1478

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 67, NO. 7, JULY 2020

Understanding the Impact of Quantization,
Accuracy, and Radiation on the Reliability of
Convolutional Neural Networks on FPGASs

F. Libano™, B. Wilson

Abstract— Convolutional neural networks are quickly becom-
ing viable solutions for self-driving vehicles, military, and
aerospace applications. At the same time, due to their high
level of design flexibility, reprogrammable capability, low power
consumption, and relatively low cost, the field-programmable
gate arrays (FPGAs) are very good candidates to implement the
neural networks. Unfortunately, the radiation-induced errors are
known to be an issue in static random-access memory (SRAM)-
based FPGAs. More specifically, we have seen that particles
can change the content of the FPGA’s configuration memory,
consequently corrupting the implemented circuit and generating
the observable errors at the output. Through extensive fault
injection, we determine the reliability impact of applying binary
quantization to the convolutional layers of neural networks on
FPGAs, by analyzing the relationships between model accuracy,
resource utilization, performance, error criticality, and radiation
cross section. We were able to find that a design with quantized
convolutional layers can be 39% less sensitive to radiation,
whereas the portion of errors that are considered critical (mis-
classifications) in the network is increased by 12%. Moreover,
we also derive generic equations that consider both accuracy
and radiation in order to model the overall failure rate of neural
networks.

Index Terms— Field-programmable gate array (FPGA), neural
networks, quantization, reliability.

I. INTRODUCTION

ONVOLUTIONAL neural networks (CNNs) are com-

putational solutions that have been growing in terms
of adoption in many fields that depend mainly on pattern
recognition and image processing tasks [1]. More specifically,
CNNs are very attractive in the safety-critical niche, which
comprises space exploration [2], self-driving cars [3], and mili-
tary applications such as unmanned aerial vehicles (UAVs) [4].
Most of the algorithms involved in these applications aim to
identify and classify the objects of interest, based on captured

Manuscript received February 17, 2020; revised March 20, 2020 and
March 23, 2020; accepted March 24, 2020. Date of publication March 26,
2020; date of current version July 16, 2020. This work was supported
in part by the Department of Energy of the United States, in part
by the CAPES Foundation of the Ministry of Education, and in part by the
CNPq Research Council of the Ministry of Science and Technology.

F. Libano and J. Brunhaver are with the School of Electrical, Computer
and Energy Engineering (ECEE), Arizona State University (ASU), Tempe,
AZ 85287 USA (e-mail: flibano@asu.edu; jbrunhaver@asu.edu).

B. Wilson and M. Wirthlin are with the Department of Electrical and Com-
puter Engineering, Brigham Young University (BYU), Provo, UT 84602 USA
(e-mail: brittany.wilson@byu.edu; wirthlin@byu.edu).

P. Rech is with the Los Alamos National Laboratory (LANL), Los Alamos,
NM 87545 USA, and also with the Institute of Informatics, Federal University
of Rio Grande do Sul (UFRGS), Porto Alegre 90040-060, Brazil (e-mail:
prech@Ilanl.gov; prech@inf.ufrgs.br).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNS.2020.2983662

, M. Wirthlin

, P. Rech™, and J. Brunhaver

frames and various signals. Given that CNNs specialize in
interpreting and reasoning about raw data in a very efficient
way, they tend to be an optimal choice in most cases.

As we know, there is an intrinsic level of parallelism
between neurons and layers in a neural network, which
means that they can be efficiently implemented on field-
programmable gate arrays (FPGAs) [5]. Thanks to their design
flexibility, and typically low power consumption, FPGAs are
a very attractive solution for a number of safety-critical
tasks. Unfortunately, FPGAs have been shown to be highly
sensitive to radiation [6]. In particular, static random-access
memory (SRAM)-based FPGAs may experience single-event
upsets (SEUs) in their configuration memory, which can affect
routing connections, lookup tables (LUTs), flip-flops (FFs),
and block RAMs (BRAMs).

In order to deliver high accuracy, CNNs end up being very
computationally expensive, which means that, on FPGAs,
they require a large number of resources. As an attempt to
speed-up neural networks, weight quantization strategies,
such as binarization, have emerged [7], as we further discuss
in Section II. One of the goals of this article is to analyze
how binary quantization in convolutional layers affects
the overall reliability of neural networks implemented in
SRAM-based FPGAs. To do so, we evaluate the trade-offs
between model accuracy, resource utilization, execution
time, architectural vulnerability, and radiation sensitivity.
As a case study, we consider the Modified National
Institute of Standards and Technology (MNIST) CNN, which
recognizes the handwritten digits on 28 x 28 pixel grayscale
images.

