the next time the

register is polled externally, the error can be reported. Like the other components of on-chip error

detection, this register should also be protected through redundancy.

Any number of communication protocols can be used to externally monitor the error status

of a design under test. JTAG and UART are simple communication standards that can be used to

interface between the test fixture and an external host. For the experiments in this thesis, JTAG is

used to periodically read the error status register of a design to collect data for analysis.

4.6 False Positive Bias

Due to high fan in and single point failures in the routing of reduction networks [33], an

SEU in the reduction network can cause a false-positive to be reported (i.e., an error in the error

detection logic that is reported as an error in the design under test). The following reasons suggest

that an SEU in the functional error detection logic is more likely to cause a false-positive than to

mask an actual error in the design under test (i.e., a false-negative). First, an SEU in the reduction

network of the functional error detection logic may cause an error to be reported. Second, an SEU

in the reduction network may prevent a portion of the comparison signals from being monitored,
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Figure 4.4: False-Positive Bias: An SEU in the functional error detection will either cause false-
positive error to be reported (left), or disconnect a portion of the reduction network while the rest
of network prevents a false-negative (right).

in which case the rest of the error detection network is still on-line. Theses cases are depicted in

Figure 4.4. With part of the error detection logic disable, part of the network is still listening for

errors. Error are detected on significant output signals of the design. When an SEU occurs within

the design, a single fault is introduced. As this fault causes an error to propagate to the output

signals being monitored for errors, it is likely that the original single fault will manifest as multiple

bits disagreeing between design under test and golden values. Finally, when an error occurs within

a design, it will likely manifest for more than a single clock cycle, which gives on-chip functional

error detection logic more opportunity to detect the failure. Thus an SEU in the functional error

detection logic may be more likely to cause a false-positive than a false-negative. The reduction

network is protected by redundancy to try and minimize the number of false-positives that are

reported.

False-positives in the results represent the SEU sensitivity of the test fixture logic. These

results are mixed into the actual failures detected in the design. Thus a portion of the SEU sen-

sitivity estimate reported by on-chip error detection is attributed to SEUs in the test fixture logic

itself, and the SEU sensitivity estimate is actually an overestimate because of this influence.

44



1.8x

MitigatedUnmitigated
D

es
ig

n
T

es
t 

F
ix

tu
re

MitigatedUnmitigated

D
es

ig
n

T
es

t 
F
ix

tu
re

7.0x

MitigatedUnmitigated

D
es

ig
n

T
es

t 
F
ix

tu
re

10.0x

Figure 4.5: Minimum Influence on Results: Assuming a false-positive bias in the test logic, if the
shared overhead of false-positives caused by SEUs in the test fixture is very large, the improvement
demonstrated by applying SEU mitigation is limited (left). If the overhead were greatly reduced,
more improvement would be demonstrated (center). Finally, if the overhead were removed com-
pletely, the most improvement would be demonstrated (right).

4.7 Minimal Influence on Results

When the SEU sensitivity of a design is tested with on-chip error detection, a portion of the

SEU sensitivity reported is caused by SEUs in the test fixture logic itself. This sensitivity overhead

influences the results and can make it difficult to estimate the difference in SEU sensitivity between

the baseline unmitigated an mitigated versions of a design. A very large overhead shared between

two different estimates makes the difference between the estimates look small. For example, say

a design was estimated to be 20% sensitive (i.e., one in five SEUs causes a failure) and another

design was estimated to be 11% sensitive (i.e., one in approximately nine SEUs causes a failure),

but there is a shared test fixture sensitivity of 10%. When comparing the two designs, it appears

that the second design is only 1.8× less sensitive than the first even though considering the shared

overhead, the second design is actually 2× less sensitive than the first. This effect is lessened

the smaller the overhead becomes. Figure 4.5 demonstrates what happens as the false-positive

overhead of the test fixture is reduced.

In designing an on-chip test fixture, great care should be taken to minimize the SEU sensi-

tivity of the test fixture itself so as to not skew the results. This is done by applying the techniques

described in this chapter to the on-chip test fixture: triplicating the clock and control signals, trip-

licating the test control state machine, adding redundancy to the functional error detection mech-

anism and being selective in the number and importance of signals used for comparison to detect
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failures. By reducing the influence of the test fixture on the reported the detected errors, the results

become more meaningful and targeted to the actual design being tested.

4.8 On-Chip Error Detection Benchmark Design Testing

The experiments in this paper accomplish three main goals. First, they demonstrate the in-

dividual and combined benefits of complementary SEU mitigation techniques. Second, they com-

pare results obtained from TMR protected and DWC protected functional error detection mecha-

nisms to try and determine which approach is better. Finally, they compare the SEU sensitivity of

FPGA designs on two different FPGA architectures with and without SEU mitigation techniques

applied to the designs.

To accomplish these goals a set of three FPGA designs were selected: a LEON3 soft pro-

cessor, a finite state machine called the ITC’99 B13 design, and a 128-bit AES encryption core. A

recent study [42] has proposed a set of reliability benchmark designs to assist in research related

to FPGA reliability. The B13 design is among the proposed set; but more importantly, this study

suggests that FPGA designs held in common can be used to better understand the impact of fac-

tors that affect reliability. By comparing the SEU sensitivity of FPGA designs with and without

SEU mitigation, on different FPGA architectures, or with variations in the test fixture used for

estimation, the influence of these factors on SEU sensitivity can be exposed and better understood.

The sections that follow describe the FPGA designs used in the experiments of this thesis.

General information is present about the design and its configuration for testing. Specifics are

given as to how the on-chip error detection test fixture is configured for the particular design,

and the kinds of reliability factors tested by each design are covered. The general idea is that

the SEU sensitivities of three FPGA designs are tested with different SEU mitigation techniques

applied, across two different FPGA architectures, with variations in the test fixtures used for SEU

sensitivity estimations. With the data that is collected: the benefits of SEU mitigation techniques

are demonstrated, a cross-architecture comparison is made of two FPGA architectures, and the best

means of protecting on-chip error detection circuity from SEUs studied.
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4.8.1 LEON3 Soft Processor

The LEON3 is an open-source 32-bit soft-core processor that is technology independent

and can be implemented on SRAM-based FPGAs. The processor is well documented and has a

strong user group for support [50]. For this work, only the core architecture of the LEON3 and

a minimal set of peripherals are included in the experiment. Caching is also disabled to facilitate

error detection. This configuration limits the scope of possible SEU failure modes. It also allows

the experiment to focus on the benefits of SEU mitigation and repair techniques, as observed in

fault injection and neutron radiation testing.

For the LEON3 experiments in this thesis, a one-to-one lockstep comparison scheme is

used for on-chip error detection. Two independent instances of the LEON3 processor are placed

on the same FPGA and compared against each other as they operate in lockstep. To provide a

relatively low-level of fault detection, 108 bus signals1 from each LEON3 processor are compared

on a clock-by-clock basis. Because caching is disabled, bus activity is elevated and better reflects

the functional state of the processor and connected peripherals. Rather than providing input vectors

to stimulate the design and keep it active for error propagation, each LEON3 processor executes

its own copy of the Dhrystone 2.1 benchmark in a continuous loop. The comparison and reduction

logic used for functional error detection has TMR applied to it to protect against SEUs in functional

error detection mechanism logic. The same testing fixture is used for all design variations.

Using on-chip error detection, the individual and combined benefits of complementary

SEU mitigation techniques are demonstrated. To accomplish this, five variations of SEU miti-

gation techniques are applied to the LEON3 design: configuration scrubbing, TMR, TMR with

configuration scrubbing, TMR with internal memory scrubbing of the ROM and RAM memory

modules, and TMR with both configuration and internal memory scrubbing. The SEU sensitivity

of each design variation is compared. The configuration scrubbing only variation is used as a base-

line reference. The complementary nature of each SEU mitigation technique is observed as they

interact with each other. SEU sensitivity is evaluated on a Xilinx Kintex 7 FPGA through fault

injection and radiation testing. Results suggest that combining complementary SEU mitigation

techniques offers the greatest reduction in SEU sensitivity.

1To processor – transfer done (1 bit), response type (2 bits), read data bus (32 bits); to peripherals – address bus
(32 bits), read/write (1 bit), transfer type (2 bits), transfer size (3 bits), burst type (3 bits), write data bus (32 bits).
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4.8.2 ITC’99 B13 Benchmark Design

The ITC’99 B13 Benchmarks is part of a suite of twenty-two benchmark designs that are

representative of typical circuits that can be synthesized [51]. This set of designs was proposed

for use as reliability benchmark designs by [42]. The B13 design is a finite state machine used to

control a weather station. Although the circuit is small, previous research has been conducted using

this design, which facilitates the comparison of mitigation approaches with other researchers [42].

Because the B13 design is smaller, 512 copies of the B13 are instanced on the target FPGA

to accelerate data collection. Having more instances on the FPGA increases the probability of

failure, which in turn increases the data collection rate for fault injection and radiation testing.

A one-to-many lockstep comparison scheme is combined with on-chip test vectors for the B13

experiments. Outputs of design instances are compared against each other and a set of golden test

vectors made available on the FPGA. The on-chip test control unit provides the input test vectors

to the B13 instances in a continuous loop and resets the instances between iterations. To mitigate

the effects of SEU in the input and output vectors, TMR and scrubbing are applied to the respective

memory modules.

Several variation of this design are tested on two different FPGA architectures. On a Xilinx

Kintex 7 FPGA, three SEU mitigation technique variations are tested: non-TMR, TMR, and TMR

with configuration scrubbing. The functional failure error detection logic is protected with TMR.

Results are compared against findings in related works and demonstrate the benefits of combining

complementary SEU mitigation techniques. On the Altera Stratix V FPGA, the SEU sensitivi-

ties of two SEU mitigation variations are estimated using two different functional error detection

mechanisms. It was found that a DWC protected functional error detection mechanism provided

more favorable results than a TMR protected error detection mechanism for error detection. Re-

sults from the non-TMR and TMR with configuration scrubbing variations are compared against

those of the Xilinx B13 experiments for a cross-architecture comparison.

A non-TMR version and a TMR version of a very simple FPGA design are also tested

using an on-chip one-to-many comparison scheme with on-chip test vectors. This experiment

was conducted on an Altera Stratix V FPGA and demonstrates that the amount of SEU reduction

observable using on-chip error detection may depend on the resource utilization ratio between the
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test fixture logic and the design under test. Fault injection results are compared against the B13

Altera fault injection results.

4.8.3 128-bit AES Cryptography Core

An open source 128-bit AES cryptography core is also used for testing. This is a larger

FPGA design that is representative of a real-world use case for FPGAs. The design is fully

pipelined and produces a valid output every clock cycle once the pipeline is filled.

The SEU sensitivity of this design was tested with on-chip error detection using a cascaded

one-to-one lockstep comparison scheme. Two instances of the AES design are chained together in

a feedback loop such that the output of one instance feeds into the input of the other. The outputs

of two chains are compared against each other. The test control unit fills the pipelines of both

chains with identical input vectors before feeding their outputs back into their respective inputs to

create a feedback loop. This approach fills the FPGA and keeps the design highly active, which

facilitates the detection of functional errors.

Like the B13 design, the SEU sensitivity of a non-TMR and a TMR with configuration

scrubbing variations of this design are tested across two FPGA architectures. A TMR variation

without configuration scrubbing is tested through fault injection on a Xilinx Kintex 7 FPGA. Also

on the Kintex 7 FPGA, variations where the on-chip functional error detection mechanism is pro-

tected with TMR and DWC (first triplicated and then duplicated, such that a discrepancy must be

detected by the majority output of both triplicated mechanisms in order to be considered a failure)

are compared against results that just use DWC to protect the functional error detection mechanism

from SEUs. On the Altera Stratix V, non-TMR and TMR with configuration scrubbing results are

compared using DWC protected and TMR protected versions of the functional error detection

mechanism. Results suggest that using DWC alone for error detection is the best approach for

protecting functional error detection mechanisms from SEUs.

4.9 SEU Estimation Through Fault Injection and Radiation Testing

The design, comparison scheme, and functional error detection mechanism variations de-

scribed in Section 4.8 are tested through either fault injection, radiation testing, or both. In the
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chapters that follow, the approach and metrics used to collect data for fault injection and radia-

tion testing are discussed. Collected data is also presented and compared with other results as

appropriate. Outcomes of the experiments as related to the original goals are discussed.
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CHAPTER 5. FAULT INJECTION

Fault injection is the process of artificially introducing a fault and observing the response.

The type of fault injection referred to in this thesis involves mimicking the behavior of an SEU

in configuration memory by altering configuration memory. Fault injection can be used to esti-

mate the SEU sensitivity of an FPGA design and to validate SEU mitigation techniques. While

it has limitations and does not replace the need for accelerated radiation testing, it does provide a

relatively inexpensive and rapid means of estimating SEU sensitivity and observing the potential

effects of SEUs [15].

There are many ways that fault injection can be done to emulate SEUs. In general, the

values stored in the SRAM-cells of the FPGA, which determine its configuration and the state

of the operating design, must be altered. One approach it to use partial reconfiguration. Partial

reconfiguration modifies the values stored in the SRAM-cells while the FPGA is active; the design

continues to run during this process. Using partial reconfiguration, an inverted bit value may be

written to the device. Partial reconfiguration can be done internally with fault injection logic on

the FPGA or can be done externally. Another method of performing fault injection is corrupting

the bitstream used to program the device by inverting a value of a bit within the bitstream.

In this chapter, the approach and metrics used for fault injection in the experiments of this

thesis are presented. Then results from all of the different experiments are presented. Appropriate

comparisons are made and some conclusions are drawn.

5.1 Approach

Several different fault injection campaigns can be used to gather data from fault injection.

The three main types are: exhaustive, targeted, and random. An exhaustive fault injection cam-

paign injects a fault into every single configuration bit possible and tests each bit for sensitivity. A

targeted fault injection campaign is selective in the bits it injects and tests. Examples of targeted
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fault injection campaigns include only injecting faults into user flip-flops, or only injecting faults

into the essential or critical bits as reported by the CAD tools. Random fault injection has an

equal likelihood of upsetting any bit within the FPGA’s configuration memory. This campaign is

typically used to emulate radiation testing.

