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Abstract—For space applications, communications bandwidth
is often contested and limited. Limited communications is partic-
ularly evident for space vehicles in low Earth orbit, where space-
based sensor platforms that collect excess amounts of data will
often have difficulty communicating this data in a timely manner.
Data compression is a necessary step in transferring large files,
such as high resolution images, as it allows a system to make
more efficient use of communications bandwidth. Sensing systems
continue to evolve with increased resolutions and data rates that
effectively increase the overall amount of data. Hyperspectral
cameras are one type of imaging sensors that produce vast
amounts of data relative to conventional camera systems. Due to
the data increase, hyperspectral sensors can potentially benefit
significantly from data compression. CNN-JPEG is a state-
of-the-art, neural network-based compression framework. This
algorithm is a lossy, end-to-end image compression system that
has been adapted from previous literature to compress hyper-
spectral imagery collected from the Airborne Visible Infrared
Imaging Spectrometer (AVIRIS) sensor. By applying the CNN-
JPEG algorithm to hyperspectral imagery, we achieve upwards
of 17× compression ratios over the original image on average for
each spectral band. This increased compression ratio comes at the
cost of decreased reconstruction quality. Additionally, the amount
of compression delivered by CNN-JPEG is highly dependent on
the content of the image. CNN-JPEG provides a unique option
for space platforms in which high compression is desired with
acceptable losses in image quality.

Index Terms—Adaptive Compression, Hyperspectral Imagery,
Image Compression

I. INTRODUCTION

Hyperspectral imaging sensors have wide variety of ap-
plications. Measuring along the z-axis of a hyperspectral
data cube provides a spectral signature corresponding to that
pixel, which can be compared to known spectral signatures to
determine the chemical composition of the material contained
within that pixel. Hyperspectral sensing is also a popular
tool for mining and mineralogy, where spectra can be used
to identify materials such as soils and ores within a scene
[1]. Hyperspectral imaging is also of interest in defense apps,
where the movement of objects can be tracked throughout a
scene based their unique spectral signature [2], [3].
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Due to the large size of hyperspectral data cubes, typically
on the order of gigabytes, it is vital for spacecraft to compress
these data cubes for more efficient data storage and transfer. To
this end, many solutions for hyperspectral data compression
exist using both lossy and lossless techniques, and each offers
a unique set of performance tradeoffs. For space platforms, an
ideal compression framework has three desirable characteris-
tics: high compression ratio, high reconstruction quality, and
feasibility of implementation and use on embedded platforms.
Recent advances in onboard processing and space hardware
have demonstrated the use of deep learning applications for
spacecraft [4], [5].

Designing for remote-sensing and space-computing plat-
forms involves a wide variety of interesting engineering
challenges, including size, weight, power, and cost (SWaP-
C) constraints due to hazardous environmental conditions. In
particular, the space environment introduces several complica-
tions for communications. Atmospheric conditions, as well as
space radiation often result in situations where communication
with a ground station is only possible within limited windows
[6]. Additionally, onboard applications must constantly com-
pete for available transmission bandwidth. Consequently, the
amount of data that can be communicated to a ground station
or other space platform is also limited. As the resolution and
data rate of remote-sensing technology increases, the amount
of data that is collected by a space platform also increases.
This creates an issue where the finite communications band-
width is saturated and unable to transfer an ever-increasing
amount of data to operators on the ground. One solution
for these communication issues is to make more efficient
use of available bandwidth using data compression. Data
compression is a proven strategy for increasing the efficiency
of digital storage and communications [7], [8].

Data compression is a vital step in the processing pipeline
for space platforms. As a result of the unique challenges intro-
duced by the space environment, flight systems often impose
restrictions on energy consumption. Due to these constraints,
the computational capability as well as the memory available
to the flight system is often limited. For platforms that produce
large amounts of sensor data, these limitations produce a
problem: onboard processing of large amounts of data may
not be feasible, and transmission of the data to another system
may be subject to interference. Additionally, transmitting data978-1-6654-2849-1/21/$31.00 © 2021 IEEE



can be costly in terms of time. Data compression is a common
technique that can be used to transfer data quickly and with
acceptable bandwidth efficiency.

