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Abstract—Speech transcription is a necessary tool for backend
applications commonly found in voice assistants. Transcription
is typically performed using cloud-based servers or custom
hardware, but those resources are not always amenable to space
environments due to size, weight, power, and cost constraints.
Therefore, it is important to determine the performance of and
optimal conditions for running transcription on hardware that is
feasible for deployment in a space application. This research
investigates and evaluates the performance of an optimized
version of the wav2vec2 speech transcription engine, the current
state-of-the-art model for this domain. The target hardware,
the NVIDIA Xavier NX Jetson embedded GPU, was chosen
for its modern GPU architecture and small form factor. In
addition to examining the input scaling behavior, we evaluate
the hyperparameters of the clustered attention optimization,
and average power and energy for inference relative to the
operating power mode of the device. The clustered attention
model outperformed the improved-clustered model for large
input sizes, but the original wav2vec2 performed better for small
input sizes. The clustered model energy per inference (13.90
J) was less than energy per inference of the improved-cluster
model (15.03 J) and the vanilla model (15.85 J). All models meet
real-time speech processing requirements necessary to perform
onboard inference entirely on a space system.

Index Terms—Automatic speech recognition, benchmarking,
GPU, machine learning, optimization, parallel processing

I. INTRODUCTION

As human space exploration pushes towards lunar orbit
with the planned Gateway outpost [1], there will be limited
connectivity with traditional terrestrial resources. Current op-
erations on the International Space Station rely heavily on
ground personnel to assist the orbiting crew with procedures
and vehicle operations. For lunar missions, the need for a
conversational interface capable of assisting astronauts, similar
to a chatbot, will become critical for activities where it is
difficult to consult a screen or manual. This chat interface will
serve in place of humans in mission control for tasks such as
assisting in procedures, helping to locate objects, and relaying
information about the vehicle with the crew. Chatbots, like
the Amazon Alexa voice assistant and supporting services [2],
rely on speech transcription as the enabling technology for
their backend, text-based natural language processing (NLP)
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applications. The vast majority of similar applications are tai-
lored to consumer electronics, which are ill-suited for remote,
extreme environments such as those found in space.

Transcription for space applications remains a vital but
undetermined piece of such a conversational system. Most
systems capable of transcription do so with the aid of cloud
servers, including those provided by Google [3], IBM [4],
and Amazon [5]. Communication to a lunar (moon-based)
spacecraft from Earth, for instance, would incur a minimum
of 2.25-second round-trip time. This minimum latency figure
would be complicated by other factors such as loss of signal
(LOS), where the link for such a communication could be
missing due to spacecraft position or satellite availability [6].
This high latency and complexity of communication would
reduce usefulness of the voice system and impact crew pro-
ductivity when real-time feedback was necessary. This issue
would be further magnified if this system were deployed in
even more remote environments such as Mars.

Without a remote server, the next source of assistance may
come from a edge accelerator such as a graphics processing
unit (GPU). Currently, there is a general interest in flying
GPUs both for their traditional rendering and display use
cases, but also for allowing machine learning in remote envi-
ronments [7]. For reasons of constrained size, weight, power,
and cost (SWaP-C), it is valuable to assess the feasibility of
running transcription on an embedded GPU.

The speech-embedding framework benchmarked in this
research was wav2vec2, which is a state-of-the-art (SOTA)
transformer-based model that translates sounds to phonemes,
the discrete sounds that make up human speech [8], [9].
Additionally, two optimizations known as fast-transformers
and attention clustering are added to reduce runtime [10], [11].

This research benchmarks the runtime of the wav2vec2
model on a representative embedded GPU for space applica-
tions. The key contributions of this paper are the comparisons
of cluster sizes in wav2vec2 optimizations, insights into power
and energy consumption during inference, and the effect of
varying GPU power limits on the runtime for this class of
transcription model.

II. RELATED WORK

This section describes the current SOTA of speech tran-
scription, both with transformers and more general recurrent



structures. It additionally explores some of the models used
for complex language tasks and how those models inform
the choice of wav2vec2. Moreover, it will introduce the issue
of transformer scaling, as well as optimizations chosen to
overcome this issue.