Fault injection tests consist of injecting faults and checking if a failure has occurred. To

emulate the behavior that would occur within a radiation test, a random fault injection campaign

was conducted to test all benchmark designs. This means that the configuration bits are selected

at random for fault insertion; much like the upsets that occur in a well constructed radiation test.

The primary goal of a fault injection experiment is to determine the sensitive CRAM bits within

the FPGA that cause the benchmark design to fail when upset. After a randomly selected CRAM

bit is upset, the behavior of the benchmark design is carefully monitored to see if any copy of the

benchmark design deviates from the behavior of the other copy or copies of the design that also

reside on the FPGA. If a deviation is detected, the CRAM bit is classified as sensitive; otherwise,

the CRAM bit is classified as non-sensitive. A large number of CRAM bits must be upset and

categorized to obtain sufficient statistical confidence.

Traditionally every configuration bit in a design would be tested; however, with newer

FPGA devices, exhaustive testing of configuration bits becomes less feasible. The experiments

conducted in this thesis all use a random fault injection campaign. This campaign follows the flow

shown in Figure 5.1. Injected faults and detected failures are recorded and used for analysis. This

test procedure follows the methodology of [52]. Since some of the variations of SEU mitigation

techniques tested by fault injection do not include CRAM scrubbing, an additional check is made

to see if CRAM scrubbing should be emulated. If scrubbing is enabled, the last injected fault is

repaired before injecting another fault. Otherwise, faults are allowed to accumulate, emulating

SEU behavior without CRAM scrubbing.

Compared to radiation testing, fault injection is relatively inexpensive and is able to collect

data at relatively high-speeds. Figure 5.2 displays a fault injection platform used for the experi-

ments conducted on a Xilinx Kintex 7 FPGA. This platform consists of a custom high-speed JTAG

configuration manager, which injects faults via partial reconfiguration over JTAG. This platform

can conveniently run in a local lab with little overhead. For the Altera FPGA designs, fault injec-
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Figure 5.1: Fault Injection Flowchart

tion was performed using Altera’s fault injection debugger and IP core instances [53]. Once the

test is running, large amounts of data are collected without user intervention.

Only a portion of the configuration bits can be inverted via partial reconfiguration in Xilinx

FPGAs and fault injection in Altera FPGAs. BRAM data, global configuration bits, and other bits

on an active design can only be upset through radiation testing. Other SEEs, such as transient

currents, can only be caused by high-energy radiation. However, fault injection testing accelerates

radiation testing by granting insight into what to expect from radiation testing. Radiation tests are

expensive; fault injection allows users to better prepare their designs and test methodologies for

radiation testing.

Fault injection has its limitations and does not model all of the negative behavior of FPGAs

operating in the presence of ionizing radiation (e.g., upsets in the proprietary internal state of an

FPGA, user flip-flops, and block memories). Injected faults do not have the same characteristics

that may occur within a radiation test beam or in actual space orbit (i.e., multi-cell upsets and ran-

dom inter arrival times). As such, some of the failure modes that are seen in radiation testing will
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Figure 5.2: A custom high-speed JTAG controller (left) is used to perform automated fault injection
testing on a Xilinx Kintex 7 FPGA (right).

not appear in fault injection. Improvement in reliability, between the unmitigated and mitigated

design, seen by fault injection is expected to be higher than the improvement seen in radiation

testing. In spite of these limitations, fault injection is a very helpful tool that provides impor-

tant, preliminary information on the effectiveness of a given mitigation scheme, or the influence of

FPGA architecture and test fixture configuration on SEU sensitivity.

The goals of fault injection for this work are: first, to estimate the configuration sensitivity

of several SEU mitigation approach on different benchmark designs; second, explore the influence

of protecting functional error detection logic with TMR and DWC; and finally, compare the SEU

sensitivities of several design variations on two different FPGA architectures.

5.2 Metrics

The primary metric used in the fault injection experiments is design sensitivity or the per-

centage of CRAM bits that cause a design failure when upset. This design sensitivity metric is very

similar to the design “cross section” metric that will be used for the neutron radiation test results.

Rather than testing each CRAM bit, the sensitivity of the design is estimated [54] by dividing the

number of observed failures (k) by the number of faults injected (n). This is equivalent to the
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maximum likelihood estimator, r̂, of the binomial distribution:

r̂ =
k
n
.

A related metric is the Mean Upsets To failure (MUTF) or the inverse of the design sensitivity (i.e.,

n/k).

The standard deviation of the maximum likelihood estimator is used to determine the 95%

confidence interval between the sensitivity of the random sample and that of the design as a whole.

The standard deviation is estimated using the following equation:

σ =

√
k
n2

(
1− k

n

)
. (5.1)

The percent error is calculated by dividing the standard deviation by the maximum likelihood es-

timator. This value represents how tight the confidence interval is around the estimated sensitivity.

Designs with lower sensitivity (i.e., fewer faults) require much more fault injection to get good

results.

The Kintex 7 FPGA used in these experiments (XC7K325T) has approximately 25% fewer

CRAM bits than the Altera Stratix V FPGA (5SGXEA7) used in these experiments. To provide a

one-to-one comparison metric, the estimated number of sensitive bits in each design is used, with

corresponding 95% confidence intervals. This value is the product of the sensitivity of the design

and the total number of CRAM bits in the FPGA found in FPGA (72,823,424 for the Xilinx Kintex

7 FPGA; 98,681,196 for the Altera Stratix V FPGA). This metric helps assist in a fair comparison

of the two FPGAs.

5.3 LEON3 Xilinx Results

Five variations of SEU mitigation techniques, applied to the LEON3 processor, are tested:

configuration scrubbing, TMR, TMR with configuration scrubbing, TMR with internal memory

scrubbing of the RAM and ROM modules, and TMR with both configuration and internal memory

scrubbing. The estimated design sensitivity of each of the five LEON3 design variations is shown

in Table 5.1. This is the SEU sensitivity for all of the logic on the target FPGA, which includes two
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processors and the rest of the on-chip test fixture. Because the test fixture logic is also included in

the estimated sensitivity, the SEU sensitivity of a design can only be overestimated. The same is

true for the cross section of design obtained in neutron radiation testing. A rough SEU sensitivity

estimation of a single design instance be determined by dividing the total SEU sensitivity of the

test fixture and design instances by the number of design instances, two in this case.

Table 5.1: LEON3 Xilinx Fault Injection Results

Variation 1 2 3 4 5

Description
CRAM Scrubbing TMR No TMR & BRAM TMR & CRAM TMR, BRAM &

Baseline Scrubbing Scrubbing Scrubbing CRAM Scrubbing
Faults Injected (n) 1,831,859 1,369,445 1,502,340 8,840,565 29,443,885
Observed Failures (k) 6,501 1,200 1,100 1,150 2,037
MUTF 282 1,141 1,366 7,687 14,455
Sensitivity .355% .0876% .0732% .0130% .00692%
Percent Error 1.24% 2.89% 3.01% 2.95% 2.22%
(95% Conf. Interval) (.346%, .363%) (.0827%, .0926%) (.0689%, .0775%) (.0123%, .0138%) (.00662%, .00722%)
Est. Sensitive Bits 258,440 63,813 53,321 9,473 5,038
(95% Conf. Interval) (252,168; 264,711) (60,204; 67,422) (50,171; 56,471) (8,926; 10,021) (4,819; 5,257)
Improvement 1.00× 4.05× 4.85× 27.28× 51.30×
(95% Conf. Interval) (.95×; 1.05×) (3.74×; 4.4×) (4.47×; 5.28×) (25.17×; 29.66×) (47.97×; 54.93×)

The configuration scrubbing variation is the baseline reference LEON3 processor that pro-

vides no spatial SEU mitigation techniques. Without any additional internal mitigation hardware,

this design is the smallest of the different design variations and is expected to be the most sensitive

to SEUs. It is expected that this design will be the most sensitive to fault injection and ioniz-

ing radiation and that all other design variations will provide greater SEU immunity. Although no

structural mitigation was provided in this design, CRAM scrubbing was performed during the fault

injection and radiation testing. This scrubbing was performed to protect the comparison and re-

duction error detection logic used by the functional error detection mechanism of the test fixture1.

All other design variations are compared to the SEU response of this baseline unmitigated design.

The improvement in design SEU sensitivity, over the baseline design, is also shown in Ta-

ble 5.1. This is calculated by dividing the sensitivity of the baseline design by the sensitivity of the

design variation. All four LEON3 mitigated design variations demonstrate an improvement over

the unmitigated baseline design. The TMR only variation demonstrates a 4× improvement over
1In hindsight, it would have been interesting to include a non-TMR version without CRAM scrubbing in the

experiment.
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the baseline – its improvement is limited since it allows data corruption to accumulate within the

internal memories. Adding internal BRAM scrubbing (#3) further increases the improvement by

preventing BRAM error accumulation. Although errors are not artificially injected into the BRAM,

errors can enter the BRAM through errors in the surrounding logic. The use of CRAM scrubbing

is very important as it prevents the accumulation of upsets within the configuration memory and fa-

cilitates the proper operation of TMR. The combination of all SEU mitigation techniques provides

over 50× improvement in design sensitivity over the unmitigated baseline design.

These results, collected using an on-chip error detection approach, suggest that the mit-

igated LEON3 design is 51.3× less sensitive to upsets than the baseline design in spite of the

fact that the mitigated design is 3.4× larger in resource utilization over the unmitigated design.

These results indicate that the mitigation techniques described in Section 2.5 significantly reduce

the sensitivity of the LEON3 processor to upsets in the configuration memory.

In spite of applying SEU mitigation techniques, however, there are a number of configu-

ration bits in the mitigated design that are still sensitive to single-event upsets. This suggests that

the design still contains a number of single points of failure, either in the test fixture logic, or in

the designs themselves. Future work will investigate the cause of these remaining single points of

failure to further improve the accuracy of on-chip error detection and the reliability of the design

under test.

5.4 B13 Altera Results

The B13 benchmark design was tested on an Altera Stratix V FPGA using two different

methods of protecting the on-chip functional error detection logic. The comparison and reduction

logic is either triplicated or duplicated. Triplicating the logic allows the correct answer to be voted

on but costs more area; duplication consumes fewer resources, but there is no way of telling which

redundant copy is correct when the two instances disagree with each other. The SEU sensitivity

of 512 instances of the B13 plus the on-chip test fixture logic is estimated using the two different

methods of protecting the on-chip functional error detection logic. Table 5.2 show the results from

testing an unmitigated and mitigated design variations using TMR protected error detection and

DWC protected error detection.
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Table 5.2: B13 Altera Fault Injection Results

Description
Unmitigated TMR & Scrubbing Unmitigated TMR & Scrubbing

TMR Detection TMR Detection DWC Detection DWC Detection
Faults Injected (n) 12,210 31,083 19,493 19,295
Observed Failures (k) 265 86 285 24
MUTF 46 361 68 804
Sensitivity 2.1704% .2767% 1.462% .1244%
Percent Error 6.08% 10.77% 5.88% 20.40%
(95% Conf. Interval) (1.912%, 2.429%) (.0827%, .0926%) (1.294%, 1.631%) (.0747%, .1741%)
Est. Sensitive Bits 2,141,729 273,030 1,442,782 122,744
(95% Conf. Interval) (1,886,675; 2,396,784) (215,404; 330,655) (50,171; 56,471) (8,926; 10,021)
Improvement 1.00× 7.84× 1.00× 11.75×
(95% Conf. Interval) (.79×; 1.27×) (5.71×; 11.13×) (.79×; 1.26×) (7.43×; 21.84×)

The results suggest that protecting the functional error detection logic with DWC provides

more favorable results than using TMR to protect functional error detection logic for detecting

errors. The unmitigated design is more sensitive when tested using TMR protected error detec-

tion than when using DWC protected error detection. It is possible that the TMR protected error

detection logic returns more false positives than the DWC protected logic, thus increasing the sen-

sitivity of the unmitigated and mitigated versions of the design. The overall improvement found

using TMR to protect the error detection logic is 7.84×; whereas using DWC to protect the er-

ror detection logic demonstrates an 11.75× improvement in reliability. Based on these results, it

appears that using DWC to protect error detection logic introduces fewer false-positives into the

results. The results provided by DWC are more favorable and may be more accurate, but without

some form of off-chip error validation (i.e., failure-immune validation) it cannot definitively be

said that DWC provides more accurate results than TMR for error detection.

5.4.1 Comparison of a Simple DUT and the B13

To study the impact of size of the test fixture logic verses size of the design under test, the

SEU sensitivity of a much smaller design under test was estimated using the same on-chip error

detection test fixture as the B13 design. TMR was used to protect the error detection logic for

this experiment. 2048 instances of simple design consisting of ten six-input look-up tables feeding

10 registers was tested. Random test vectors were used as input stimulus with corresponding
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golden output vectors. This design is considerably smaller than the B13 finite state machine.

This experiment is expected to demonstrate the negative influence of the test fixture overhead on

obtained results. Table 5.3 shows the results obtained through fault injection on an Altera Stratix

V FPGA.

Table 5.3: Simple DUT Altera Fault Injection Results

Description
Unmitigated TMR & Scrubbing

TMR Detection TMR Detection
Faults Injected (n) 658 11,345
Observed Failures (k) 30 100
MUTF 22 113
Sensitivity 4.56% .88 %
Percent Error 17.84% 9.96%
(95% Conf. Interval) (2.97%, 6.15%) (.71%, 1.05%)
Est. Sensitive Bits 4,499,143 869,821
(95% Conf. Interval) (2,926,275; 6,072,010) (700,089; 1,039,553)
Improvement 1.00× 5.17×
(95% Conf. Interval) (.48×; 2.07×) (2.81×; 8.67×)

To provide a fair comparison between the B13 and the simple DUT designs, the results

from the simple DUT experiment are scaled so that the sensitivity of 512 instances of each design

are compared against each other instead of 2048 instances of the simple DUT against 512 of the

B13. This is done by multiplying the MUTF of the simple DUT by 4 and dividing its sensitivity

by 4. Table 5.4 shows a scaled comparison of the simple DUT and B13 fault injection data using

TMR protected functional error detection logic.

The results obtained from on-chip error detection find that a simple DUT instance is less

sensitive than a B13 instance for both the unmitigated and mitigated versions respectively. This

is determined by comparing the scaled sensitivity of both designs and noting that in both the

unmitigated and mitigated cases the sensitivity is lower for the simple DUT design. Considering

that the simple DUT design is much smaller than the B13 design, this outcome is to be expected.