By performing extensive fault injection experiments, we are
able to identify which portions of the CNN’s circuit (when
corrupted) are more likely to generate either folerable or
critical errors at the output. In particular, we are able to
identify whether the feature extraction phase is more vul-
nerable than the classification process. Then, using radiation
experimental data, we can estimate the likelihood of one
impinging particle to generate an observable error at the output
of the CNN and accurately calculate the expected error rate
in a given radiation environment (terrestrial or space).

The remainder of the article is organized as follows.
Section II gives a background on CNNs, discusses the benefits
and drawbacks of binary quantization, and presents both the
data set and the topology of the case study. Section III gives
the details about the FPGA device used for testing and explains
details about the fault injection framework. Section IV presents
and discusses the implications of the experimental results and

0018-9499 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Brigham Young University. Downloaded on May 12,2022 at 16:38:37 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0638-1102
https://orcid.org/0000-0002-0208-9411
https://orcid.org/0000-0003-0328-6713
https://orcid.org/0000-0002-0821-1879

LIBANO et al.: UNDERSTANDING THE IMPACT OF QUANTIZATION, ACCURACY, AND RADIATION

proposes a set of equations to model the failure rate of neural
networks. Section V concludes this article and mentions a few
possibilities for future work.

II. BACKGROUND
A. Convolutional Neural Networks

An artificial neural network (ANN) computes its solution by
propagating the data through layers of interconnected neurons
(which is a process very similar to what actually occurs in a
biological brain). A CNN is a special kind of ANN, which
can be broken down into two distinct parts or phases: feature
extraction classification. During the feature extraction part,
the filters are convolved with the raw input image, and the most
important features of the given input are propagated forward.
During the classification part, a series of fully connected
neurons uses these extracted features in order to accurately
guess in which class the raw input image belongs to. Both the
filters and neurons have associated weights to them, which
are learned during an extensive training process. In such a
process, a training set is presented iteratively to the model,
which makes adjustments to its weight values every step of the
way, up to the point where it converges to an acceptable level
of accuracy. Then, whenever a new input is given, the trained
network can compute its solution by executing a series of
arithmetic operations involving the set of weights that were
learned during the training phase.

The previous works have analyzed the reliability of CNNs
executing in specific hardware [application-specific integrated
circuits (ASICs)] [8], [9] as well as in graphics processing
units (GPUs) [10], and in FPGAs [11]-[13]. Such studies show
that there is a considerable difference in sensitivity across
different layers of a CNN. This article focuses, within other
topics, in evaluating the architectural vulnerability using a
higher level of granularity, by dividing the CNN into only two
parts (feature extraction and classification), instead of looking
at each individual layer, a novel point of view for FPGAs.

B. Binary and Hybrid Neural Networks

While CNNs can be very effective, they also require
extremely high computational power. In order to achieve lower
execution times and, thus, higher throughput, a number of
techniques have been developed, such as weight trimming [14]
and weight quantization [15]. When it comes to the latter,
the main idea is to reduce the precision, in which we choose
to represent the trained weights (which are originally in 32-bit
floating-point format, as a standard for training frameworks).
Such reduction can be completely arbitrary, going as far as
utilizing a single bit to represent the weights in a model. These
are called binary neural networks (BNNs), where both the
filters in the convolutional layers as well as the neurons in ithe
fully connected layers use weights constrained to {—1, 1}.
The adoption of BNNs instead of CNNs essentially eliminates
all multiplications for a hardware implementation of a given
neural network, which decreases resource utilization, but also
brings down the accuracy of models.

In fact, for the case study presented in Section II-C,
the accuracy drop was so significant that we would need to

1479

either make the model’s topology much more complex or find
a middle ground between CNNs and BNNs. We took the sec-
ond route and came up with what we decided to call hybrid
neural networks (HNNs), in which the binary quantization
is only applied to the convolutional layers of the network
(i.e., the feature extraction part), whereas the fully connected
neurons (i.e., the classification part) remain at full precision.
Then, as discussed in Section III, we compared a baseline
CNN model versus a quantized HNN model in all of the
experiments.