This research seeks to offer an investigation and assessment
of the feasibility and accuracy of deep-learning-based com-
pression models for hyperspectral imagery. As noted in [9],
deep-learning-based compression frameworks have not been
as widely studied as transform-based compression models
for hyperspectral data. This research demonstrates that deep-
learning models provide enhanced image compression over
traditional methods with the natural tradeoff of reduced re-
construction quality. The advantages of enhanced compression
show that deep-learning-based compression methods are worth
consideration for hyperspectral imaging systems.

II. RELATED WORK

Compression of hyperspectral image data is a widely re-
searched topic. The characteristic 3D structure of the hyper-
spectral data cube presents some interesting design challenges.
Compression methods can leverage spatial locality, spectral
locality, or both depending on the desired effect. The needs
of hyperspectral apps may call for different approaches to
compression. Many hyperspectral techniques have been cat-
alogued by Dua et al. in [9]. According to this classification,
machine-learning-based compression frameworks have not
been studied as thoroughly as transform-based or prediction-
based algorithms. This research notes that compression via
neural-network (NN) inference is capable of operating in real
time, which is of great benefit to time-sensitive systems.
However, NN-based compression frameworks can come at
the cost of more difficult implementation and the need for
carefully curated training data.

Transform-based algorithms are commonly used for hyper-
spectral compression. The algorithm proposed by Tang et al.
in [10] employs a lossy three-dimensional discrete wavelet
transform known as 3DSPECK. This is an expansion of a
2D compression algorithm to operate on a 3D dataset. By
using a discrete wavelet transform, 3DSPECK is able to better
exploit both spatial and spectral locality. As a result, this
algorithm is able to achieve a high degree of compression
with minimal reconstruction loss. 3DSPECK compresses data
using a non-scanning snapshot approach. The hyperspectral
image is not partitioned based on spectral or spatial bands;
rather, 3DSPECK processes the entire hyperspectral image at
once to take full advantage of any data locality.

Lossy compression techniques are a proven option for
hyperspectral data. Du et al. describes a lossy algorithm based
on JPEG2000 encoding with principal component analysis
(PCA) [11]. In this case, PCA is employed for decorrelation
of spectral bands, as well as dimensionality reduction. This
spectral decorrelation is able to exploit spectral locality by
removing redundancies along the spectral axis. PCA also
reduces the dimensionality of the data to a set of principal
components, which leads to fewer values which need to be
stored, thus providing enhanced compression. Notably, the
use of the JPEG2000 transform is able to provide a larger

signal-to-noise ratio over discrete wavelet transform methods.
Lossy compression leveraging machine learning is not without
precedent. Valsesia et al. has proposed a method of onboard
hyperspectral compression with reconstruction performed by
using a convolutional neural network (CNN) [12]. This method
utilizes a CNN that attempts to reconstruct a compressed
image by minimizing the mean squared error between the
original and compressed images. Such an adaptive recon-
struction approach is able to provide a reconstruction quality
that is competitive with lossless and near-lossless compres-
sion standards. Additionally, CNN-based image-compression
frameworks have been demonstrated on orbital platforms [5].
For visible band satellite imagery, adaptive lossy compression
schemes provide a much larger reduction in file size with
minimal loss of reconstruction quality compared to standard
JPEG codecs.

III. BACKGROUND

Data compression consists of two broad categories: lossy
and lossless. Lossless compression schemes are able to per-
fectly reconstruct the data without any loss of information.
This is especially useful for compression of numerical or text
data, where errors or losses in precision are especially evident.
However, these methods of compression are often limited in
terms of how much the data can be compressed. Since the
data must be reconstructed perfectly in a lossless scheme,
the compression algorithm must preserve enough information
to recreate the original data. Consequently, the compression
ratios offered by lossless schemes are not as high as other
methods [7]. Lossless compression is best employed in apps
where precision and accuracy of the data is paramount over
memory constraints.