The more interesting outcome is found by comparing the improvement between the unmitigated

and mitigated version of each design. The simple DUT design shows an improvement of 5.17x

whereas the B13 design shows an improvement of 7.84x (using TMR protected error detection
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Table 5.4: Normalized Simple DUT and B13 Comparison Fault Injection Results

Description
Simple DUT Simple DUT B13 B13
Unmitigated TMR & Scrubbing Unmitigated TMR & Scrubbing

MUTF 88 452 46 361
Sensitivity 1.140% .2204% 2.1704% .2767%
Percent Error 17.84% 9.96% 6.08% 10.77%
Est. Sensitive Bits 1,124,786 217,455 2,141,729 273,030
Improvement 1.00× 5.17× 1.00× 7.84×

logic). These results suggest that as the sensitivity of a design decreases in relation to the test

fixture logic overhead, the amount of improvement that can be demonstrated declines. In other

words, there is a shared likelihood of false positives occurring from SEUs in the test fixture logic;

as the sensitivity of the design decreases, the likelihood of false-positives begins to dominate,

which makes it harder to see a difference between the sensitivity of the unmitigated and mitigated

version of a design.

The error bounds in this experiment overlap in part because the improvement between the

two designs are close together. The fact that the improvement from SEU mitigation is close in

both designs suggests that the overhead of false-positive occurrences is significant. In other words,

a significant portion of the estimated sensitivity in this experiment is due to SEUs in the error

detection logic that resulted in false-positive failure reports. Further experimentation and off-chip

error validation would strengthen these conclusions.

5.5 B13 Xilinx Results

On a Xilinx Kintex 7 FPGA, 512 instances of the B13 design were compared against each

other and a set of golden output vectors using TMR protected functional error detection logic.

Three variations of SEU mitigation were applied to the designs for testing. The “Unmitigated”

version does not have TMR applied to the B13 design instances, but it does have configuration

scrubbing applied to the prevent SEU accumulation in the on-chip error detection test fixture logic.

Again, this version is expected to be the most sensitive version and is use as a baseline reference

for the other variations of the design. In the second version, only TMR is applied to the design.
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The third version combines TMR and configuration scrubbing. Fault injection was performed on

this design to demonstrate the benefits of combining TMR and scrubbing, show what happens to

TMR benefits with SEU accumulation (i.e., without configuration scrubbing), and to later be used

in a cross-architecture comparison of SEU sensitivity on an Altera Stratix V FPGA and a Xilinx

Kintex-7 FPGA. Result from the random fault injection campaign are shown in Figure 5.5.

Table 5.5: B13 Xilinx Fault Injection Results

Description Unmitigated TMR Only TMR & Scrubbing
Faults Injected (n) 558,012 665,461 58,237,618
Observed Failures (k) 8,600 2,791 8,533
MUTF 65 235 6,825
Sensitivity 1.54% 0.45% .0147%
Percent Error 1.07% 1.89% 1.08%
(95% Conf. Interval) (1.51%,1.57%) (.41%, .44%) (.0143%,.0150%)
Est. Sensitive Bits 1,122,344 310,087 10,670
(95% Conf. Interval) (1,098,807; 1,145,882) (298,608; 321,567) (10,444; 10,897)
Improvement 1.0× 3.62× 105.2×
(95% Conf. Interval) (.96×; 1.04×) (3.42×; 3.84×) (100.84×; 109.72×)

Results in Table 5.5 demonstrate a 105.2× improvement in reliability between the unmit-

igated and the TMR with configuration scrubbing design. TMR alone only demonstrates a 3.6×

reduction in SEU sensitivity. Without configuration scrubbing, the benefits of TMR drastically

decline. It is interesting to note that a number of sensitive bits (i.e., bits that if upset will cause

the design to fail), are still present in the design. Future work will investigate why these bits are

sensitive and how to eliminate them.

5.6 AES Altera Results

Much like the fault injection test of the B13 design on an Altera Stratix V FPGA, the

AES fault injection experiments on the Altera Stratix V FPGA compares two different approaches

for protection of functional error detection logic. The first approach protects the detection with

logic with TMR, but the triplicated clock network was optimized away by the CAD tools into a

single clock network. The second approach uses DWC to protect the error detection logic, and the
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clock network was forced to be triplicated. This experiment compares the effects of using TMR

over DWC for protecting error detection logic, and demonstrates the importance of triplicating the

clock network for TMR. Results from this experiment are shown in Figure 5.6.

Table 5.6: AES Altera Fault Injection Results

Description
Unmitigated TMR & Scrubbing Unmitigated TMR & Scrubbing

TMR Detection TMR Detection DWC Detection DWC Detection
Single Clock Single Clock Triplicated Clock Triplicated Clock

Faults Injected (n) 3,903 3,987 14,544 124,045
Observed Failures (k) 400 177 1,451 17
MUTF 10 23 10 7,297
Sensitivity 10.249% 4.439% 9.977% .0137%
Percent Error 4.47% 7.35% 2.49% 24.25%
(95% Conf. Interval) (9.297%, 11.200%) (3.800%, 5.079%) (9.490%, 10.463%) (.0072%, .0202%)
Est. Sensitive Bits 10,113,369 4,380,881 9,845,051 13,524
(95% Conf. Interval) (9,174,418; 11,052,319) (3,749,967; 5,011,795) (9,364,413; 10,325,688) (7,096;19,952)
Improvement 1.00× 2.31× 1.00× 727.97×
(95% Conf. Interval) (.83×; 1.20×) (1.83×; 2.95×) (.91×; 1.10×) (469.34×; 1,455.24×)

It is interesting to note that in this design there is not much difference between the sensi-

tivity of the unmitigated design estimated by TMR protected error detection logic with a single

clock and estimated by DWC protected logic with a triplicated clock. Both approaches returned a

MUTF of approximately 10. For the B13 design, 512 sets of 10-bit signals are compared against

each other and a set of golden inputs and the result is reduced to a single bit. That requires a 51,210

input reduction tree network. In the AES design, the functional error detection logic compares two

sets of 128-bit signals, which requires only a 256 input reduction tree network. The reduction

tree network needed by the AES design is much smaller than that of the B13 design, and thus the

prevalence of false-positive failures is lessened [33]. Based on these considerations and the fact

that each AES instance has much higher resource utilization than the on-chip error detection test

fixture, it is assumed that false-positive overhead in the results of the AES design is very small.

By triplicating the clock network and using DWC to protect the error detection logic from

reporting false-positives, the improvement benefit gained from applying TMR and configuration

scrubbing increased from 2.31× to 728×. This is an enormous leap in improvement. These results

suggest that by triplicating the clock networks, many single point failures are eliminated in the

triplicated AES design logic. Using DWC over TMR to protect the functional error detection logic
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contributed to this improvement increase in the results; although, it is difficult to say by how much.

The most important outcome from this comparison is that triplicating the clock network reduces

single point failures in the design, and that DWC protection of functional error detection logic

provides more favorable results.

Much greater improvement is seen in the AES design than in the B13 design when TMR

and configuration scrubbing are applied to the designs. There are many factors that influence the

SEU sensitivity of a design including: synthesis, placement, and routing. One possible cause of the

difference is the number of times all three TMR domains are forced to pass through the same logic

function. In the B13 design, there are approximately 87,000 majority voters in the final on-chip

test fixture circuit with the TMR’d design instances. In the AES design, there are approximately

768 majority voters in the final on-chip test fixture circuit with the TMR’d design instances. Each

majority voter is a logic function that all three TMR domains must pass through, which presents

a potential vulnerability for single points failures [32]. These results suggest that there are more

single point failures in the mitigated B13 design than there are in the mitigated AES design on this

particular FPGA architecture.

5.7 AES Xilinx Results

Like the B13 design on an Altera Stratix V FPGA, the AES design is tested on a Xilinx

Kintex 7 FPGA using two variations of SEU mitigation for the on-chip functional error detec-

tion logic. The first variation is an aggressive form of SEU mitigation that consists of both TMR

and DWC. In this variation, the functional error detection logic is first triplicated and then dupli-

cated. Figure 5.3 depicts a TMR and DWC protected error detection logic. The outputs of design

instances A and B are fed through a comparison and reduction network that is triplicated and du-

plicated. An error is only detected when two or more of the majority voter outputs (C0, C1, C2; and

D0, D1, D2 respectively) of both copies of the triplicated comparison and reduction network agree

that an error has occurred, at the same time. The second variation is a DWC protected functional

error detection logic.

The original intent was that using an aggressive SEU mitigation of the functional error

detection logic would reduce the likelihood of false-positives and improve the accuracy of on-chip

error detection. This seemed plausible since the encoding of errors is stronger with this approach
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Figure 5.3: TMR and DWC Protected Function Error Detection Mechanism

(i.e., errors have to be detected by two triplicated functional error detection circuits). The estimated

SEU sensitivity of the unmitigated and mitigated version of the AES design are shown in Table 5.7

and compared with findings gathered using DWC protected error detection logic.

Table 5.7: AES Xilinx Fault Injection Results

Description
Unmitigated TMR & Scrubbing Unmitigated TMR TMR & Scrubbing

TMR/DWC Detection TMR/DWC Detection DWC Detection DWC Detection DWC Detection
Faults Injected (n) 832,113 1,493,221 278,287 974,499 5,312,513
Observed Failures (k) 10,000 1,779 19,233 23,971 5,024
MUTF 83 839 14 41 1,057
Sensitivity 1.20% .119% 6.9% 2.46% .095%
Percent Error .99% 2.37% .70% .64% 1.41%
(95% Conf. Interval) (1.18%, 1.22%) (.114%, .125%) (6.8%, 7.0%) (2.43%, 2.49%) (.092%, .097%)
Est. Sensitive Bits 874,619 86,707 5,032,980 1,791,331 68,869
(95% Conf. Interval) (857,580; 891,658) (82,680; 90,734) (4,964,351; (1,768,935; (66,965; 70,772)

5,101,609) 1,813,728)
Improvement 1.00× 10.09× 1.00× 2.8× 73.1×
(95% Conf. Interval) (.96×; 1.04×) (9.45×; 10.78×) (.97×; 1.03×) (2.7×; 2.9×) (70.2×; 76.2×)

The data only demonstrates a 10× improvement between the unmitigated and mitigated

design versions using TMR and DWC to protect the functional error detection logic; whereas the

DWC protected functional error detection logic demonstrates a 73× reduction in SEU sensitivity

between the unmitigated and mitigated design versions. An interesting thing to note is that the

sensitivity of the unmitigated design reported using the TMR and DWC error detection protection
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is much lower than that of the unmitigated version as reported by DWC protected error detection

logic. It is not clear what causes these differences. It is possible that TMR and DWC protected logic

misses error events (i.e., false-negatives) or better masks errors in the functional error detection

logic, but without off-chip error validation, it is difficult to confirm.

The DWC protected functional error detection circuitry results are more in line with the

Xilinx Kintex 7 results on the LEON3 and B13 circuit, and they are more favorable than the

results obtained from the TMR and DWC protected error detection circuitry. For these reasons,

the DWC protected results will be used for comparison with Altera Stratix V results. It is also a

fitting comparison because the Altera Stratix V test also uses DWC to protect the functional error

detection circuitry of its experiment.

Another interesting outcome of the AES experiments on the Xilinx Kintex 7 FPGA are

the results of the TMR only version of the AES design using DWC protected error detection (see

Table 5.7). Like the B13 TMR only design, much less improvement is gained by applying TMR

alone than by applying TMR with configuration scrubbing. TMR alone demonstrates a 2.8× im-

provement; whereas TMR with configuration scrubbing demonstrates a 73× improvement over

the baseline unmitigated version. This is the type of behavior that can be expected when SEUs are

allowed to accumulate or occur faster than the scrubbing method can keep up with.

5.8 Comparison of Fault Injection Results on Two FPGA Architectures

Data from these experiments can be used to compare the SEU sensitivity of designs im-

plemented on an Altera Stratix V (5SGXEA7)FPGA and a Xilinx Kintex 7 (XC7K325T)FPGA.

These devices offer similar feature sets and are both built on 28nm process technology. Table 5.8

summarizes the fault injection results of the B13 and AES designs across both FPGA architectures.

Fault injection results demonstrate some surprising similarities between the two FPGA

architectures. First, unmitigated versions of the tested designs have nearly the same number of

estimated sensitive bits. Estimated sensitive bits are proportionally scaled to the number of CRAM

bits on the device, which provides a metric for a one-to-one comparison of fault injection results

across FPGA architectures. The B13 design has 1.4 million and 1.1 million estimated sensitive

bits on the Stratix V and Kintex 7 respectively. Estimates are within 2× of each other for the AES

design. Considering all of the variables involved, it is impressive that two FPGA architectures with
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Table 5.8: Comparison of Fault Injection Data

Design ITC’99 Benchmark B13 128-bit AES IP Core
Description Unmitigated Mitigated Unmitigated Mitigated

Altera Stratix V

Percent Error 5.88% 20.40% 2.49% 24.25%
MUTF 68 804 10 7,297
Est. Sensitive Bits 1,442,782 122,744 9,845,051 13,524
Improvement 1.00× 11.75× 1.00× 728×

Xilinx Kintex 7

Percent Error 1.07% .015% 0.70% 1.41%
MUTF 65 6,825 14 1,057
Est. Sensitive Bits 1,122,344 10,670 5,032,980 68,869
Improvement 1.00× 105.2× 1.00× 73.1×

separate CAD tools for synthesis, placement, and routing would implement FPGA designs with

comparable SEU sensitivity. Second, with TMR and scrubbing applied to the designs, each FPGA

architecture favored one design over the other for reduction of SEU sensitivity. Significantly better

improvement and fewer estimated sensitive bits were found for the AES design on the Stratix V

and for the B13 design on the Kintex 7 FPGA. This suggests that benefits from SEU mitigation are

design and architecture dependent.

TMR and configuration scrubbing reduced SEU sensitivity in all cases. On the Altera

Stratix V, the B13 design demonstrated an approximate 12× reduction in sensitivity and the AES

design demonstrated an approximate 728× reduction in sensitivity. The Kintex 7 demonstrated

a 117× and a 73× approximate sensitivity reduction for the B13 and AES designs respectively.

There are still a number of estimated sensitive bits for each mitigated design and device suggesting

that further improvement can be made in the mitigation approach.