C. MNIST

The MNIST is a data set of 28 x 28 pixel images of
handwritten decimal digits (from O to 9) [16]. The case study
neural networks then receive 28 x 28 matrices as inputs and
produce 10 outputs (one for each possible digit). As previously
highlighted, both the baseline CNN and the quantized HNN
use convolution to extract the specific features from the input
image and then proceed to use a set of neurons to classify the
input image based on such features. The CNN has an accuracy
of about 93%, whereas the HNN has an accuracy of about
88%, and they both utilize the exact same topology (which is
shown in Fig. 1).

o Input = 784 pixels.

o ConvLayerl (1x 4 x 4 Filter).

« PoolLayerl (3 x 3 Filter).

o ConvLayer2 (3x 4 x 4 Filters).

« PoolLayer2 (2 x 2 Filter).

o InnerProductl (48 Inputs, 20 Outputs).

« Rectified linear unit (ReLU1) (20 Inputs, 20 Outputs).

o InnerProduct2 (20 Inputs, 10 Outputs).

o Output = The image classification, which can be any

integer from 0 to 9: index(max(InnerProduct2.outputs)).

III. EXPERIMENTAL METHODOLOGY

We implemented both the baseline MNIST CNN and
the quantized MNIST HNN using the 16-nm FinFET Zynq
UltraScale+MPSoC (ZU9EG) [17], which is composed of a
processing system (PS), which uses a quad-core ARM AS53,
and a programmable logic (PL), based on a Xilinx FPGA.
The details about the resource utilization by the two neural
networks are shown in Table I. We can clearly see that the
quantized version of the network uses significantly less LUTs.
To be specific, the quantization allows for a 41% reduction in
LUT utilization on the layers responsible for feature extraction.
We can also notice that the utilization of FFs remains constant,
as the pipeline stages in between the layers need to register the
same amount of bits each cycle, regardless of having binary
weights on the convolutional units.

It is relevant to highlight, before moving forward, that the
training phases for both the networks were performed ahead
of the experiments, in a fault-free environment. This means
that the neural networks’ training was not affected by the
injected upsets or radiation in any capacity. The goal of this
work is to evaluate how radiation can affect computation on a
trained model with stabilized/nonchanging weights. Training
in a radiation-rich environment is out of the scope for this
article.

Authorized licensed use limited to: Brigham Young University. Downloaded on May 12,2022 at 16:38:37 UTC from IEEE Xplore. Restrictions apply.

1480

Feature Extraction

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 67, NO. 7, JULY 2020

Convolution

Input Image Pooling

28x28=784 pixels

Convolution

Classification

Inner

peeling Product

Inner
Product

RelU

10 Outputs
(decimal digits)

Fig. 1.

TABLE I

ZYNQ ULTRASCALE+RESOURCE UTILIZATION TO IMPLEMENT THE
BASELINE MNIST CNN AND THE QUANTIZED MNIST HNN

MNIST Design CNN Portion LUTs FFs
. Feature Extraction 165k 4.2k
Baseline CNN -, cification 48k 0.4k
. Feature Extraction 98k 4.2k
Quantized HNN Classification 48k 0.4k

A. Fault Injection Framework

In order to perform the fault injection campaigns, we take
the advantage of the processor configuration access port
(PCAP) of the MPSoC system and emulate SEUs by injecting
faults in the FPGA’s configuration memory, through software
being executed on the ARM AS53 processor. For both the
baseline CNN and the quantized HNN, we isolate the feature
extraction and classification portions of the networks into
separate regions of the FPGA fabric, using Pblocks. Then, it is
possible to correlate the location of an injected fault to one of
the P blocks and, thus, to a specific portion of the network.
We have conducted fault injection campaigns that randomly
injected a total of about 11 million faults in the designs [out of
around 39 million possible in an exhaustive campaign, which
would be immensely time-consuming to conduct, given the
size of the device under tests (DUTs)]. The random fault
injection methods are well known and has been shown by
the previous works to be very much representative [18].

The area of injection is strictly comprised of the configura-
tion bits related to configurable logic blocks (CLBs) (LUTs,
DSPs, FFs, and interconnections). During each iteration of the
fault injection, the A53 microprocessor verifies whether or not
the neural network execution produced the expected outputs
and logs the results for further review. Finally, the data
log that was produced during the experiment is analyzed,
and the observed errors are classified as to be described in
Section III-B.

B. Error Criticality and Benign Errors

When dealing with CNNs and HNNs, which essentially
work as classifiers, not every error is to be considered critical.
In other words, even if the corrupted output is different than

Topology of both the baseline MNIST CNN and the quantized MNIST HNN.

what was expected, the classification of a given image might
still be correct. Thus, we identify two possible error classes.