While the subject of speech processing for space applica-
tions is a niche area, transcription as a whole has a large body
of supporting research driven by the push to integrate voice
control into consumer electronics and software. Transcription,
also described as speech-to-text, is a necessary function for
converting audio signals for use in NLP backends designed
to accept text as an input. Many of the most prominent
transcription applications have, therefore, been created by
companies like Amazon, Facebook, and Google, as well as
large research labs. Some systems, like IBM’s Watson [4], are
available via API. Other transcription apps are in precompiled
formats for specific hardware, like Google’s on-device speech
recognition [12]. Open-source code for transcription, however,
is beneficial for the development of a local, offline application
for space missions.

One of the early demonstrations of end-to-end automatic
speech recognition was found in Deep Speech 2 [13]. Deep
Speech 2 performed transcription using several layers of
recurrent neural networks (RNNs) with connectionist temporal
classification (CTC) loss for training. This widely adopted
loss metric allows for the translation of sequences that do not
have strict labeling alignment between their input and output.
Additionally, Amodei et. al. demonstrated a model that could
be deployed on GPU servers, but highlighted the viability of a
fully trained machine-learning model for speech transcription
over one that required individually designed components. This
model was originally considered by the authors of this paper,
but initial results demonstrated that it was too large and slow
for deployment on embedded platforms.

Transcription is considered a sequence-to-sequence learning
task. The goal of sequence-to-sequence tasks is to convert a
sequential signal (e.g. audio) to a sequential output of a dif-
ferent domain (e.g. a string of text). One prominent sequence-
to-sequence structure is known as a transformer [9]. These
models consist of an encoder/decoder structure connected
by an attention mechanism. While this structure removes
recurrence from the learning process, it does require positional
encoding to inform the model of the relative position of an
input within a sequence, making it inefficient for memory-
bandwidth-constrained hardware.

Another model for sequence-to-sequence learning that uses
transformers is the Bidirectional Encoder Representations
from Transformers (BERT) [14]. Devlin et al. demonstrated
the accuracy of their metric on a wide variety of NLP tasks
including sentence prediction, understanding, and sentence
segmentation in a variety of languages, but not translation.
The utility of BERT for Natural Language Understanding
(NLU) tasks is also well demonstrated in its adoption by other
researchers [15], [16]. However, it was not desirable for this
research as it did not include a method of encoding audio to
feature vectors.

RoBERTa is one particularly notable BERT-based
model [16] for this use case. This model employed
the base BERT training and examined optimizations of
hyperparameters and more extensive training to achieve
SOTA accuracies on several of the benchmarks that BERT
had originally demonstrated. RoOBERTa achieved this partly
by drastically expanding its training data to include five
publicly available corpora. RoBERTA additionally rebuilt
the BERT base model using the FairSeq repository, which
is a tool developed by Facebook for a variety of NLP text
generation tasks including transcription [17]. This toolkit is
cited in many transformer-based language papers, and is the
basis for the structures used in this research.

Wav2vec2 is another transformer-based model developed
using FairSeq that is able to achieve SOTA word error rate
(WER) on the LibriSpeech corpus using fine-tuning with a
small amount of unlabeled data [8], [18]. Baevski et al. were
able to achieve this through a mixture of two approaches. First,
input data was encoded using convolutional neural networks
(CNNs) in a semi-supervised process to determine feature
vectors. This reduces the dimension of the input data and
provides feature vectors that better represent the underlying
language. Second, they perform training using selective input
masking to increase the model’s ability to generalize from
input data in a similar method as the one applied to BERT [14].
This model demonstrates a semi-supervised learning technique
that is well suited for applications where there are a relatively
small amount of labeled data for training. This will likely
be the case for space applications as much of the spoken
language will be jargon and acronyms unique to this domain.
There are example models for wav2vec?2 available as a starting
point, which could be fine-tuned on more powerful terrestrial
hardware for mission-specific terminology and speakers.