Fault injection is relatively inexpensive and can be conducted very quickly in comparison to

accelerated radiation beam testing, but fault injection is not a replacement for radiation testing [15].

Fault injection was used in these experiments to gather preliminary data and to prepare experiments

for radiation testing. While fault injection provides useful information, radiation testing provides

more accurate results and is the commonly accepted standard for estimating design sensitivity

to SEUs [15]. The test fixtures that demonstrated the most favorable results are further tested

with radiation testing. Where comparison was possible, using DWC to protect functional error

detection logic provided the most favorable results and is thus selected for radiation testing over
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TMR protected functional error detection logic where possible. The LEON3 and B13 design on a

Xilinx Kintex 7 FPGA are the only design in radiation testing that use TMR protected functional

error detection logic, all the others use DWC. In the next chapter, the approach and metrics used

for neutron radiation testing as well as obtained results are discussed.
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CHAPTER 6. RADIATION TESTING

Although more expensive and difficult to conduct, radiation testing provides a more ac-

curate estimate of the sensitivity of the design to SEUs. This is because, unlike fault injection,

radiation testing upsets all of the internal memory of the FPGA including BRAM and other user

memories. SETs are also observed in radiation testing whereas they do not occur in fault injec-

tion [55]. To provide a more complete study, some of the design variation tested through fault

injection are also tested with an accelerated neutron radiation beam. Priority is given to the best

performing on-chip test fixtures, and the results are analyzed.

Neutron radiation testing was conducted at the Los Alamos Neutron Science Center (LAN-

SCE) in November of 2015 and December of 2016 for the experiments included in this thesis1.

This facility provides a wide spectrum spallation neutron beam source, which is commonly used to

measure and report terrestrial neutron soft-errors in semiconductor devices [4]. All five variations

of the LEON3 design and the three variations of the B13 were tested to demonstrate the individual

and combined benefits of SEU mitigation techniques. The LEON3 data is compared against fault

injection data and the B13 data is compared against findings in [42]. The B13 data is also used in

a comparison of SEU sensitivities of designs implemented on different FPGA architectures. The

B13 and AES designs are tested on an Altera Stratix V and a Xilinx Kintex 7 for comparison.

6.1 Approach

The neutron radiation experiments were conducted by exposing an active FPGA design to

an accelerated neutron radiation beam; the total number of observed failures and the total amount

of exposure are recorded for analysis. The development boards that the FPGA designs operate

on are mounted normal to a two inch collimated neutron beam. Figure 6.1 shows the board setup

used in the December 2016 test. The distance from the neutron source to the FPGA is carefully

1LANCSE graciously provided neutron beam time under proposal NS-2016-7268-F. Much gratitude is extended
for access to the beam.
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measured and compensated for in analysis. Three Xilinx Kintex 7 FPGAs and one Altera Stratix

V FPGA were used in the December 2016 test, and three Xilinx Kintex 7 FPGAs were used in the

November 2015 test.

Altera Stratix V

Xilinx Kintex 7

Neutron Beam Path

Figure 6.1: Neutron Beam Test Setup

Throughout the duration of a beam test, several test runs are conducted to collect data. A

test run begins by first configuring the FPGAs with the design under test. Each design becomes

active as soon as it is loaded and does not require any external stimulus (i.e. from outside of

the FPGA) to remain active. The beam shutter is then opened. Whenever a functional failure

is observed, it is recorded and the FPGA is reconfigured with the design under test. All of the

configuration upsets that occur, as reported by configuration scrubbing, are also recorded. A test

run ends with the closing of the beam shutter. Automating these tests is important because of the

amount of time it takes to collect statistically significant amounts of data. Multiple beam runs are

performed as needed to collect sufficient data to make good cross section estimates. A beam run

consists of opening the beam shutter, observing failure events, and closing the beam shutter (see

Appendix B).
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6.2 Metrics

The main metric used to estimate the SEU sensitivity of a design in neutron radiation testing

is the cross section. The cross section of a design is a hypothetical area that if a particle passes

through, would result in an event, in this case a functional failure event [19]. A larger cross

section signifies the design is more sensitive. The neutron cross section is estimated by dividing

the number of errors observed in the test by the total fluence (neutrons per square centimeter, n
cm2 )

of the radiation beam,

σ =
Nerrors

Fluence
(6.1)

and has units of cm2. The design cross section measures the cross section of the entire FPGA

device running one of the design variations under test, which includes the test fixture and any

instances of the design. The cross section captures all failure mechanisms of the design including

CRAM upsets, BRAM upsets, upsets into hidden FPGA state, and SEFIs. This cross section

measurement will be used to compare all five LEON3 design variations against each other and

facilitate the comparison of the neutron radiation tests against the fault injection tests (see Section

6.3). It is also used in the other comparisons made in this chapter. The 95% confidence interval is

approximated using the standard deviation of the Normal distribution,

1.96∗
√

Observed Failures
Total Fluence

.

Because the sensitive cross section of a design does not depend on the total number of CRAM

bits contained in the FPGA, the design cross section can be used as a one-to-one comparison

metric across architectures. The improvement shown is a ratio between the cross section of the

unmitigated and the mitigated design.

To facilitate the comparison of results obtained during fault injection tests against results

obtained during radiation testing, the number of “sensitive bits” is estimated for each of the design

variations tested through neutron radiation. The number of “sensitive bits” is estimated by dividing

the neutron cross section of the full design by the cross section of a single CRAM bit. The neutron

cross section of a CRAM bit for a Xilinx Kintex 7 FPGA was previously measured at LANSCE

at 6.99×10−15 [56]. For the Altera Stratix V FPGA, the cross section of a single CRAM bit is
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estimated using upset data from the experiments in this thesis (See Section 6.5.1). The estimated

number of sensitive bits for each design variation is included in the results.

This approach for estimating the number of sensitive bits is pessimistic and will overes-

timate the actual number of sensitive bits in a design. Any mechanism that causes the LEON3

processor to fail will be attributed to CRAM upsets. Such failure mechanisms may include up-

sets with BRAM bits, user Flip-Flops, SETs, and upsets within the hidden state of the FPGA.

This estimate will manifest these types of failures as “sensitive CRAM bits” rather than their true

failure mechanism. In spite of this limitation, this estimate is still useful in that it facilitates the

comparison of sensitive bits estimated from both fault injection and radiation testing.

6.3 LEON3 Xilinx Results

The results from the neutron radiation test are shown in Table 6.1. The estimated cross

section for each design variation is shown, including the number of failures observed, and the total

fluence. The percent error is the standard deviation divided by the cross section and represents

how tight the confidence interval is. Because of the limited neutron radiation test time, it was

difficult to obtain sufficient testing statistics for all five design variations. In particular, the “TMR

No Scrubbing” (#2) and the “TMR and CRAM Scrubbing” (#4) design variations have very wide

confidence intervals.

Table 6.1: Neutron Radiation Data

Variation 1 2 3 4 5

Description
Unmitigated TMR No TMR & BRAM TMR & CRAM TMR, BRAM &

Scrubbing Scrubbing Scrubbing CRAM Scrubbing

Failures 35 5 17 9 11
Fluence (n/cm2) 1.34×1010 1.56×1010 1.06×1011 9.30×1010 2.06×1011

Cross Section (cm2) 2.61×10−9 3.20×10−10 1.60×10−10 9.68×10−11 5.34×10−11

Percent Error 33.13% 87.65% 47.54% 65.33% 59.10%
(95% Conf. Interval) (1.74×10−9, (3.95×10−11, (8.41×10−11, (3.36×10−11, (2.18×10−11,

3.47×10−9) 6.00×10−10) 2.36×10−10) 1.60×10−10) 8.49×10−11)
Est. Sensitive Bits 380,822 46,691 23,345 14,124 7,792
(95% Conf. Interval) (249,462; 496,648) (5,647; 85,825) (12,028; 33,826) (4,801; 22,896) (3,124; 12,149)

Improvement 1.00× 8.16× 16.27× 26.94× 48.85×
(95% Conf. Interval) (.5×; 1.99×) (2.91×; 87.96×) (7.37×; 41.29×) (10.9×; 103.45×) (20.53×; 159×)

71



The estimate of the design cross section for each of the four LEON3 design variations is

less than the estimated design cross section of the baseline unmitigated design suggesting that these

mitigation approaches are successful. The use of successive SEU mitigation techniques provides

a correspondingly lower design cross section, with the lowest design cross section obtained from

design variation #5, which includes TMR, BRAM scrubbing of the ROM and RAM modules, and

CRAM scrubbing. This combination of techniques reduced the estimated design cross section by

49×.

The results during radiation testing summarized in Table 6.1 are an improvement over the

results obtained during a similar experiment [57]. In this previous experiment, the improvement

in SEU sensitivity using all three mitigation techniques was only 10× in spite of fault injection

results suggesting 51× improvement. The disparity between radiation testing and neutron testing

suggested problems with the experimental setup. After thorough investigation, it was found that the

CRAM scrubber was only scrubbing one third of the Kintex-7 325T FPGA. The CRAM scrubbing

issue was resolved for these experiments and the fault injection and radiation testing are much

closer in alignment.

Comparison to Fault Injection Results

Using the same five designs in a similar testing strategy facilitates comparison of the results

between the fault injection experiments and the radiation testing experiments. Table 6.2 summa-

rizes the key results from both sets of experiments for all five LEON3 design variations to facilitate

side-by-side comparison (the results are copied from Tables 5.1 and 6.1). Before comparing the

specific results from these tests it is important to note that the confidence intervals of the radiation

test results are much larger than the confidence intervals of fault injection (as noted by the “percent

error”). This disparity is due to the limited time available for radiation testing and slow rate of

upsets obtained in radiation testing in comparison to fault injection.

The first method for comparing the two testing methods is to compare the “Improvement”

of each of the SEU mitigation techniques. The improvement results indicate how much each design

variation reduced the SEU sensitivity over the baseline unmitigated design. The improvement

facilitates the relative benefit of each mitigation techniques for both fault injection and radiation

testing. All SEU mitigation techniques provide improvement and the improvement increases as the
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Table 6.2: Comparison of Fault Injection and Neutron Radiation Testing

Variation 1 2 3 4 5

Description
Unmitigated TMR No TMR & BRAM TMR & CRAM TMR, BRAM &

Scrubbing Scrubbing Scrubbing CRAM Scrubbing

Fault Injection
Percent Error 1.24% 2.89% 3.01% 2.95% 2.22%
Est. Sensitive Bits 258,440 63,813 53,321 9,473 5,038
Improvement 1.00× 4.05× 4.85× 27.28× 51.30×

Neutron Radiation
Percent Error 33.13% 87.65% 47.54% 65.33% 59.10%
Est. Sensitive Bits 380,822 46,691 23,345 14,124 7,792
Improvement 1.00× 8.16× 16.27× 26.94× 48.85×

mitigation techniques are combined. In spite of the differences in the testing methodologies, the

improvement for fault injection and radiation testing is surprisingly similar for most of the design

variations (#1, #4, and #5). When all techniques are combined, design variation #5 has the highest

improvement of roughly 50× for both fault injection and radiation testing. The improvement

observed in both testing methodologies is plotted in Figure 6.2 including the confidence interval

bounds.

TMR only on the unmitigated design (#2) demonstrated an improvement in reliability of

8.16× in radiation testing and 4.05× in fault injection. The greater improvement seen in radiation

testing is likely due to the fact that radiation testing upsets more system state than fault injection

(such as BRAM and user flip-flops) and TMR protects these additional failure mechanisms that are

not tested with fault injection. This effect is more pronounced in the TMR and BRAM scrubbing

variation (#3) in which radiation testing demonstrates a 16× improvement while the improvement

for fault injection is only 4.9×. This suggests that internal BRAM memory scrubbing plays a

significant component in improving the SEU sensitivity of FPGA systems that employ internal

BRAM memory.

Configuration scrubbing plays a very important part in reducing SEU design sensitivity as

suggested by design variations #4 and #5 that integrate active CRAM scrubbing. This suggests

there is a greater chance of failure due to SEU accumulations in configuration memory than due to

SEU accumulations in BRAM for this design, or in other words that the majority of bits utilized by

the LEON3 design are part of static configuration memory. This would explain why configuration

scrubbing has a greater positive impact on the reliability of the TMR design than internal memory

scrubbing.
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Figure 6.2: SEU Sensitivity Improvement for Each Design Variation

Another method for comparing the results between fault injection and radiation testing is to

compare the estimated sensitive bits for each design variation. This approach facilitates absolute

comparison of SEU sensitivity between fault injection and radiation testing. The number of sensi-

tive bits is estimated for fault injection by multiplying the estimated design sensitivity by the total

number of configuration bits; this number is estimated in radiation testing by dividing the design

sensitive cross section by the cross section of a single configuration bit. The estimated number of

sensitive bits for all design variations in both testing approaches is summarized in Table 6.2 along

with the 95% confidence bounds.

For the unmitigated design (#1), radiation testing estimates a significantly higher number

of sensitive bits than with fault injection. This result is expected since more internal state is upset

during radiation testing than fault injection (BRAM, FFs, SETs, etc.). These data support the

idea that BRAMs are excluded from testing in fault injection but included in radiation testing.

These data also show the design as slightly more susceptible failure in the beam than in fault

injection which is to be expected. This trend of higher estimated sensitive bits also is seen in

design variations #4 and #5 as well2.

2The estimated number of sensitive bits for designs #2 and #3 is lower for radiation testing than for fault injection.
For reasons that are not fully understood, CRAM scrubbing has a greater effect during radiation testing than fault
injection.
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6.4 B13 Xilinx Results

Three variations of the B13 design were tested through radiation testing: configuration

scrubbing, TMR, and TMR with configuration scrubbing. Like the LEON3 experiment, this ex-

periment also shows in the individual and combined benefits of SEU mitigation techniques. One

difference between the two experiments is that the B13 experiment uses a one-to-many lockstep

on-chip functional error detection logic with on-chip golden test vectors whereas the LEON3 ex-

periment uses a one-to-one lockstep comparison logic. The difference in SEU sensitivity between

the SEU mitigation techniques can be seen using both methods. The results from neutron radiation

testing are presented in Table 6.3.