1) Tolerable: the network produces outputs different than
the expected ones, but the classification is still correct.

2) Critical: the network produces output errors, and
they are severe enough to compromise the image
classification.

In the specific case of the MNIST case study, we are trying
to identify the handwritten digits. A tolerable error would
happen when one or more of the ten outputs differ from the
expected/golden values, but the digit on the input image is
still correctly identified. A critical error would happen when
the computation is so significantly disturbed that it led to an
“8” being classified as a “6,” for instance.

In addition to that, we also identify the cases where we were
expecting the fault-free model to wrongly classify an input
image (due to lack of accuracy), but, due to an injected upset,
it actually ends up classifying it correctly. As this occurrence
is beneficial to the overall system reliability, we have decided
to call it a Benign Error. In Section IV, we divide all of the
results in either benign, tolerable, or critical errors.

IV. EXPERIMENTAL RESULTS

A. Fault Injection Results

Using the setup described in Section III-A, we have injected
faults separately in the feature extraction and classification
parts of the baseline MNIST CNN and the quantized MNIST
HNN. Fig. 2 shows the results obtained through our fault
injection experiment, expressed in terms of architectural vul-
nerability factor (AVF), which represents the percentage of
faults that propagated all the ways to the output. Furthermore,
we divide the total AVF in the three error categories discussed
in Section III-B: benign, tolerable, or critical. The error bars
are lower than 2% of the reported values in the worst case.
As also explained in Section III-B, the benign errors are
beneficial to neural networks. Although the impact of benign
errors is almost negligible (when compared to the other error
categories), it is an interesting finding that the percentage of
benign errors in the quantized HNN is about three times higher
than on the baseline CNN even though their accuracies are
only 5% apart from each other. In addition to that, whenever
the faults occur in the earlier stages of the neural networks

Authorized licensed use limited to: Brigham Young University. Downloaded on May 12,2022 at 16:38:37 UTC from IEEE Xplore. Restrictions apply.

LIBANO et al.: UNDERSTANDING THE IMPACT OF QUANTIZATION, ACCURACY, AND RADIATION

I Benign Errors [l Tolerable Errors [l Critical Errors

Feature Extraction Classification Feature Extraction Classification
— —— Baseline CNN —— — — —— Quantized HNN — ——

AVF [%)
o
8

0.54
0.36
0.18
0.00

Fig. 2. AVF calculated from fault injection in the feature extraction and
classification portions of the baseline CNN and the quantized HNN.

(in the feature extraction part), we are a bit more likely to see
benign errors manifesting at the output.

In Fig. 2, one of the most easily perceived results is that,
as expected, tolerable errors are the majority across all cases.
If we analyze it further, we are able to see that a fault injected
in the feature extraction portion of the quantized HNN has
a 24% higher chance of generating a critical error at the
output, when compared to a fault injected on the feature
extraction portion of the baseline CNN. Similarly, a fault in
the classification part of the quantized HNN has a 49% higher
chance of provoking an erroneous image identification when
compared to a fault in the classification part of the baseline
CNN. If we combine both of these findings, we will ultimately
come to the conclusion that, overall, the quantized HNN is less
architecturally vulnerable than the baseline CNN, but, at the
same time, it has a higher level of error criticality.

Another very interesting insight from the experimental
results is that, in both cases, the total AVF of the feature
extraction part is higher than on the classification part. This
is because, as a fault occurs earlier in the network, it has
more room to propagate across the computing units that follow
ahead, increasing the odds of output corruption. Now, if we
focus the attention just on the classification parts of the
networks, we can see that the total AVF is slightly higher
for the quantized HNN. We believe that there are two reasons
as to why that is. First, the percentage of benign errors is three
times lower than the baseline CNN. Second, the more nuanced
argument is that, as a result of the quantization process in the
convolutional layers, the weights in the classification part of
the network end up carrying more significance in the design,
which means that the neurons that form the fully connected
layers become more sensitive to upsets than they normally
would be, resulting in a higher AVF.

It is also important to mention that, for each injected fault,
we ran the neural networks with 100 test images. In the
experiments, we observed a little-to-no difference in error
likelihood between the possible classes of the MNIST data
set (decimal digits ranging from O to 9).