Wav2vec?2 still suffers from the scaling issue inherent to
transformers, specifically that computation time scales on the
order of O(N?) where N is the dimension of the input
sequence. It is, however, possible to implement transform-
ers with a slight alteration of the underlying equations to
reduce the computation time prediction scaling to a factor
of O(N) through an approximation method demonstrated
in [10]. One can further optimize transformers using clustered
attention [11]. Clustering partitions the input sequences and
calculates the centroid of this data to use in place of the entire
cluster, introducing a small but bounded error. Vyas et al.
augment their clustering algorithm by additionally considering
the attention keys that have the highest weights, referring to
this algorithm as improved clustering. This method is intended
to overcome scenarios where there are too few clusters or
where the error introduced by clustering is too high. For the
purposes of their experiment, the authors ran the RoOBERTA
translation model [16] using their modified processes and saw
only marginally decreased accuracy for many benchmarks us-
ing improved clustering, but more complicated tasks saw more
significant losses. Additionally, for short sequence lengths,
the full model performed inferences faster that the clustered
model.



III. BACKGROUND

This section will describe the optimizations present in the
wav2vec2 approximation used in this research. The derivation
of transformer models, as well as the exact derivations for
these optimizations can be found in the referenced support-
ing literature [9], [10], [11]. Details about the target device
architecture are also provided.

A. Fast-Transformers

The fast, linear transformers discussed in Sec. II are a
reformulation of the original transformer that appears more
like a RNN and has an runtime that scales linearly with
respect to input sequence length [10]. This is done through the
application of a feature map which allows the transformer to
precalculate some values to reduce the cost of an input query.
A typical transformer operation cost scales relative to input
size N, the dimension of the queries D, and the dimension of
the values M as follows:

O(N? max(D, M)) (1)

In [10], the authors replaced the exponential calculation in
the softmax kernel with a second-degree polynomial approxi-
mation which reduces the complexity to:

O(ND?*M) )

Eq. 2 is preferable to Eq. 1 when N > D2, which is true
when the input sequence is very large. With wav2vec2, the
CNN feature encoders increase the input samples to vectors
thousands of samples long, which is significantly greater than
the eight attention heads in the base model, meaning that this
optimization is a strong candidate for optimizing wav2vec?2.

B. Clustered Attention

Clustered attention is another method for reducing runtime
that is employed by this research [11]. This method involves
calculating an intermediate matrix reference to the “centroid
matrix” which contains the centroids of the clusters. This is
then used in place of the original query matrix, reducing the
dimension of the queries by a factor equal to the cluster size
C. Complexity is then reduced to:

O(NC maxz(D,M)) 3)

Note that this is most useful where C' << N. This is
beneficial for an architecture like wav2vec2 which has large
input sequences, so most potential cluster sizes should provide
measurable speedup.

C. Embedded GPUs

NVIDIA, known for its high-performance consumer- and
server-grade GPUs, has an additional line of system-on-
module (SoM) GPU platforms. These heterogeneous archi-
tectures combine an ARM CPU with an NVIDIA GPU on
the same die and packaged in an embedded form factor. The
entire system can be constrained to meet the requirements

TABLE 1
SUMMARY OF XAVIER NX POWER MODES
Mode Power | Online | CPU Max | GPU Max | Memory Max
D Budget CPU Frequency | Frequency Frequency
(W) Count (MHz) (MHz) (MHz)
0 15 2 1900 1100 1600
1 15 4 1400 1100 1600
2 15 6 1400 1100 1600
3 10 2 1500 800 1600
1 10 4 1200 800 1600

of battery-powered environments. Compared to their server-
grade counterparts, these boards attain only a fraction of
the memory bandwidth (~50GB/s vs ~900GB/s) but also
operate at significantly lower power (~15W vs ~300W) [19],
[20]. For these reasons, embedded GPUs would be able to
provide acceleration for sufficiently small or optimized models
onboard spacecraft.

While embedded GPUs exhibit desirable SWaP-C proper-
ties, they are also less capable than their consumer- or server-
grade counterparts. Most transcription models are trained on
high-performance hardware, and therefore there is little data
on performance for edge devices. Embedded GPUs have a
shared memory path between the CPU and GPU, which limits
their performance for memory-bound applications. The most
important characteristics of embedded GPUs for the purpose
of this research is the shared path to memory and the feasibility
of deployment in space applications due to desirable SWaP-C.