Table 6.3: B13 Neutron Radiation Results

Unmitigated Mitigated Mitigated
W/O Scrubbing W/ Scrubbing

Failures 120 108 26
Fluence (n/cm2) 1.30E+10 6.01E+10 1.47E+11
Fluence To Failure 1.08E+08 5.56E+08 5.66E+09
Cross Section (cm2) 9.26E-9 1.80E-9 1.77E-10
(confidence int.) (7.6E-9,1.1E-8) (1.5E-9,2.1E-9) (1.1E-10,2.5E-10)

Improvement 1.0 5.1 52.4

It is not surprising that the benefits of TMR without scrubbing are significantly less than

TMR with scrubbing as analytical models suggest that TMR without repair (scrubbing in this case)

has a lower MTTF than single, non-TMR systems ( 5
6λ

v.s 1
λ

). The fact that TMR without scrubbing

exhibits an improvement over the non-TMR system is most likely due to the fact that fine-grain

feedback TMR is used rather than coarse-grain TMR with a single set of global output voters.

More curious still is that the improvement in reliability for the TMR design without scrubbing is

higher than what was observed in fault injection of 3.6× (See Table 5.5). The 95% confidence error

bounds overlap between these two measurements, but it is possible that the improvement seen in

neutron radiation is slightly skewed towards greater improvement because of the time it takes to

reprogram the device during radiation exposure.
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6.4.1 Comparison to Other Mitigation Techniques

Using the B13 neutron test results from [42], neutron cross sections for each version were

calculated. The provided FITs were converted to cross sections using the fast neutron flux for New

York City (13 neutrons/cm2/hour). In the X-TMR/VERI-Place experiment 30 redundant copies

of the B13 circuit were placed in each implementation. This experiment contains 512 redundant

copies of the B13 circuit per implementation. For comparison between the two experiments (this

experiment and [42]) cross-section data from both experiments were adjusted to represent the cross

section of a single B13 circuit.

Table 6.4: Neutron Cross Section Comparison of Mitigation Techniques

Implementation Cross Section (cm2) Improvement Overhead

Unmitigated [42] 5.38E-9±7.69E-11 1.00× 1.00×
X-TMR [42] 4.41E-9±2.56E-11 1.22× 4.56×
VERI-Place [42] 3.44E-10±1.03E-11 15.67× 4.56×
Unmitigated 1.81E-11±3.30E-12 1.00× 1.00×
TMR w/o Scrubbing 3.51E-12±6.75E-13 5.15× 4.23×
TMR w/ Scrubbing 3.45E-13±1.35E-13 52.41× 4.23×

The single B13 designs cross section, normalized improvement in reliability and the over-

head cost of the applied mitigation techniques are shown in Table 6.4. The normalized improve-

ment in reliability is how many times smaller the cross section of the mitigated design is compared

to the corresponding unmitigated design. It is interesting to note that the cross section of the unmit-

igated design in the X-TMR/VERI-Place experiment is much larger than that of the unmitigated

design tested in this experiment.

The X-TMR/VERI-Place experiment was conducted on a Virtex-5LX50T Xilinx SRAM-

based FPGA [42]. The neutron cross sections of a single CRAM bit in that FPGA compared to the

Kintex 7 325T used in this experiment are fairly close together. It is not clear what is causing the

difference in cross section of the unmitigated designs from each experiment.

X-TMR showed a relative improvement in reliability of 1.22× whereas the BL-TMR de-

sign demonstrated a 5.15× improvement in reliability. This is most likely due to the fine-grain
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feedback TMR approach. Applying VERI-Place to X-TMR design demonstrated a 12.84× im-

provement in reliability [58]. Applying configuration scrubbing to the BL-TMR improved the

designs reliability by an order of magnitude.

6.5 B13 and AES on Two Different FPGA Architectures

The total neutron fluence exposure of each design and the number of observed failures is

reported in Table 6.5. As in fault injection, the two FPGAs are shown to be comparable for SEU

sensitivity. The cross section of the B13 unmitigated design was very similar between the Stratix V

and Kintex 7 FPGA. The same is true for the AES unmitigated design. As with fault injection, the

mitigated version of each design demonstrates a greater improvement and a smaller sensitive cross

section in opposite FPGAs. The AES design preferred the Stratix V FPGA and the B13 design

preferred the Kintex 7 FPGA. TMR and scrubbing reduced the cross section of each design by a

factor of 4× to 54×.

Table 6.5: Neutron Radiation Results

Design ITC’99 Benchmark B13 128-bit AES IP Core
Description Unmitigated Mitigated Unmitigated Mitigated

Altera
Stratix V

Total Fluence 6.24×1010 1.06×1011 7.88×109 1.13×1011

Observed Failures 661 102 365 291
Cross Section (cm2) 1.06×10−8 9.62×10−10 4.63×10−8 2.58×10−9

(95% Conf. Interval) (9.79×10−9; (7.75×10−10; (4.16×10−8; (2.29×10−9;
1.14×10−8) 1.15×10−9) 5.11×10−8) 2.88×10−9)

Improvement 1.00× 11.02× 1.00× 17.93×
(95% Conf. Interval) (0.86×; 1.17×) (8.53×; 14.72×) (0.81×; 1.23×) (14.43×; 22.34×)

Xilinx
Kintex 7

Total Fluence 1.08×1011 2.83×1011 4.44×1010 7.84×1010

Observed Failures 838 41 1,621 720
Cross Section (cm2) 7.79×10−9 1.45×10−10 3.65×10−8 9.19×10−9

(95% Conf. Interval) (7.26×10−9; (1.00×10−10; (3.48×10−8; (8.52×10−9;
8.32×10−9) 1.89×10−10) 3.83×10−8) 9.86×10−9)

Improvement 1.00× 53.85× 1.00× 3.98×
(95% Conf. Interval) (0.87×; 1.15×) (38.44×; 77.48×) (0.91×; 1.10×) (3.53×; 4.50×)
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6.5.1 Comparison of Device Cross Section

The neutron cross section for each FPGA device as a whole was also measured as part of

this experiment. Table 6.6 shows the total fluence expose and number of detected configuration

upsets for each FPGA. Both devices were found to have a similar cross section. Using the total

number of CRAM bits, the cross section of a single CRAM cell is approximated. The neutron

cross section single CRAM cell matches measurement reported reported by Xilinx [56]3.

Table 6.6: Device Neutron Radiation Data

Device Altera Stratix V Xilinx Kintex 7

Total Fluence 2.89×1011 1.06×1012

Total Upsets 138,040 551,952

Device Cross Section 4.78×10−7 5.22×10−7

(95% Conf. Interval) (4.75×10−7; 4.80×10−7) (5.20×10−7; 5.24×10−7)

Total CRAM Bits 98,681,196 72,778,176

CRAM Bit Cross Section 4.84×10−15 7.18×10−15

6.6 Comparison to Fault Injection Results

Less improvement was demonstrated in the beam than in fault injection, however the re-

lationships between SEU mitigation benefits still hold. Some degradation is to be expected as

radiation can introduce more kinds of faults than fault injection can. However, test logs suggest

that perhaps SEUs were accumulating faster than the scrubbing methods could handle. SEU accu-

mulation was not tested in fault injection.

3As far as can be determined to date, there is no publicly available measurement of the neutron cross section
estimate for a single CRAM bit in an Altera Stratix V FPGA.
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CHAPTER 7. CONCLUSION

Estimating the SEU sensitivity of an FPGA design is important for many reasons. FPGA

designs may fail due to upsets in configuration memory caused by ionizing radiation. The occur-

rence of an SEU does not however guarantee that an FPGA design will fail. The likelihood of

an SEU causing a design to fail is different for every FPGA design. The SEU sensitivity of an

FPGA design depends on the size of the design, the target FPGA architecture, the types of SEU

mitigation techniques applied to it, etc. Knowing the SEU sensitivity of a design is very helpful

in preparing mission-critical applications for deployment, for studying SEU mitigation techniques

and improving them, and for analyzing the effects of different factors on reliability.

Several approaches have been developed to estimated the SEU sensitivity of FPGA designs

through either fault injection or radiation testing. In general, the approaches consist of running

an active design on an FPGA and comparing its outputs against a set of golden output vectors or

against the outputs of a golden design running in lockstep. Most approaches have a test fixture that

supports the active operation of the design and is able to detect functional errors. The examples

covered placed supporting test fixture logic, including functional error detection logic, outside the

scope of fault injection and radiation testing such that the test fixture and associated logic were

failure-immune. This improves the accuracy of estimation, but comes at the cost of additional

FPGAs or re-occurring engineering costs of creating custom test boards. Additional advantages

and limitations of the several approaches were discussed.

An on-chip error detection SEU sensitivity estimation approach was presented that tried to

incorporate the advantages of the other approaches into a low cost, single FPGA solution that was

easier to implement. This solution consumes additional FPGA resources by placing most of the

necessary test fixture components, including functional error detection logic and additional design

instances, on the same FPGA as the design under test. All components are subject to fault injection

and radiation testing. Implication of placing all test fixture logic within the scope of fault injection
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and radiation testing were addressed in Chapter 4. The test fixture logic was protected with SEU

mitigation techniques, and several variations of FPGA designs were loaded into the on-chip test

fixture. The driving concept behind on-chip error detection is that when an SEU causes any design

instance to fail, that failure can be detected by comparing design instances against each other or

against a set of SEU mitigated golden test vectors also placed on-chip.

Several fault injection and radiation testing experiments were conducted using an on-chip

error detection approach to estimate the SEU sensitivity of FPGA designs. Three main goals were

accomplished through theses experiments. First, the individual and combined reliability benefits

of three SEU mitigation techniques were demonstrated. Second, fault injection results obtained

from TMR protected and DWC protected on-chip functional error detection logic were compared

to determine which approach provided the most favorable results. Finally, the SEU sensitivities

of FPGA designs on two different FPGA architectures were compared to perform an cross archi-

tecture comparison of design reliability and to evaluate the benefits of SEU mitigation techniques

across architectures.

Five variations of SEU mitigation techniques were applied to the LEON3 soft processor.

Functional errors were detected using a one-to-one lockstep on-chip comparison scheme. Im-

provement was measured in terms of sensitivity reduction for fault injection and cross section

reduction for neutron radiation testing when compared to the baseline unmitigated design. The

results from both fault injection and radiation testing demonstrate that each variation of SEU mit-

igation techniques reduce the SEU sensitivity of the LEON3, and that improvement increases as

more mitigation techniques are combined. Similar results were found for the B13 design, only er-

rors were detected using a one-to-many on-chip comparison scheme with an on-chip set of golden

test vectors. Applying TMR alone provided a 8× and 5× reduction in cross section for the LEON3

and B13 design respectively. Applying TMR with configuration scrubbing provided a 49× and a

52× reduction in cross section respectively. On-chip error detection was used to demonstrate that

combining complementary SEU mitigation techniques provides the greatest reduction in SEU sen-

sitivity.

The functional error detection logic used to compare and reduce the outputs of multiple

design instances to a single bit that signifies whether or not a failure occurs can be protected

from SEU using TMR or DWC. TMR triplicates the comparison and reduction network and adds
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voters to mask SEUs in the functional error detection logic. DWC duplicates the comparison

and reduction network and only reports a failure when both duplicate copies detect a failure at

the same time. SEU sensitivities of several FPGA designs were estimated through fault injection

using on-chip functional error detection logic that was either protected by TMR or DWC. It was

found, for error detection, that in most cases DWC provided more favorable results with a higher

MUTF and greater improvement in reliability demonstrated between unmitigated and mitigated

FPGA designs. For this reason, DWC protected functional error detection logic was used later in

radiation testing.

Unmitigated and mitigated versions of two benchmark designs were tested for SEU sen-

sitivity using on-chip error detection on two 28nm FPGAs with different architectures. Fault in-

jection and radiation testing were used for comparison. Similarities were found between the two

FPGAs in the SEU sensitivity of the unmitigated version of each design and the overall device

cross section. The SEU mitigated versions of each design favored opposite FPGAs suggesting

that benefits from SEU mitigation techniques are design and FPGA architecture dependent. It was

found that these FPGAs are fairly comparable to each other for design SEU sensitivity and that

TMR and scrubbing can reduce design sensitivity to SEUs anywhere from 12× to 728× in fault

injection and 4× to 54× in radiation testings.

One drawback of the on-chip error detection experiments conducted in this thesis is that

there is no way of differentiating between a true error, a false-positive, or a false-negative. With

the information that was available, results were presented and analyzed. Future work is this field

should consider providing a way of confirming the occurrence of an error in a definitive manner.

The on-chip error detection mechanisms used in these experiments are important for future

work in fast error detection and recovery. As on-chip error detection is further researched it can be

used to improve fast error detection and recovery, which has lower overhead than TMR. All of the

detected SEUs that cause a failure to be reporter matter even if they are reporting a false-positive.

Ideally there would be no way for a single SEU to cause a false-positive error detection report.

But there are known issue in placement and routing that create these vulnerabilities [31, 32]. The

research conducted in this thesis may be helpful in identifying single point failures in on-chip error

detection mechanisms and assisting in improving their implementation.
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APPENDIX A. DETAILS ON THE BENCHMARK DESIGNS USED

This appendix includes more detailed information on each of the designs tested. Many
versions of each design were tested that implemented various SEU mitigation techniques and error
detection mechanisms. Only a selection of the design variations are covered in this appendix

A.1 LEON3

The LEON3 is an open-source soft processor core distributed by Cobham Gaisler AB as
part of their GRLIB IP Library. It conforms to the IEEE Standard for a 32-bit Microprocessor
Architecture and Version 8 of the Scalable Processor Architecture (SPARC V8) [50]. It features a
7-stage integer pipeline with a Harvard architecture. Additional peripherals may be easily incor-
porated into a LEON3 system due to its bus centric system-on-chip design. As part of the GRLIB
IP Library, the LEON3 connects to additional IP cores via an on-chip bus. The GRLIB IP library
supports the AMBA-2.0 AHB/APB bus – a widely used, royalty free industry standard.

The LEON3 used in this experiment originated from the LEON3/GRLIB Release 1.4.0-
b4154. For this test, a minimal configuration was given to the “leon3-xilinx-kc705” design –
which targets the Xilinx Kintex-7 KC705 development board. The stripped-down configuration
of the LEON3 processor was chosen for this experiment to test the sensitivity of the core internal
architecture and to simplify the construction of the test. This simplified configuration excluded the
following default architectural components:

• Instruction and Data Caches
• Interrupt Controller
• Memory Management Unit (MMU)
• Debug Support Unit
• External Memory Controllers

All unnecessary I/O peripherals were excluded and all instruction and data memory was
held in internal BRAM resources to avoid the need for an external memory controller. In addition,
the PLL clock controllers were removed and a 200 MHz external clock was internally divided by
four to create a 50 MHz global clock. Figure A.1 reflects the final configuration of both the LEON3
processor core and connected peripherals via the on-chip bus.