1481

0.00
-0.06
-0.11
-0.17
-0.22
-0.28

-0.33

A Accuracy [%]

-0.39

-0.44

-0.50

-0.55

Baseline CNN Quantized HNN

Fig. 3. Variation in accuracy for the baseline CNN and the quantized HNN
when comparing their fault-free accuracies with their measured accuracies
after extensive fault injection campaigns.

Furthermore, we have also used the fault injection experi-
mental data to calculate the impact of upsets in the accuracy of
each neural network. In order to do so, we simply calculated
a variation (delta), from the starting fault-free accuracy to the
final experimentally calculated accuracy (accounting for the
observed critical and benign errors). The results are shown
in Fig. 3. As the fault-free accuracy is obviously higher,
the variation ends up being negative. What is clear to observe
here is that, as the quantized HNN is generally more vul-
nerable, its accuracy drop was bigger than than the baseline
CNN. This is because a higher level of error criticality means
that a larger percentage of upsets is going to disturb the
final classification computed by the neural network, ultimately
leading to a lower accuracy when in a radiation environment.

B. Dynamic Cross Section Estimation

We have been able to estimate the dynamic cross sections
based on the fault injection data, the resource utilization of
the designs, and the per bit static neutron cross section of
the configuration memory in the UltraScale+ (which is pro-
vided by Xilinx on their Device Reliability Report document
as 2.67 x 107'% c¢m?) [19]. Since the AVF represents the
probability of one bitflip to generate an observable error at
the output, if we multiply it by the number of bits that a
design utilizes and then by the per bit cross section of the
configuration memory, we can roughly estimate how sensitive
we expect the design to be. Such a method for dynamic
cross section estimation has been shown to be very accurate
by the previous works [20]. Thus, using the formula in (1),
we calculate and plot the estimated cross sections in Fig. 4

Ostatic :))
#CRAMBiIts

In Fig. 4, we can clearly perceive that the quantized HNN
is significantly less sensitive to radiation than the baseline
CNN. To be precise, its estimated cross section is 39% lower.
Meanwhile, we can also see that the percentage of errors that
are considered critical to the network rises with quantization.
While on the baseline CNN 26% of all observed errors is
critical, 38% of data corruptions led to misclassifications

o = AVF x (#EssentialBits) x (

Authorized licensed use limited to: Brigham Young University. Downloaded on May 12,2022 at 16:38:37 UTC from IEEE Xplore. Restrictions apply.

1482

[Benign Errors [l Tolerable Errors [l Critical Errors

0.23
0.20
0.18
0.15
0.13
0.10
0.08
0.05

0.03

Estimated Cross Section [x 107-9 cm?3

0.00

Baseline CNN Quantized HNN

Fig. 4. Estimated neutrons cross section, calculated according to (1) for the
baseline CNN and the quantized HNN designs.

on the binary quantized design in the experiments. This is
because, as we quantize the weights on the convolutional
layers of the network, two things happen: first, there is a slight
decrease in the overall accuracy of the model (as discussed
in Section II-C). Second, there is an increase in the relative
importance of each weight to the computation, meaning that
the design becomes more vulnerable to any given bitflip in the
FPGA’s configuration memory.

Beyond the cross section, we can also look at the mean
executions between failures (MEBF) metric [21]. The MEBF
can often be seen as a more complete indicative of a design’s
reliability and expected failure rate as it depends on both the
circuit area and execution time. Before presenting further data,
we should point out again that, as the case study is performing
a classification task, we have translated the common error
and failure definitions to folerable and critical, respectively,
(as per Section III-B). Furthermore, as neural networks are
intrinsically approximate (meaning that they are not 100%
accurate classifiers), we can also calculate the MEBF by taking
into account such a lack of accuracy.

Based on all of the above considerations, we have decided
to present a graph that considers both the sources of failures
(critical errors): inaccuracy and radiation. From the inaccuracy
standpoint, if a neural network is said to have an accuracy
of a, it means that it will wrongly classify an input with a
probability of (1 - a). It follows that the MEBF (here, named
MEBIF, where “T” stands for “inaccuracy’’) would be given by:

a
MEBIF(a) = —. 2)
l1—a

It is worth noticing that (2) does not depend on the cross
section, particle flux, or execution time of the circuit. Even
though we are referring to “circuit” in the scope of this work,
this analysis would also apply for devices other than FPGAs.