This research targeted the NVIDIA Jetson Xavier NX. This
system has 6 Carmel ARM-based cores (AArch64 architec-
ture) with an NVIDIA Volta GPU and 8GB of LPDDR4x
memory. The GPU portion contains 384 CUDA cores, 48
Tensor Cores, and two Deep Learning Accelerators (DLAs).
Tensor Cores are designed to accelerate tensor operations,
specifically matrix multiplication [19]. DLAs are a structure
that accelerate other deep-learning operations like convolu-
tion [21].

The GPU supports five standard power modes. The configu-
rations of these power modes are summarized in Table I. There
are two operational power budgets: 10W and 15W. Within each
power budget, the main difference between power modes is
number of available CPU cores and their operating frequency.
This should not have an effect on the GPU operation as the
function in question should be taking place exclusively on the
GPU. For all modes, it is assumed that if fewer CPU cores
are active, a smaller percentage of the power budget is used
for the CPU, and the GPU may run at a higher power. All
modes were considered as the CPU idle power was assumed
to impact the maximum GPU power.

IV. APPROACH

This research examined an approximation of wav2vec2
based on a fork from the FairSeq repository [10], [11], [17].
This fork augments wav2vec with both linear transformers and



input clustering. This was done on the NVIDIA Jetson Xavier
NX GPU.

A. Experiment

Wav2vec2’s SOTA accuracy has been demonstrated in lit-
erature [8] and so was considered out of scope for this study.
The untrained small wav2vec model was used to demonstrate
the ceiling for runtimes as model pruning may be training-
data dependent. To test the behavior of the model, the input
sequence length (32k-450k samples), model type (no cluster-
ing, clustering, and improved clustering), degree of clustering
(cluster sizes of 50, 100, and 125), and GPU mode were
varied. For all clustered models, the “’conditional-full” option
was used to prevent errors with input sizes that are smaller
than predicted by introducing zero padding. The codebase
leveraged for this model did not allow for batch size increases,
but these are not necessary for this particular application as
it targets real-time inference. All calculations were performed
with single-precision floating-point.

For each size, model, cluster, and power mode, the runtime
was averaged over ten model runs. GPU cache priming runs
were not counted in the final results as it is assumed that
the GPU cache is either used frequently enough to limit this
operation, or infrequently enough that it could be primed
prior to use. As a note, cache priming was required when the
model was updated, and took between five and ten seconds.
Therefore, priming would need to be planned for in practical
settings.

Power numbers were collected on a subset of these runs
using system calls during 100 evaluations with the largest
tolerated data-size (input of 450k samples) in each GPU mode.
Power measurements for the Xavier device are collected by
using direct system calls to the I12C power monitor, which
returns values at mW-precision at a 1-second sampling fre-
quency [19]. These measurements are of the CPU and GPU
combined power rail.

B. Evaluation Platform

The software environment was reproduced from the Google
Colab script developed by the authors of [10] in an em-
bedded Ubuntu 18.04 installation on the NVIDIA Xavier
NX. For this application, Python v3.6.12, PyTorch v1.7.0 for
AArch64 (specifically compiled for Jetson platforms) [22],
fast-transformers v0.3.0, and the branch of FairSeq by
Apoorv [23] were used. Note that audtorch is additionally
required to load the model, and v0.6.4 was used. For AArch64
architectures, it was required that llvmlite be compiled from
source to support the audtorch dependency numba.

The NVIDIA Jetson Xavier NX is run in all of its default
power modes, which have power budgets of 10W and 15W.
These modes additionally have varying numbers of active CPU
cores. All tests were run with single-precision floating-point
values.

V. RESULTS

This section contains data collected on the power and energy
consumption, inference time, and effect of cluster size on
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Fig. 1. Effect of GPU power modes on execution time.

execution time. These results verify that this model is feasible
for space applications from an energy and latency perspective.
Additionally, the effect of attention clustering type and size is
discussed to inform practical implementations. All error bars
presented represent the standard deviation.

A. Effect of GPU Power Modes on Execution Time

For this evaluation, the cluster size was set to 50 for the
clustered models, and the times are shown for the 450k-
sample input. The effect of the different GPU power modes is
shown in Fig. 1. The first three power modes have similar
execution times, with the best time seen in the clustered
models. However, we also see that when the power budget is
reduced to 10W, the execution time of the model does increase,
indicating that the GPU is being throttled to meet the power
constraint. Note that, in all cases, there are small increases
in the runtime as additional cores are brought online. These
cores consume power to keep online, reducing power in the
budget available for the GPU.