The LEON3 processor is programmed to execute the Dhrystone Version 2.1 benchmark.
Dhrystone is designed to test integer performance of a processor like that of the 7-stage integer
pipeline found in the LEON3. Executing this program assists in error detection as the processors
outputs are compared against another processor core running the same benchmark program in
lockstep. In this experiment, Dhrystone is run for 10,000 iterations in a continuous loop.

The Dhrystone output is sent across UART for external monitoring. The benchmark exe-
cutes continuously to guarantee that the LEON3 processor remains active throughout the test. The
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Figure A.1: LEON3 System Architecture Under Test

caches are disabled to force the processor to communicate more frequently on the bus and facilitate
more frequent error checking.

A.2 Test Fixture

The test fixture implemented on a single FPGA for the one-to-one lockstep comparison
mechanism of the LEON3 design is shown in Figure A.2. The bus signals from the two identical
designs instances are compared in a clock-by-clock cycle fashion using a large XOR reduction
network that sets an error status register high if any bit pair disagreement is found between the two
instances. The XOR reduction network for this design is triplicated to prevent false-positive errors
(i.e. errors within the test logic that are reported as errors within the design under test).
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A.3 Resource Utilization

Table A.1 shows the average resource utilization of: the test fixture by itself, a single non-
TMR LEON3 processor core, a single TMR LEON3 processor core, and a single TMR processor
core with supporting logic for BRAM scrubbing. The table also includes the overall resource
utilization of all three design versions, which includes the logic resources for the test fixture logic
and two instances of the LEON3. The percentage next to each metric is the utilization percentage
of available device resources for the Xilinx Kintex 7 XC7325T FPGA. The overhead of the SEU
mitigation technique compared to the non-TMR version is also shown. Figure A.3 shows the
placement and routing of the unmitigated, non-TMR design version compared to the mitigated,
TMR with BRAM scrubbing version.

Table A.1: LEON3 Design Variation Resource Utilization

Average Resource Utilization (Per Test Fixture or Single LEON3)
Resource Test Non-TMR TMR TMR w/BRAM

Fixture Scrubbing
Slice 1,886 (3.70%) 1,397 (2.74%) 5,401 (10.6%) 3.87× 6,667 (13.1%) 4.77×
FF 2,726 (0.67%) 1,950 (0.48%) 5,850 (1.44%) 3.00× 6,165 (1.51%) 3.16×
LUT 3,274 (1.61%) 4,088 (2.01%) 16,041 (7.87%) 3.92× 18,094 (8.88%) 3.00×
BRAM 0 (0.00%) 50 (11.2%) 150 (33.7%) 3.00× 150 (33.7%) 3.00×
DSP 0 (0.00%) 1 (0.12%) 3 (0.36%) 3.00× 3 (0.36%) 3.00×

Total Resource Utilization (Test Fixture and Two LEON3s)
Slice – 4,546 (8.92%) 12,746 (25.0%) 2.80× 15,294 (30.0%) 3.36×
FF – 6,626 (1.63%) 14,426 (3.54%) 2.18× 15,056 (3.69%) 2.28×
LUT – 11,471 (5.63%) 35,311 (17.3%) 3.08× 39,453 (19.4%) 3.44×
BRAM – 100 (22.5%) 300 (67.4%) 3.00× 300 (67.4%) 3.00×
DSP – 2 (0.24%) 6 (0.71%) 3.00× 6 (0.71%) 3.00×
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Figure A.3: LEON3 Design Test Infrastructure FPGA Layout

A.4 ITC’99 B13 Benchmark Design

The B13 is a small finite state machine that interacts with a weather station. It is part of a
larger set of hardware benchmarks and has been used in other research as a reliability benchmark
for radiation testing of FPGAs [42]. Included with this benchmark design is a set of approximately
7,600 input test vectors with corresponding golden output test vectors. For experiments with this
design, these test vectors were integrated into the test fixture used to estimate SEU sensitivity.
The test vectors themselves were protected from SEUs by applying TMR and internal BRAM
scrubbing to them.

A.4.1 Test Fixture

The test fixture implemented for the B13 design is depicted in Figure A.4. This test fixture
allows multiple instances of the B13 to be tested at the same time. Since the B13 is so small,
if only one or two instances were placed within the test fixture, then the overall SEU sensitivity
would be very small. This would require long fault injection and radiation test times. To accelerate
testing, 512 instances of the B13 are instanced within the test fixture. The same test fixture setup
was used in the Xilinx and Altera designs. An XOR reduction network was used to detect errors
in both FPGAs. TMR was applied to the reduction network in the Xilinx design implementations,
and DWC was applied to the reduction network in the Altera design implementations.
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A.5 Resource Utilization

The resource utilization of a single B13 instance in a Xilinx Kintex 7 FPGA is shown in
Table A.2. This table includes approximate timing penalties for applying TMR. The penalties are
significant because of how small the design is in comparison to the number of inserted feedback
synchronization voters. The resource utilization for the test infrastructure and 512 instances of
the B13 on a Xilinx Kintex 7 FPGA is shown in Table A.3. Both tables compare the unmitigated
design without TMR applied to it against a TMR version of the design. The overhead of applying
TMR is shown in the “Comparison” columns of each table. Figure A.5 shows the FPGA layout
of the entire test fixture with all 512 B13 instances and compares the unmitigated and mitigated
versions.

Table A.2: Single B13 Implementation on a Xilinx Kintex-7 FPGA

Unmitigated Mitigated Comparison
Flip-flops 52 156 3.00×
LUTs 36 107 2.97×
Slices 15 53 3.53×
Max Copies on Device 3,396 961 0.283×
Min Clock Period 1.364 ns 3.366 ns 2.47×
Max Clock Frequency 733.14 MHz 297.09 MHz 0.405×

Table A.6 shows the resource utilization of the B13 test fixture with 512 instances of the
B13 on an Altera Stratix V FPGA. An adaptive logic module (ALM) in an Altera device is similar
to a slice in a Xilinx FPGA. A slice in a Xilinx Kintex 7 FPGA consists of four 6-input look-up
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Table A.3: Implementation of 512 B13 copies on a Xilinx Kintex-7 FPGA

Unmitigated Mitigated Comparison
Flip-flops 27,025 (12.17%) 80,273 (19.69%) 2.97×
LUTs 24,807 (12.17%) 137,350 (67.39%) 5.54×
Slices 8,757 (17.19%) 37,037 (72.69%) 4.23×
BRAM 36K 12 (2.70%) 12 (2.70%) 1.0×
BRAM 18K 6 (0.67%) 6 (0.67%) 1.0×

Figure A.5: Xilinx B13 Design Test Infrastructure FPGA Layout: Unmitigated (Left), Mitigated
(Right).

tables, carry-chain logic, and eight flip-flops. An ALM in an Altera Stratix V FPGA consists of
an 8-input combinational logic unit, carry-chain addition logic, and 4 flip-flops. A slice represents
approximately 3× more computational resources than an ALM. Comparing the utilization met-
rics between Table A.3 for Xilinx and Table A.4 for Altera, approximately the same amount of
resources are used for each of the design versions between the two FPGAs. Figure A.6 shows the
resource block utilization and wire resources utilization of the unmitigated and mitigated versions
of the B13 design instances and test fixtures.

There is an interesting difference between the Xilinx and Altera implementation of internal
memory scrubbing for the test vectors used to keep the designs active and detect output errors.
Xilinx’s synthesis tool inferred true dual-port memory modules and dedicates one port to the read-
ing and writing of memory for scrubbing, and the other port to the reading of memory for design
stimulus and output verifications. Altera’s synthesis tool inferred simple dual-port memory mod-
ules where one port is dedicated to reading and one port is dedicated to writing. Two copies of
the test vector memory modules were made. One copy’s read port was dedicated to scrubbing
logic that wrote corrected memory words back to both copies using their respective write port’s.
The other copy’s read port was dedicated to reading test vectors for use by the test fixture. Both
implementations are a valid approach.
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Table A.4: Implementation of 512 B13 copies on an Altera Stratix V FPGA

Unmitigated Mitigated Comparison
ALMs 30,255 (12.9%) 96,926 (41.3%) 3.20×
Registers 34,559 (3.7%) 91,903 (9.8%) 2.67×
Total Wire Utilization 2.7% 18.1% 6.70×
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Figure A.6: Altera B13 Design Test Infrastructure FPGA Layout

A.6 AES 128-bit Cryptography IP Core

The AES 128-bit cryptography core is an open source core from OpenCores.org. The
implementation used in this thesis is fully pipelined. Once the pipeline is full, this implementation
produces valid data every clock cycle. The on-chip test fixture used to estimate the SEU sensitivity
of this core is designed to keep the IP core as active as possible while still monitoring for errors on
a clock-by-clock cycle basis.

A.7 Test Fixture

Figure A.7 depicts the on-chip test fixture setup for the AES cryptography core design. This
is a one-to-one comparison scheme of two chains of design instances where each chain consists
of two design instances. The purpose of chaining design instances together is so that the correct
output of one instance depends on the correct output of the other. This reduces the number of
bits that must be compared to determine if a functional error has occurred. Rather than having
to compare the outputs of each pair of design instances against each other, the output of the two
chains can be compared. This reduces the reduction network size by a factor of two. A feedback
loop is created within each chain by connecting the output of the last instance on the chain to the
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Table A.5: AES Test Fixture Resource Utilization on an Xilinx Kintex 7 FPGA

Unmitigated Mitigated Comparison
Slices 13,030 (25.6%) 37,821 (74.2%) 2.90×
LUTs 44,860 (22.0%) 139,124 (68.3%) 3.10×
Registers 25,787 (6.3%) 73,787 (18.1%) 2.86×

input of the first instance of the chain. The test control unit fills the pipeline of the chain until the
output is valid and then it feeds the output of the chain to its input. This keeps the design active
using self generated test vectors.

Clock and 
Control

Clock and 
Control

B13_1
B13_1

AES_2a

B13_512
B13_512

AES_2b

Clock and Control
Error Detection

B13_1
B13_1

AES_1a

B13_512
B13_512

AES_1b

Figure A.7: AES On-Chip Test Fixture

A.8 Resource Utilization

Table A.5 shows the resource utilization of the AES test fixture with unmitigated and mit-
igated AES encryption core instances on a Xilinx Kintex 7 FPGA. Figure A.8 displays the FPGA
layout for both design versions. The test logic in this test fixture is protected from upsets in the
error detection mechanism though the use of DWC.

Table A.6 shows the resource utilization of the AES test fixture with unmitigated and miti-
gated AES encryption core instances on an Altera Kintex 7 FPGA. Figure A.9 displays the FPGA
layout for both design versions; the block utilization and the routing resource utilization is dis-
played. The test logic in this test fixture is also protected from upsets in the error detection mech-
anism though the use of DWC.
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Figure A.8: Xilinx AES Design Test Infrastructure FPGA Layout:Unmitigated (Left), Mitigated
(Right).

Table A.6: AES Test Fixture Resource Utilization on an Altera Stratix V FPGA

Unmitigated Mitigated Comparison
ALMs 64,288 (27.4%) 183,554 (78.2%) 2.86×
Registers 33,711 (3.6%) 87,983 (9.4%) 2.61×
Total Wire Utilization 6.4% 19.4% 3.03×
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Figure A.9: Altera AES Design Test Infrastructure FPGA Layout
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APPENDIX B. FAULT INJECTION AND RADIATION TESTING LOGS

Fault injection data was collected following the approach outlined in Section 5.1 and ra-
diation testing data was collected following the approach outlined in Section 6.1. This appendix
includes samples from the data logs collected during fault injection and radiation testing. This data
was analyzed to estimate the SEU sensitivity of each FPGA design tested.

B.1 Altera Fault Injection

The following log is from a fault injection run on the B13 non-TMR design implemented
on an Altera Stratix V FPGA using DWC protected on-chip error detection logic.

[INFO] Brigham Young University - Altera Sensitivity Testing Tool

[INFO] Command: b13NONTMR_TESTBENCH_DWC\test.py -f

[INFO] Configuration:

SOF File - b13NONTMR_TESTBENCH_DWC\b13_test_top.sof

SMH File - None

Inject Faults - True

Weight - 100.0.0

Cable - DE5 Standard [USB-1]

1479413308.52 : [INFO] Initializing Test Run...

1479413308.52 : [INFO] Programming design file b13NONTMR_TESTBENCH_DWC\b13_test_top.sof . . .

1479413334.93 : Info: *******************************************************************

1479413334.94 : Info: Running Quartus Prime Fault Injection Debugger

1479413334.94 : Info: Version 16.0.0 Build 211 04/27/2016 SJ Standard Edition

1479413334.94 : Info: Copyright (C) 1991-2016 Altera Corporation. All rights reserved.

1479413334.94 : Info: Your use of Altera Corporation’s design tools, logic functions

1479413334.94 : Info: and other software and tools, and its AMPP partner logic

1479413334.94 : Info: functions, and any output files from any of the foregoing

1479413334.94 : Info: (including device programming or simulation files), and any

1479413334.94 : Info: associated documentation or information are expressly subject

1479413334.94 : Info: to the terms and conditions of the Altera Program License

1479413334.94 : Info: Subscription Agreement, the Altera Quartus Prime License Agreement,

1479413334.94 : Info: the Altera MegaCore Function License Agreement, or other

1479413334.94 : Info: applicable license agreement, including, without limitation,

1479413334.94 : Info: that your use is for the sole purpose of programming logic

1479413334.94 : Info: devices manufactured by Altera and sold by Altera or its

1479413334.94 : Info: authorized distributors. Please refer to the applicable

1479413334.94 : Info: agreement for further details.