From the radiation point of view, all of these variables
become relevant. If we multiply the cross section by a given
particle flux (e.g., the neutron flux at sea level), we get the
failure-in-time (FIT) metric, which, as the name suggests,
indicates how many failures we expect to observe in a time

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 67, NO. 7, JULY 2020

interval. Thus, the inverse of the FIT becomes the mean time
to failure (MTTF), which is quite self-explanatory. Finally,
dividing the MTTF by the execution time, we get the MEBF.
Equation (3) expresses the MEBF (here, named MEBRE,

where “R” stands for “radiation’) as a function of “c”: cross
section, “f”: particle flux, “e”: execution time
1
MEBRF(c, f,e) = ———. 3)
c-f-e

From (3), we can see the following:

1) If the cross section is zero (meaning that the design is
rad-hard), MEBREF goes to infinity (meaning that we will
never see a radiation-induced failure).

2) If the particle flux is zero (meaning that we are in
a radiation-free environment), MEBRF also goes to
infinity.

3) If the execution time tends to zero, MEBRF goes to
infinity again (meaning that there is only an infinitesi-
mally small time interval, in which an impinging particle
could affect the circuit).

Finally, we need to come up with an equation that, some-
how, combines (2) and (3). It is quite obvious that a critical
error can only be induced by radiation when the expected
(fault-free) execution originally led to a correct classification.
With that in mind, if we solve (4) for x, we will get a number
in the interval [0,1] that symbolizes how the accuracy of the
network is affected (attenuated) in the presence of radiation
(noise)

X
1—

Note that (4) looks very similar to (2). This is because,
in a way of looking at it, we are calculating the “accuracy of
the accuracy” of the neural network or the “radiation-induced
attenuation factor” on the original accuracy. Further, note that
the higher the MEBRE, the closer x gets to 1 (meaning the
less attenuation there is). Solving (4) for x gives us

MEBRF(c, f, e)
1 + MEBRF(c, f, ¢)
1
I+(c-f-e)
The very last step is to calculate the overall MEBF as a

function of “a”: accuracy, “c”: cross section, “f”: particle

flux, “e”: execution time

MEBRF(c, f, e) = 4)

x(c, f,e) = (5)

x(c, f,e) = (6)

MEBF(4, ¢, f, ¢) = % %)
MEBF(a, ¢, f, ¢) = ﬁ (8)

Note that for either ¢, f, or e equal to zero,(8) trivially
becomes(2) (if there are no radiation effects, the only source
of errors is inaccuracy). Similarly, for a = 1,(8) reduces to(3)
(if the network is fully accurate, the only source of errors
is radiation). These relationships between(2),(3), and(8) prove
the consistency in the findings.

Finally, by looking at (8), we arrive to the following, very
straightforward, conclusions regarding how one would be able
to reduce the failure rate of neural networks.

Authorized licensed use limited to: Brigham Young University. Downloaded on May 12,2022 at 16:38:37 UTC from IEEE Xplore. Restrictions apply.

LIBANO et al.: UNDERSTANDING THE IMPACT OF QUANTIZATION, ACCURACY, AND RADIATION

Mean Executions Between Failures
> [=2] <]

N

Baseline CNN Quantized HNN
Fig. 5. MEBEF of the baseline CNN and the quantized HNN, considering
both inaccuracy and radiation effects.
— a=90% =— a=99% =— a=99.9% a=99.99%
10000
1000
100
TR
om
i}
=
10
1
1020 1018 106 10-14 1072 1010 1008 1006 1004 1002 10%0
cfe
Fig. 6. MEBF as a function of inaccuracy and radiation.

1) Increase the accuracy.

2) Make it rad-hard.

3) Get away from radiation.

4) Reduce the execution time.

Considering the case studies, at sea level, the cfe product
becomes very small, with an order of magnitude of 1072,
This is mainly because the neutron flux at sea level is low
(13n/(cm?xh)), and the execution time of the designs is very
low too (233 ns).

Fig. 5 shows the overall MEBF of the neural networks,
calculated using (8). We can immediately see that, despite
having a 39% lower cross section, the binary quantized net-
work only executes, on average, seven to eight times before
it experiences a critical error, whereas the baseline version
executes about 13 to 14 times before a failure. This indicates
that, at this point in time, a lack of accuracy seems to be
a much bigger problem for neural networks than radiation is.
In fact, we can estimate, for each level of accuracy, when does
radiation become a problem. Fig. 6 shows how the MEBF
varies as a function of the cfe product for different values of
accuracy.