In lossy compression schemes, quantization schemes are
employed alongside other techniques to reduce the number of
bits required to represent the data [8]. However, a reduction
in representative bits often results in reduced reconstruc-
tion quality. After quantization, the original data cannot be
perfectly reassembled during decompression. Lossy methods
are generally able to achieve higher compression ratios than
lossless schemes, with the drawback of a loss in quality. Lossy
compression is typically employed in image, audio, and video
compression. In these forms of media, losses in precision
and quality are typically less perceptible than losses in text
data. Consequently, the benefits of using lossy compression
schemes over lossless for image and video data are many.
Since videos and images can reach very large sizes, they are
able to benefit from the higher compression ratios offered by
lossy schemes. Hyperspectral images can often reach upwards
of several gigabytes in size; applying lossy image compression
to these images provides a much larger reduction in file size.
Additionally, the quantization can be tuned to provide higher
or lower degrees of compression based on the needs of the
application.



A. Hyperspectral Imagery

Hyperspectral imagery differs from conventional imagery
in that it captures many more spectral bands than an RGB
camera. Often this is manifested as an image containing a
much wider range of wavelengths than visible light. Hy-
perspectral sensors often collect data from near-ultraviolet
through the infrared spectrum, typically wavelenghts from
around 400 nanometers to 2500 nanometers. By capturing
a wider band of the electromagnetic spectrum, hyperspectral
sensors capture much more spectral information. This increase
in spectral information brings new possibilities for imaging
applications but requires much more storage to represent that
information. Since hyperspectral images include more than the
visible spectrum alone, they are often represented as an image
cube, where x and y coordinates refer to the spatial location
of a pixel, and the z coordinate provides the spectral content
of that pixel.

For this research, we employ image data gathered by
the NASA Airborne Visible Infrared Imaging Spectrometer
(AVIRIS) sensor. This sensor captures spectral radiance from
400 nm to 2500 nm, which is arranged in 224 distinct spectral
bands. With 224 spectral bands, hyperspectral images contain
nearly 75× as much data as a more traditional three-channel
RGB image with the same resolution. The AVIRIS sensor
is mounted on a high-altitude vehicle and captures spectral
radiance in a whisk broom scanning method as the vehicle
moves across the target area. Together, this data forms a highly
dimensional composite image with dimensions equal to the
sensor swath width by the flight length by 224 spectral bands.

B. Adaptive Compression with CNN-JPEG

Many popular compression techniques rely on some form
of transform encoding to compress an image. Standard JPEG
encoding employs a sequence of downsampling and transfor-
mation mapping, a discrete cosine transform, and quantization
[13]. To reconstruct the image, the sequence is performed in
inverse order. The JPEG transform is data-agnostic and will
function in the same way independent of the data that is being
processed. This feature allows JPEG to be applied universally
to all forms of imagery. However, for this same reason, JPEG
encoding is rarely the optimal mode of compression for every
use case [14]. Recently, NN-based compression techniques
have become the subject of much research [15]–[17]. The
technique in many NN-based frameworks is to take the initial
stage of downsampling and mapping in a JPEG transform and
replace it with a CNN that can optimize this mapping for the
expected form of imagery. CNN-based adaptive compression
algorithms are most applicable when there is some knowledge
of the expected image content. Strategies using CNNs seek to
minimize both the number of bytes required to store an image
and the reconstruction loss of the compressed image.

The CNN-JPEG system is adapted from [16] and consists of
three major components: the encoder network, a compression
codec, and the decoder network. The end-to-end system is
illustrated in Fig. 1. The encoder network is a 3-layer neural
network that reduces the spatial dimensions of the original

image while preserving structural information. The resulting
output is a compact representation of the original image. This
image is then encoded using a JPEG codec to achieve a fully
compressed image. For image reconstruction, the compressed
representation is first decoded using the JPEG codec. Next, it is
then processed by the 20-layer decoder network. The decoder
network consists of a series of convolution and activation
layers followed by convolution and batch normalization layers.
Using bicubic interploation, the decoder upsamples the image
to the dimensions of the original image. The decoder network
also predicts a residual image which is added to the upscaled
image to restore visual fidelity. The CNN-JPEG system has
been demonstrated as a compression framework for onboard
compression of satellite imagery [5], which makes CNN-JPEG
an ideal system for this investigation.

Fig. 1. Architecture of the CNN-JPEG pipeline.