1479413334.94 : Info: Processing started: Thu Nov 17 13:08:28 2016

1479413334.94 : Info: Command: quartus_fid --cable="DE5 Standard [USB-1]"

--index=@1=b13NONTMR_TESTBENCH_DWC\b13_test_top.sof#pi --weight=100.0.0 -n 0

1479413334.94 : Info (208808): Using programming cable "DE5 Standard [USB-1]"

1479413334.94 : Info (209060): Started Programmer operation at Thu Nov 17 13:08:43 2016

1479413334.94 : Info (209016): Configuring device index 1

1479413334.94 : Info (209017): Device 1 contains JTAG ID code 0x029030DD

1479413334.94 : Info (209007): Configuration succeeded -- 1 device(s) configured

1479413334.94 : Info (209011): Successfully performed operation(s)

1479413334.94 : Info (209061): Ended Programmer operation at Thu Nov 17 13:08:54 2016

1479413334.94 : Info (208551): Program signature into device 1.

1479413334.94 : [INFO] Design loaded, checking jtag state...

1479413335.69 : JTAG_READ: 0b00000000000000000000000000001111

1479413335.69 : JTAG STATS - Heartbeat: 0 (True) Mismatch w/Others: False (True)
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Disagree w/Golden: False (True)

1479413335.69 : [INFO] JTAG reading properly, test is running . . .

1479413336.03 : Info (208521): Injects 1 error(s) into device(s)

1479413338.69 : Info (208540): Reading EMR array

1479413338.69 : Info (208543): No frame error detected in device 1.

1479413338.69 : Info (11623): 1 frame error(s) corrected in device 1.

1479413338.69 : Info (11620): Corrected error #1 : Single error in frame 0x0606 at bit 0x1CF3.

1479413339.40 : JTAG_READ: 0b00000011000000110000001100001111

1479413339.40 : JTAG STATS - Heartbeat: 3 (True) Mismatch w/Others: False (True)

Disagree w/Golden: False (True)

b13NONTMR_TESTBENCH_DWC Total tests: 1 Total detected failures: 0 Duration (sec): 31

1479413339.89 : Info (208521): Injects 1 error(s) into device(s)

1479413342.53 : Info (208540): Reading EMR array

1479413342.53 : Info (208543): No frame error detected in device 1.

1479413342.53 : Info (11623): 1 frame error(s) corrected in device 1.

1479413342.53 : Info (11620): Corrected error #1 : Single error in frame 0x1F4A at bit 0x0A06.

1479413343.26 : JTAG_READ: 0b00000110000001100000011000001111

1479413343.26 : JTAG STATS - Heartbeat: 9 (True) Mismatch w/Others: False (True)

Disagree w/Golden: False (True)

b13NONTMR_TESTBENCH_DWC Total tests: 1 Total detected failures: 0 Duration (sec): 35

...

b13NONTMR_TESTBENCH_DWC Total tests: 5 Total detected failures: 4 Duration (sec): 2175

1479415484.18 : Info (208521): Injects 1 error(s) into device(s)

1479415486.83 : Info (208540): Reading EMR array

1479415486.83 : Info (208543): No frame error detected in device 1.

1479415486.95 : Info (11623): 1 frame error(s) corrected in device 1.

1479415486.95 : Info (11620): Corrected error #1 : Single error in frame 0x0FF8 at bit 0x00D1.

1479415487.69 : JTAG_READ: 0b00101010001010100010101000101101

1479415487.69 : JTAG STATS - Heartbeat: 295 (True) Mismatch w/Others: True (True)

Disagree w/Golden: False (True)

1479415487.69 : MISMATCH W/OTHERS FAILURE DETECTED!

1479415488.03 : Info (208540): Reading EMR array

1479415488.03 : Info (208543): No frame error detected in device 1.

b13NONTMR_TESTBENCH_DWC Total tests: 5 Total detected failures: 5 Duration (sec): 2180

B.2 Xilinx Fault Injection

The following log is from a fault injection run on the B13 non-TMR design implemented
on a Xilinx Kintex 7 FPGA using TMR protected on-chip error detection logic.

[INFO] Brigham Young University - Frame Based Scrubber Sensitivity Testing Tool

[INFO] Command: ./b13_nonTMR_scrub/test.py -r

[INFO] Configuration:

Bit File - b13_nonTMR_scrub/BF_b13_nonTMR_512x_noReset.bit

Golden File - b13_nonTMR_scrub/BF_b13_nonTMR_512x_noReset.data

Inject Faults - False

1476805704.50 : [INFO] Performing powerCycle

1476805704.50 : [INFO] Power cycle complete

1476805704.50 : [INFO] Initializing Test Run...

1476805704.50 : [INFO] Programming design file b13_nonTMR_scrub/BF_b13_nonTMR_512x_noReset.bit . . .

Finished Full Configuration

1476805707.37 : [INFO] Design loaded, checking jtag state...

1476805707.37 : JTAG READ: 0b00000000000000000000000000000000

1476805707.38 : JTAG STATS - Fail State: 0 (True)

1476805707.38 : [INFO] JTAG reading properly, test is running . . .

Hardware Version: 7Z010 4.3

1476805707.81 : [INFO] Injected 1-bit fault at address 0x00042281, word 3, bit 15

1476805707.81 : JTAG READ: 0b00000000000000000000000000000000

1476805707.81 : JTAG STATS - Fail State: 0 (True)

b13_nonTMR_scrub Total tests: 1 Total detected failures: 0 Duration (sec): 3

1476805707.83 : [INFO] Injected 1-bit fault at address 0x00002707, word 60, bit 24

1476805707.83 : JTAG READ: 0b00000000000000000000000000000000
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1476805707.83 : JTAG STATS - Fail State: 0 (True)

b13_nonTMR_scrub Total tests: 1 Total detected failures: 0 Duration (sec): 3

...

b13_nonTMR_scrub Total tests: 117935 Total detected failures: 117930 Duration (sec): 362959

1477168663.66 : [INFO] Injected 1-bit fault at address 0x00000F20, word 22, bit 2

1477168663.66 : JTAG READ: 0b00000000000000000000000000000111

1477168663.66 : JTAG STATS - Fail State: 1 (True)

1477168663.66 : [ERROR] FAILURE DETECTED!

b13_nonTMR_scrub Total tests: 117935 Total detected failures: 117931 Duration (sec): 362959

1477168663.66 : [INFO] Initializing Test Run...

1477168663.66 : [INFO] Programming design file b13_nonTMR_scrub/BF_b13_nonTMR_512x_noReset.bit . . .

Finished Full Configuration

1477168666.08 : [INFO] Design loaded, checking jtag state...

1477168666.08 : JTAG READ: 0b00000000000000000000000000000000

1477168666.08 : JTAG STATS - Fail State: 0 (True)

1477168666.08 : [INFO] JTAG reading properly, test is running . . .

1477168666.08 : [INFO] Injected 1-bit fault at address 0x00041201, word 52, bit 4

1477168666.08 : JTAG READ: 0b00000000000000000000000000000000

1477168666.08 : JTAG STATS - Fail State: 0 (True)

B.3 Altera Neutron Radiation Testing

The following log is from a neutron radiation test beam run on the AES encryption core
TMR design implemented on an Altera Stratix V FPGA using DWC protected on-chip error detec-
tion logic. The design is programmed onto the FPGA and initialized before the beam run begins.
The beam run begins with the beam shutter opening. The beam shutter blocks the accelerated
neutron beam from the flight path (see Figure 6.1). When the design is first programmed onto
the FPGA with the shutter closed, the log shows that no upsets are detected in the configuration
memory. Once the shutter is opened, upsets in configuration memory are reported. Once a failure
is detected in the design under test, any additional configuration upsets are recorded and the FPGA
is re-programmed with the design under test to reset the design. The reset is performed so that
additional failures can be observed.

During a single beam run, multiple failures may occur and be observed. The FPGA design
is reset through a full reconfiguration between every observed failure. The beam shutter is not
closed between failures. It is closed to end a beam run. Beam runs lasted anywhere from a few
minutes to about half a day. Runs would be cut short if the experiment was malfunctioning, or the
board setup needed to be changed. Longer runs were terminated to switch the design being tested
or to analyze data. Only a single design was tested per board per beam run. It is important to
note that it is possible for the beam to be down even though the shutter is open. When this occurs
configuration upsets cease until the beam comes back up as long as the shutter is open.

Between most readings of the configuration memory status, multiple detected upsets and
corrected upsets were reported. This data suggests that the rate of upsets in configuration memory
may have been faster than the correction rate of the scrubber. This means it may be possible that
multiple upsets were allowed to accumulate between scrub cycles, which would break TMR. This
may explain why less reduction in SEU sensitivity is seen for SEU mitigation in radiation testing
than in fault injection.

[INFO] Brigham Young University - Altera Sensitivity Testing Tool

[INFO] Command: test.py

[INFO] Configuration:

SOF File - aes_128.sof
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SMH File - None

Inject Faults - False

Weight - 100.0.0

Cable - DE5 Standard [USB-1]

1481427668.94 : [INFO] Performing powerCycle

1481427679.25 : [INFO] Power cycle complete

1481427683.06 : [INFO] Initializing Test Run...

1481427683.06 : [INFO] Programming design file aes_128.sof . . .

1481427712.24 : Warning (292006): Can’t contact license server "27001@alteralic2.ee.byu.edu"

-- this server will be ignored.

1481427712.25 : Info: *******************************************************************

1481427712.25 : Info: Running Quartus Prime Fault Injection Debugger

1481427712.25 : Info: Version 16.0.0 Build 211 04/27/2016 SJ Standard Edition

1481427712.25 : Info: Copyright (C) 1991-2016 Altera Corporation. All rights reserved.

1481427712.25 : Info: Your use of Altera Corporation’s design tools, logic functions

1481427712.25 : Info: and other software and tools, and its AMPP partner logic

1481427712.25 : Info: functions, and any output files from any of the foregoing

1481427712.25 : Info: (including device programming or simulation files), and any

1481427712.25 : Info: associated documentation or information are expressly subject

1481427712.25 : Info: to the terms and conditions of the Altera Program License

1481427712.25 : Info: Subscription Agreement, the Altera Quartus Prime License Agreement,

1481427712.25 : Info: the Altera MegaCore Function License Agreement, or other

1481427712.25 : Info: applicable license agreement, including, without limitation,

1481427712.25 : Info: that your use is for the sole purpose of programming logic

1481427712.25 : Info: devices manufactured by Altera and sold by Altera or its

1481427712.25 : Info: authorized distributors. Please refer to the applicable

1481427712.25 : Info: agreement for further details.

1481427712.25 : Info: Processing started: Sat Dec 10 20:41:23 2016

1481427712.25 : Info: Command: quartus_fid --cable="DE5 Standard [USB-1]"

--index=@1=aes_128.sof#pi --weight=100.0.0 -n 0

1481427712.25 : Info (208808): Using programming cable "DE5 Standard [USB-1]"

1481427712.25 : Info (209060): Started Programmer operation at Sat Dec 10 20:41:39 2016

1481427712.25 : Info (209016): Configuring device index 1

1481427712.25 : Info (209017): Device 1 contains JTAG ID code 0x029030DD

1481427712.25 : Info (209007): Configuration succeeded -- 1 device(s) configured

1481427712.25 : Info (209011): Successfully performed operation(s)

1481427712.25 : Info (209061): Ended Programmer operation at Sat Dec 10 20:41:50 2016

1481427712.25 : Info (208551): Program signature into device 1.

1481427712.25 : [INFO] Design loaded, checking jtag state...

1481427713.31 : JTAG_READ: 0b00000111000001110000011100001111

1481427713.31 : JTAG STATS - Heartbeat: 7 (True) Mismatch w/Others: False (True)

Disagree w/Golden: False (True)

1481427713.34 : [INFO] JTAG reading properly, test is running . . .

1481427714.76 : Info (208540): Reading EMR array

1481427714.76 : Info (208543): No frame error detected in device 1.

1481427716.08 : JTAG_READ: 0b00001111000011110000111100001111

1481427716.08 : JTAG STATS - Heartbeat: 15 (True) Mismatch w/Others: False (True)

Disagree w/Golden: False (True)

...

1481455465.72 : JTAG STATS - Heartbeat: 117 (True) Mismatch w/Others: False (True)

Disagree w/Golden: False (True)

1481455469.40 : Info (208540): Reading EMR array

1481455469.40 : Info (208544): 3 frame error(s) detected in device 1.

1481455469.52 : [INFO] Error needing scrub detected.

1481455469.52 : Info (208545): Error #1 (0x0174F92171) : Single error in frame 0x2E9F at bit 0x1217.

1481455469.52 : [INFO] Error needing scrub detected.

1481455469.52 : Info (208545): Error #2 (0x0067986941) : Single error in frame 0x0CF3 at bit 0x0694.

1481455469.52 : [INFO] Error needing scrub detected.

1481455469.52 : Info (208545): Error #3 (0x00B49207E1) : Single error in frame 0x1692 at bit 0x207E.

1481455469.52 : Info (11623): 4 frame error(s) corrected in device 1.

1481455469.52 : [INFO] Error needing scrub NOT FOUND!

1481455469.52 : Info (11620): Corrected error #1 : Single error in frame 0x2D84 at bit 0x0312.

1481455469.52 : [INFO] Error needing scrub NOT FOUND!

1481455469.52 : Info (11620): Corrected error #2 : Single error in frame 0x0F8F at bit 0x26FC.

1481455469.52 : [INFO] Error needing scrub NOT FOUND!

1481455469.52 : Info (11620): Corrected error #3 : Single error in frame 0x13B9 at bit 0x0C48.
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1481455469.52 : [INFO] Error needing scrub NOT FOUND!

1481455469.52 : Info (11620): Corrected error #4 : Single error in frame 0x13BA at bit 0x0C48.

1481455473.46 : Info (208525): External scrubbing

1481455474.61 : JTAG_READ: 0b10010000100100001001000000001111

1481455474.61 : JTAG STATS - Heartbeat: 144 (True) Mismatch w/Others: False (True)

Disagree w/Golden: False (True)

...

1481455483.09 : JTAG STATS - Heartbeat: 169 (True) Mismatch w/Others: False (True)

Disagree w/Golden: False (True)

1481455486.86 : Info (208540): Reading EMR array

1481455486.86 : Info (208544): 4 frame error(s) detected in device 1.

1481455486.86 : [INFO] Error needing scrub detected.

1481455486.86 : Info (208545): Error #1 (0x00ED580D81) : Single error in frame 0x1DAB at bit 0x00D8.

1481455486.86 : [INFO] Error needing scrub detected.