B. Power and Energy

u clustered ® improved-clustered Ivanilla

s
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Fig. 2. Effect of GPU power modes on power consumption.

The average power of the varying GPU modes is shown
in Fig. 2. This graph shows that in that the power modes
do strictly dictate the power of the device. An interesting
feature is that the improved-clustered model does not require



the full 15W to run in the higher power modes. This is also
the slowest model, meaning that the energy per inference is a
more relevant number.
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Fig. 3. Effect of GPU power modes on energy per inference.

Energy is shown in Fig. 3. These results were calculated
using the average execution times for each inference and the
average power consumption during inference at the largest
input sample size. In terms of total energy per inference, the
vanilla model has a higher energy cost than the other two
models. The clustered model had the lowest inference energy,
specifically in the 10W power modes. Between the 10W
modes, the energy is similar for all models except the clustered
model. However, the error bounds for these measurements
overlap and the true values are likely more similar than their
averages indicate.

C. Linear Scaling
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Fig. 4. Execution time compared to input sequence length.

Due to system complexity, it was prudent to confirm that
runtime indeed scales linearly with input size for this model,
so the results are reported for the vanilla, clustered, and
improved-clustered attention models varying input sequence
length. These results are shown in Fig. 4. Note that sequence
length is listed in time of input audio sample (assuming a
16kHz sampling rate). Within expected input ranges, which
were determined by the input size bounds in the LibriSpeech
dev-clean dataset, the execution time is linear with coefficients
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Fig. 5. Effect of cluster size on relative performance (sample size of 450k
samples, GPU power mode 2).

of determination exceeding 0.99. The line fits less well for the
improved-clustering trend as it executes faster on smaller input
sequences and slower on longer sequences. This is likely due
to the increased overhead for calculating which of the % input
keys will be provided to the model.

From a practical perspective, these are all reasonable ex-
ecution times for onboard processing. The largest sample
is roughly 28 seconds of audio for which inference can
be conducted in approximately 1.2 seconds. This sample
is significantly longer than a standard query to a chatbot,
which is usually on the order of several seconds. Even input
sample lengths up to ten seconds executed in under half a
second, which is significantly less than the floor for latency
of round-trip communication with a ground server. While it is
assumed there is still unknown latency associated with other
backend systems, this transcription engine is sufficiently quick
for other expensive computations to take place and still be
advantageous.

D. Cluster Size

The effect of cluster size on relative performance is shown
in Fig. 5. This data was collected in the default gpu power
mode (2) with a small, medium, and large sample. For
this hardware and model, these optimizations only improve
performance for very large audio samples. This makes sense
as clustering was intended for models with large input vectors.
However, it appears for even modest audio samples, the vanilla
model is faster.

It is also worth noting that the improved-clustering model
is much slower than the base clustered model due to the
additional computation of the relevant keys. This trend is
also consistent with the performance metrics provided by
Katharopoulos et al. on RoBERTa execution [10].

VI. CONCLUSION

In this research, it is demonstrated that an optimized
wav2vec2 model run on an embedded GPU can achieve
real-time inference (less than a second for realistic inputs).
This is a critical find for adapting transcription for space
applications as it demonstrates the feasibility of adapting an



open-source model intended for high-performance hardware
to an embedded scale. Additionally, it was shown that the
clustered model was a favorable optimization compared to
a vanilla and improved-clustered model in terms of energy,
but not runtime. The best energy consumption was derived by
running the device in its 10W modes (3 and 4) over its 15W
power modes (0, 1, and 2) by several joules per inference. It
is also advised that these models be run with a small cluster
size (50 performed best in these tests). For most expected
inputs, the best runtime is achieved with the vanilla model over
the clustered model at the cost of optimal energy efficiency.
Overall, it was found that the fast-transformers acceleration for
wav2vec?2 is amenable to the specific architecture of embedded
GPUs in terms of speed and power consumption.

Due to software constraints, authors were unable to leverage
the Tensor Cores or DLAs on the Xavier NX. Future work
includes modifying the software models used to accept auto-
matic mixed precision. This would allow for utilization of the
Tensor Cores and improve execution time.
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