We can clearly see that the curves in Fig. 6 stay flat
for the most of the parts. However, precisely at the point
when they start to drop, is where we should start worrying

1483

about the radiation effects. The graph shows that, if we
have a 99.99% accurate model, such a tipping point is
at cfe = 107°. Similarly, a model with 99.9% accuracy
should start facing significant radiation-induced problems at
cfe = 107*. As the red and black curves follow a similar
pattern, we can draw a generic conclusion: as we give up one
9 of accuracy, we postpone the radiation problem by 10x.

V. CONCLUSION

We have seen that not all errors need to be considered
critical in neural networks. Some of them can be classified
as tolerable, and in rare cases, errors can also contribute to
the overall accuracy of a given model. Furthermore, we have
mentioned that, in the case study, the binary quantization of
weights in the convolutional layers led to generally lower
vulnerability factors, but increased error criticality, and a more
volatile accuracy in the presence of upsets on the FPGA’s
configuration memory.

Besides, using the fault injection data, combined with
experimental static cross section measurements from Xilinx,
we were able to estimate the dynamic cross sections of the
case studies. We have seen that quantizing the weights of the
convolutional layers led to a 39% lower radiation sensitivity.
On the other hand, we have also seen that the percentage of
errors to be considered critical in a classification task increased
by 12% on the quantized design.

Beyond that and perhaps the most significant contribution
in this article, we have acknowledged that a neural network
can fail in two ways: by being inherently inaccurate or by
being vulnerable to radiation. From this idea, we have derived
expressions that model the failure rates in any given neural
network. First, we have explained how inaccuracy leads to
failures [see (2)]. Second, we have explained how radiation
leads to failures [see(3)]. Finally, we have combined these two
expressions in an equation that provides the global perspective
[see (8)]. It is important to highlight here that (2) comes
from the object-detection community, and (3) was introduced
by [21]. Equation (8), however, is the own.

Using the newly created equation, we were able not only
to determine the overall failure rate of the case studies but
also to extend the idea to a generic case. Fig. 6 shows a
good job of explaining, in a very simple manner, the effects of
inaccuracy and radiation sensitivity on neural networks. On top
of that, it also shows, for each level of accuracy, the pre-
cise point where the radiation effects become considerably
relevant.

As the future work, we first intend to explore different case
studies. As explained in Section II, the MNIST data set is a
very simple one and as such does not require a very large and
complex CNN topology. We believe that, when testing state-
of-the-art networks, the execution time is going to increase by
quite a few orders of magnitude, which, as previously stated,
will translate to a bigger impact on the overall MEBF of the
design. We also want to test the designs with different types
of particles. This is because it would be very interesting to
see how the MEBF is affected when the cross section and the
particle flux are also the orders of magnitude different from
what we observe in neutron experiments/environments.

Authorized licensed use limited to: Brigham Young University. Downloaded on May 12,2022 at 16:38:37 UTC from IEEE Xplore. Restrictions apply.

1484

Finally, we believe that the contributions made on this
article will serve the community as a whole, considering the
fact that, even though we are specifically dealing with an
FPGA, the equations hereby presented are generic enough to
be applied to any device that runs neural networks (e.g., GPUs,
CPUs, and ASICs).

REFERENCES

[1] S. U. Amin, K. Agarwal, and R. Beg, “Genetic neural network based
data mining in prediction of heart disease using risk factors,” in Proc.
IEEE Conf. Inf. Commun. Technol., Apr. 2013, pp. 1227-1231.

[2] G. R. Allen et al., “2017 compendium of recent test results of single
event effects conducted by the jet propulsion Laboratory’s radiation
effects group,” in Proc. IEEE Radiat. Effects Data Workshop (REDW),
Jul. 2017, pp. 7-15.

[3] V.-E. Neagoe, A.-D. Ciotec, and A.-P. Barar, “A concurrent neural
network approach to pedestrian detection in thermal imagery,” in Proc.
9th Int. Conf. Commun. (COMM), Jun. 2012, pp. 133-136.

[4] V. M. Polyakov, I. N. Kaliteevsky, K. S. Amelin, V. A. Smyslov, and
M. A. Permyakov, “Complexed NIR laser detector and LWIR camera
optical system with neural network management for UAV collision
avoidance system,” in Proc. Int. Conf. Laser Opt. (ICLO), Jun. 2018,
p. 280.

[5] C. He, A. Papakonstantinou, and D. Chen, “A novel SoC architecture on
FPGA for ultra fast face detection,” in Proc. IEEE Int. Conf. Comput.
Design, Oct. 2009, pp. 412-418.