1481455486.86 : Info (208545): Error #2 (0x00ED600D81) : Single error in frame 0x1DAC at bit 0x00D8.

1481455486.86 : [INFO] Error needing scrub detected.

1481455486.86 : Info (208545): Error #3 (0x01054173D1) : Single error in frame 0x20A8 at bit 0x173D.

1481455486.86 : [INFO] Error needing scrub detected.

1481455486.86 : Info (208545): Error #4 (0x007D097301) : Single error in frame 0x0FA1 at bit 0x1730.

1481455491.01 : Info (208525): External scrubbing

1481455492.26 : JTAG_READ: 0b11000100110001001100010000101101

1481455492.26 : JTAG STATS - Heartbeat: 196 (True) Mismatch w/Others: True (True)

Disagree w/Golden: False (True)

1481455492.26 : MISMATCH W/OTHERS FAILURE DETECTED!

1481455496.03 : Info (208540): Reading EMR array

1481455496.03 : Info (208544): 3 frame error(s) detected in device 1.

1481455496.06 : [INFO] Error needing scrub detected.

1481455496.06 : Info (10914): Error #1 (0x00F06001FF) : Uncorrectable multi-bit error in frame 0x1E0C.

1481455496.06 : [INFO] Error needing scrub detected.

1481455496.06 : Info (208545): Error #2 (0x00AD325871) : Single error in frame 0x15A6 at bit 0x2587.

1481455496.06 : [INFO] Error needing scrub detected.

1481455496.06 : Info (208545): Error #3 (0x00CA4196D1) : Single error in frame 0x1948 at bit 0x196D.

1481455496.06 : Info (11623): 3 frame error(s) corrected in device 1.

1481455496.06 : [INFO] Error needing scrub NOT FOUND!

1481455496.06 : Info (11620): Corrected error #1 : Single error in frame 0x1151 at bit 0x26D0.

1481455496.06 : [INFO] Error needing scrub NOT FOUND!

1481455496.06 : Info (11620): Corrected error #2 : Single error in frame 0x1AF3 at bit 0x0C34.

1481455496.06 : [INFO] Error needing scrub NOT FOUND!

1481455496.06 : Info (11620): Corrected error #3 : Single error in frame 0x1C7B at bit 0x1C58.

1481455496.06 : [INFO] Initializing Test Run...

1481455496.06 : [INFO] Programming design file aes_128.sof . . .

1481455524.73 : Warning (292006): Can’t contact license server "27001@alteralic2.ee.byu.edu"

-- this server will be ignored.

1481455524.73 : Info: *******************************************************************

1481455524.73 : Info: Running Quartus Prime Fault Injection Debugger

1481455524.73 : Info: Version 16.0.0 Build 211 04/27/2016 SJ Standard Edition

1481455524.73 : Info: Copyright (C) 1991-2016 Altera Corporation. All rights reserved.

1481455524.73 : Info: Your use of Altera Corporation’s design tools, logic functions

1481455524.73 : Info: and other software and tools, and its AMPP partner logic

1481455524.73 : Info: functions, and any output files from any of the foregoing

1481455524.73 : Info: (including device programming or simulation files), and any

1481455524.73 : Info: associated documentation or information are expressly subject

1481455524.73 : Info: to the terms and conditions of the Altera Program License

1481455524.73 : Info: Subscription Agreement, the Altera Quartus Prime License Agreement,

1481455524.73 : Info: the Altera MegaCore Function License Agreement, or other

1481455524.73 : Info: applicable license agreement, including, without limitation,

1481455524.73 : Info: that your use is for the sole purpose of programming logic

1481455524.73 : Info: devices manufactured by Altera and sold by Altera or its

1481455524.73 : Info: authorized distributors. Please refer to the applicable

1481455524.73 : Info: agreement for further details.

1481455524.73 : Info: Processing started: Sun Dec 11 04:24:56 2016

1481455524.73 : Info: Command: quartus_fid --cable="DE5 Standard [USB-1]"

--index=@1=aes_128.sof#pi --weight=100.0.0 -n 0

1481455524.73 : Info (208808): Using programming cable "DE5 Standard [USB-1]"

1481455524.73 : Info (209060): Started Programmer operation at Sun Dec 11 04:25:11 2016

1481455524.73 : Info (209016): Configuring device index 1
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1481455524.73 : Info (209017): Device 1 contains JTAG ID code 0x029030DD

1481455524.73 : Info (209007): Configuration succeeded -- 1 device(s) configured

1481455524.73 : Info (209011): Successfully performed operation(s)

1481455524.73 : Info (209061): Ended Programmer operation at Sun Dec 11 04:25:23 2016

1481455524.73 : Info (208551): Program signature into device 1.

1481455524.73 : [INFO] Design loaded, checking jtag state...

1481455525.99 : JTAG_READ: 0b00000111000001110000011100001111

1481455525.99 : JTAG STATS - Heartbeat: 7 (True) Mismatch w/Others: False (True)

Disagree w/Golden: False (True)

1481455525.99 : [INFO] JTAG reading properly, test is running . . .

B.4 Xilinx Neutron Radiation Testing

The following log is from a neutron radiation test beam run on the B13 TMR design im-
plemented on an Xilinx Kintex 7 FPGA using TMR protected error detection logic. Note that
multiple design failures are observed within a single beam run with a full reconfiguration in be-
tween observed failures. Again, multiple configuration upsets are detected and repaired within a
single scrub cycle. This indicated that SEU accumulation has occurred, or that a single energetic
ionizing particle has upset more than a single bit. SEU accumulation can break redundancy pro-
tection. This could explain why less reduction in SEU sensitivity is seen for SEU mitigation in
radiation testing than in fault injection.

[INFO] Brigham Young University - Frame Based Scrubber Sensitivity Testing Tool

[INFO] Command: test.py

[INFO] Configuration:

Bit File - BF_b13_TMR_512x_noReset.bit

Golden File - BF_b13_TMR_512x_noReset.data

Inject Faults - False

1476053797.99 : [INFO] Performing powerCycle

1476053810.40 : [INFO] Power cycle complete

1476053810.41 : [INFO] Initializing Test Run...

1476053810.41 : [INFO] Programming design file BF_b13_TMR_512x_noReset.bit . . .

Finished Full Configuration

1476053813.00 : [INFO] Design loaded, checking jtag state...

1476053813.00 : JTAG READ: 0b00000000000000000000000000000000

1476053813.00 : JTAG STATS - Fail State: 0 (True)

1476053813.00 : [INFO] JTAG reading properly, test is running . . .

Hardware Version: 7Z010 4.3

1476053813.06 : [INFO] Beginning scrub cycle number 1 ...

1476053815.54 : Readback Finished

1476053815.58 : [INFO] Finshed scrub cycle 1, Upsets: 0, Time Elapsed: 2.52

1476053815.58 : JTAG READ: 0b00000000000000000000000000000000

1476053815.58 : JTAG STATS - Fail State: 0 (True)

b13_TMR_scrub Total tests: 1 Total detected failures: 0 Duration (sec): 17

1476053815.59 : [INFO] Beginning scrub cycle number 2 ...

1476053818.07 : Readback Finished

1476053818.11 : [INFO] Finshed scrub cycle 2, Upsets: 0, Time Elapsed: 2.52

1476053818.11 : JTAG READ: 0b00000000000000000000000000000000

1476053818.11 : JTAG STATS - Fail State: 0 (True)

b13_TMR_scrub Total tests: 1 Total detected failures: 0 Duration (sec): 20

...

1476075586.67 : JTAG READ: 0b00000000000000000000000000000000

1476075586.67 : JTAG STATS - Fail State: 0 (True)

b13_TMR_scrub Total tests: 8 Total detected failures: 6 Duration (sec): 21441

1476075586.68 : [INFO] Beginning scrub cycle number 8446 ...

1476075589.16 : Readback Finished

1476075589.20 : [INFO] Upset(s) Detected, Frame: 0x00022B82, Word: 85, Bit(s): 0x08000000 (1)

1476075589.21 : [INFO] Upset(s) Detected, Frame: 0x00022B83, Word: 85, Bit(s): 0x04000000 (1)

1476075589.21 : [INFO] Upset(s) Detected, Frame: 0x00400019, Word: 55, Bit(s): 0x00001000 (1)
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1476075589.22 : [INFO] Upset(s) Detected, Frame: 0x00402892, Word: 55, Bit(s): 0x00200000 (1)

1476075589.22 : [INFO] Upset(s) Detected, Frame: 0x00402894, Word: 55, Bit(s): 0x00600000 (2)

1476075589.23 : [INFO] Upset(s) Detected, Frame: 0x00402895, Word: 55, Bit(s): 0x00200000 (1)

1476075589.23 : [INFO] Upset(s) Detected, Frame: 0x00440612, Word: 62, Bit(s): 0x00000001 (1)

1476075589.23 : [INFO] Finshed scrub cycle 8446, Upsets: 8, Time Elapsed: 2.55

1476075589.23 : JTAG READ: 0b00000000000000000000000000000000

1476075589.23 : JTAG STATS - Fail State: 0 (True)

b13_TMR_scrub Total tests: 8 Total detected failures: 6 Duration (sec): 21443

...

b13_TMR_scrub Total tests: 14 Total detected failures: 12 Duration (sec): 35064

1476089210.35 : [INFO] Beginning scrub cycle number 13813 ...

1476089212.83 : Readback Finished

1476089212.87 : [INFO] Upset(s) Detected, Frame: 0x00021C23, Word: 36, Bit(s): 0x00000100 (1)

1476089212.88 : [INFO] Upset(s) Detected, Frame: 0x0002260C, Word: 71, Bit(s): 0x00000010 (1)

1476089212.88 : [INFO] Upset(s) Detected, Frame: 0x00401B0A, Word: 84, Bit(s): 0x00100000 (1)

1476089212.89 : [INFO] Upset(s) Detected, Frame: 0x00401B0B, Word: 84, Bit(s): 0x00200000 (1)

1476089212.89 : [INFO] Finshed scrub cycle 13813, Upsets: 4, Time Elapsed: 2.54

1476089212.89 : JTAG READ: 0b00000000000000000000000000000000

1476089212.89 : JTAG STATS - Fail State: 0 (True)

b13_TMR_scrub Total tests: 14 Total detected failures: 12 Duration (sec): 35067

1476089212.89 : [INFO] Beginning scrub cycle number 13814 ...

1476089215.37 : Readback Finished

1476089215.42 : [INFO] Upset(s) Detected, Frame: 0x00020822, Word: 67, Bit(s): 0x01000000 (1)

1476089215.42 : [INFO] Finshed scrub cycle 13814, Upsets: 1, Time Elapsed: 2.53

1476089215.42 : JTAG READ: 0b00000000000000000000000000000111

1476089215.42 : JTAG STATS - Fail State: 1 (True)

1476089215.42 : [ERROR] FAILURE DETECTED!

1476089215.42 : [INFO] Beginning scrub cycle number 13815 ...

1476089217.90 : Readback Finished

1476089217.95 : [INFO] Upset(s) Detected, Frame: 0x00000505, Word: 59, Bit(s): 0x00000010 (1)

1476089217.95 : [INFO] Upset(s) Detected, Frame: 0x00040D0D, Word: 53, Bit(s): 0x00000040 (1)

1476089217.96 : [INFO] Upset(s) Detected, Frame: 0x00040D0E, Word: 53, Bit(s): 0x00000100 (1)

1476089217.96 : [INFO] Upset(s) Detected, Frame: 0x00040D0F, Word: 53, Bit(s): 0x00000080 (1)

1476089217.96 : [INFO] Upset(s) Detected, Frame: 0x00401CA1, Word: 46, Bit(s): 0x00000020 (1)

1476089217.97 : [INFO] Finshed scrub cycle 13815, Upsets: 5, Time Elapsed: 2.55

b13_TMR_scrub Total tests: 14 Total detected failures: 13 Duration (sec): 35072

1476089217.97 : [INFO] Initializing Test Run...

1476089217.97 : [INFO] Programming design file BF_b13_TMR_512x_noReset.bit . . .

Finished Full Configuration

1476089220.57 : [INFO] Design loaded, checking jtag state...

1476089220.57 : JTAG READ: 0b00000000000000000000000000000000

1476089220.57 : JTAG STATS - Fail State: 0 (True)

1476089220.57 : [INFO] JTAG reading properly, test is running . . .

1476089220.57 : [INFO] Beginning scrub cycle number 13816 ...

1476089223.05 : Readback Finished

1476089223.09 : [INFO] Upset(s) Detected, Frame: 0x00020B90, Word: 74, Bit(s): 0x00000080 (1)

1476089223.10 : [INFO] Upset(s) Detected, Frame: 0x00020B91, Word: 74, Bit(s): 0x00000040 (1)

1476089223.10 : [INFO] Upset(s) Detected, Frame: 0x00402498, Word: 70, Bit(s): 0x00003000 (2)

1476089223.11 : [INFO] Upset(s) Detected, Frame: 0x00402499, Word: 70, Bit(s): 0x00003000 (2)

1476089223.11 : [INFO] Upset(s) Detected, Frame: 0x00420A94, Word: 69, Bit(s): 0x00010000 (1)

1476089223.12 : [INFO] Upset(s) Detected, Frame: 0x00420EA2, Word: 48, Bit(s): 0x00000100 (1)

1476089223.12 : [INFO] Finshed scrub cycle 13816, Upsets: 8, Time Elapsed: 2.55

1476089223.12 : JTAG READ: 0b00000000000000000000000000000000

1476089223.12 : JTAG STATS - Fail State: 0 (True)

b13_TMR_scrub Total tests: 15 Total detected failures: 13 Duration (sec): 35077

1476089223.12 : [INFO] Beginning scrub cycle number 13817 ...

1476089225.60 : Readback Finished

1476089225.64 : [INFO] Upset(s) Detected, Frame: 0x00001120, Word: 10, Bit(s): 0x00000002 (1)

1476089225.65 : [INFO] Upset(s) Detected, Frame: 0x00021A89, Word: 100, Bit(s): 0x00200000 (1)

1476089225.65 : [INFO] Finshed scrub cycle 13817, Upsets: 2, Time Elapsed: 2.53

1476089225.65 : JTAG READ: 0b00000000000000000000000000000000

1476089225.65 : JTAG STATS - Fail State: 0 (True)

b13_TMR_scrub Total tests: 15 Total detected failures: 13 Duration (sec): 35080
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