To evaluate the performance of CNN-JPEG as a technique
for hyperspectral image compression, two metrics are of
interest: the compression ratio and the image reconstruction
quality. Compression ratio is the ratio of the size of an original
image to that of the compressed image. Compression ratio
provides a straightforward metric of how much reduction
in file size a compression algorithm can provide. A higher
compression ratio corresponds to a higher reduction in file
size. Peak Signal-to-Noise Ratio (PSNR) is a commonly em-
ployed measurement of reconstruction quality for lossy image
compression techniques. PSNR is the ratio of the maximum
power of a signal to the power of the noise present in that
signal. The PSNR of a compressed image can be calculated
via mean squared error (MSE), which for an m×n image I
and compressed image K is defined in Eq. 1 and Eq. 2.

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[I(i, j)−K(i, j)]2 (1)

Using the mean square error, the PSNR can then be calcu-
lated as follows:

PSNR = 10 log10

(
max(I)2

MSE

)
(2)



TABLE I
AVIRIS HYPERSPECTRAL FLIGHT DATA

Flight Designation Image Dimensions Area (km2) Size (GB)

f110523t01p00r11 747 × 3525 × 224 665.69 1.34
f131205t01p00r12 775 × 6533 × 224 1263.9 2.54
f190821t01p00r11 749 × 2128 × 224 408.03 0.81
f080611t01p00r07 753 × 1924 × 224 418.48 0.74

With these metrics, the performance of CNN-JPEG for
hyperspectral image compression can be assessed. To compare
the performance to a baseline, we also compress the image
stack using a standard JPEG transform on each band.

IV. APPROACH

In this research, we assess the performance of the CNN-
JPEG adaptive image-compression algorithm on hyperspectral
imagery. To apply the CNN-JPEG algorithm to a hyperspectral
data cube, an additional layer of preprocessing must added to
the compression pipeline. This additional layer deconstructs
the image cube via spectral scanning; slices of the image cube
are taken perpendicular to the spectral axis, forming a stack
of images. This stack contains as many images as there are
bands in the original data cube, and each image within the
stack is a monochromatic snapshot of the scene at a particular
wavelength. Decomposing the original dataset using spectral
scanning provides several advantages. Among these is that by
transforming the image cube into a series of 2D images, we
are able to apply the CNN-JPEG algorithm without drastically
augmenting the size of the network to operate on hyperspectral
data. Spaceborne apps are also required to run on embedded
systems, which may be limited in processing capability as
a result of power constraints. Thus, we wish to limit the
complexity and size of the CNN to reduce resource usage
and execution time. Additionally, spectral scanning provides
a more direct structural representation of the scene, which
can make it easier to assess the reconstruction quality through
visual inspection.

After preprocessing, the CNN-JPEG algorithm was trained
using component bands from four separate AVIRIS flights.
With 224 bands each, these four hyperspectral data cubes
provide 896 total spectral bands, with swaths ranging from
approximately 750 pixels to upwards of several thousand
pixels depending on flight length. The name of each flight
as well as the dimensions of the hyperspectral data cube
captured are shown in Table I. Hyperspectral flights were
chosen on the basis that they contain a variety of discernible
features as well as have a relatively linear flight path. Linear
flight path is an important consideration for training the
compression model, as AVIRIS flights containing turns are
zero-padded to fill a rectangular image. Graphically, this may
result in large portions of the data cube appearing as entirely
black, which have adverse effects on training the CNN-JPEG
algorithm. Likewise, we also choose flight data with a variety
of features to train the CNN on different environments for
better generalization.

For the purposes of training CNN-JPEG, the first three
hyperspectral flights comprised the training dataset, while the
fourth hyperspectral image formed the test set. Each data
cube is decomposed into a series of 2D, grayscale images
which can be processed faster and more easily than a dataset
with large dimensionality. In this way, we also avoid a major
redesign of the CNN to process 3D image cubes. In order to
further augment the amount of training data available, a patch
extractor is applied to the training data. The patch extractor
takes 200,000 randomly selected 40×40 pixel patches of each
image and applies a random rotation to avoid overfitting the
network. The network was trained on this data for 50 epochs
using the Adam optimizer for both the encoder network and
the decoder network.

Compression of each band is performed via inference on the
test set. As discussed, the CNN-JPEG pipeline consists of a
three-layer encoder network followed by a JPEG transform and
a 20-layer decoder network. Compressed images are extracted
after the JPEG transform and before the decoder network.
These compressed images have reduced spatial dimensions
compared to the original image. The dimensions of the com-
pressed images are a tunable, user-defined parameter; for this
research, the dimensions are reduced by exactly half of the
original dimensions. Passing the compressed images through
the decoder network then produces the reconstructed band with
image dimensions equal to that of the original.