[6] M. Wirthlin, “High-reliability FPGA-based systems: Space, high-energy

physics, and beyond,” Proc. IEEE, vol. 103, no. 3, pp. 379-389,

Mar. 2015.

X. Chen, G. Liu, J. Shi, J. Xu, and B. Xu, “Distilled binary neural

network for monaural speech separation,” in Proc. Int. Joint Conf. Neural

Netw. (IJCNN), Jul. 2018, pp. 3350-3357.

[8] B. Reagen et al., “Ares: A framework for quantifying the

resilience of deep neural networks,” in Proc. 55th Annu. Design

Autom. Conf. (DAC), New York, NY, USA, 2018, pp. 19:1-19:6,

doi: 10.1145/3195970.3195997.

G. Li et al., “Understanding error propagation in deep learning neural

network (DNN) accelerators and applications,” in Proc. Int. Conf. High

Perform. Comput., Netw., Storage Anal. (SC), New York, NY, USA,

2017, pp. 8:1-8:12, doi: 10.1145/3126908.3126964.

[7

—

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 67, NO. 7, JULY 2020

F. Fernandes dos Santos, L. Draghetti, L. Weigel, L. Carro, P. Navaux,
and P. Rech, “Evaluation and mitigation of soft-errors in neural network-
based object detection in three GPU architectures,” in Proc. 47th Annu.
IEEE/IFIP Int. Conf. Dependable Syst. Netw. Workshops (DSN-W),
Jun. 2017, pp. 169-176.

B. Du, S. Azimi, C. de Sio, L. Bozzoli, and L. Sterpone, “On the
reliability of convolutional neural network implementation on SRAM-
based FPGA,” in Proc. IEEE Int. Symp. Defect Fault Tolerance VLSI
Nanotechnol. Syst. (DFT), Oct. 2019, pp. 143-148.

F. Benevenuti, F. Libano, V. Pouget, F. L. Kastensmidt, and P. Rech,
“Comparative analysis of inference errors in a neural network imple-
mented in SRAM-based FPGA induced by neutron irradiation and fault
injection methods,” in Proc. 31st Symp. Integr. Circuits Syst. Design
(SBCCI), Aug. 2018, pp. 164-169.

F. Libano et al., “Selective hardening for neural networks in FPGAs,”
IEEE Trans. Nucl. Sci., vol. 66, no. 1, pp. 216-222, Jan. 2019.

J.-K. Kim, M.-Y. Lee, J.-Y. Kim, B.-J. Kim, and J.-H. Lee, “An efficient
pruning and weight sharing method for neural network,” in Proc. IEEE
Int. Conf. Consum. Electron.-Asia (ICCE-Asia), Oct. 2016, pp. 49-50.
I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low pre-
cision weights and activations,” J. Mach. Learn. Res., vol. 18, no. 1,
p. 6869-6898, Jan. 2017.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278-2324, Nov. 1998.

Xilinx. Zyng UltraScale+ MPSoC. Accessed: Mar. 23, 2020. [Online].
Available: https://www.xilinx.com/products/silicon-devices/soc/zynq-
ultrascale-mpsoc.html

F. Benevenuti and F. L. Kastensmidt, “Comparing exhaustive and
random fault injection methods for configuration memory on SRAM-
based FPGAS,” in Proc. IEEE Latin Amer. Test Symp. (LATS), Mar. 2019,
pp. 111-116.

Xilinx. Device Reliability Report. Accessed: Mar. 23, 2020.[Online].
Available: https://www.xilinx.com/support/documentation/user_guides/
ugl16.pdf

E. Johnson, M. Caffrey, P. Graham, N. Rollins, and M. Wirthlin,
“Accelerator validation of an FPGA SEU simulator,” IEEE Trans. Nucl.
Sci., vol. 50, no. 6, pp. 2147-2157, Dec. 2003.

P. Rech, L. L. Pilla, P. O. A. Navaux, and L. Carro, “Impact of
GPUs parallelism management on safety-critical and HPC applications
reliability,” in Proc. 44th Annu. IEEE/IFIP Int. Conf. Dependable Syst.
Netw., Jun. 2014, pp. 455-466.

Authorized licensed use limited to: Brigham Young University. Downloaded on May 12,2022 at 16:38:37 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/3195970.3195997
http://dx.doi.org/10.1145/3126908.3126964

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