V. RESULTS

The average per-band compression ratio of the CNN-JPEG
compression compared the standard JPEG is shown in Fig. 2.
Overall, the CNN-JPEG compressed bands produced a com-
pression ratio of 17.04×. Comparatively, the fully recon-
structed bands provided a compression ratio of only 1.59×
over the original uncompressed bands. The baseline standard
JPEG compression provided a compression ratio of 3.87× on
average.

Fig. 2. Average per-band compression ratio with standard deviation of each
band in the test set.



Compared to the standard JPEG transform using a quality
factor of 90, CNN-JPEG is able to provide a much higher
average per-band compression ratio. Additionally, since a
spectral scanning technique was used to decompose the image
cube, the compression provided by CNN-JPEG does not take
full advantage of spectral locality. Each spectral band is com-
pressed via CNN-JPEG independently of the other compressed
bands. As a result, this compression technique cannot take
advantage of any similarity between the current band and
surrounding bands. A full image cube snapshot approach could
provide even higher compression than a spectral or spatial
scanning approach.

Notably, there is a much larger standard deviation present
in the CNN-JPEG compressed representation. This is due to
the spectral scanning method. By employing this method of
decomposing the hyperspectral data cube, we obtain a set of
images corresponding to a certain wavelength. In many bands,
the spectral content can be relatively uniform over a wide
region. As a result, many of the pixels in that band will have
a similar value, which can then be more efficiently compressed
by the JPEG encoder. On the other hand, in a band with widely
varied spectral content, the JPEG encoder cannot as effectively
compress the data as there is less similarity between pixel
values. CNN-JPEG offsets this issue by learning a residual
feature map of the data; in other words, CNN-JPEG is able
learn the high-frequency features and components of an image
while reducing the image dimensions. Since many of the bands
in the hyperspectral image have uniform spectral content, those
bands lack an abundance of well-defined features in the image,
leading to the majority of the image being low-frequency
content. In these images, the lack of high-frequency content
limits the amount of high-frequency data that the encoder
network can reduce. As a result the efficacy of the encoder
network is restricted and the compression ratio is lowered
for that band. Conversely, the encoder network is able to
learn and reduce more features in bands containing a large
amount of contrast and high-frequency data. For this reason,
the compression ratio provided by CNN-JPEG is highly variant
based on the content of each band.

Fig. 3 shows the PSNR of CNN-JPEG and the standard
JPEG transform. On average, the CNN-JPEG reconstruction of
each band has a lower PSNR than that of the standard JPEG by
about 10 dB. The standard deviation of reconstruction quality
across all bands in the image stack is consistent between
both CNN-JPEG and the traditional JPEG transform. This loss
in quality over the traditional JPEG transform is a result of
the increased presence of visual artifacts when using CNN-
JPEG. These artifacts are a result of overflow in the encoder
network. Each band is quantized to an 8-bit grayscale image
with the highest possible value representing pure white. As the
image is passed through each layer in the encoder network,
any activations in the pure white regions of an image will
multiply the color value causing numerical instabilities. Since
pure white is already at the maximum possible color value,
overflow occurs on activation, thereby resetting the color value
to pure black. The authors hypothesize that this effect can

Fig. 3. Comparison of average per-band PSNR with standard deviation of
each band in the test set.

be mitigated by adjusting the activation functions to better
normalize the image.

Additionally, CNN-JPEG was unable to generalize given
the high variability between bands in a hyperspectral image.
The objective of CNN-JPEG is to minimize the MSE between
the original and reconstructed image; the decoder network can
achieve this through optimization of the residual. Bands with
uniform spectral content often have a lower MSE compared to
bands with more varied, high-frequency data. Since a majority
of bands in a hyperspectral image tend to be low frequency
content, many of the bands with more high-frequency content
produced more varied gradients. This variance manifests as
noise during training, and as a result CNN-JPEG was not
fully optimized for the best reconstruction quality across all
bands. Consequently, the average reconstruction quality of
CNN-JPEG is lower than that of a standard JPEG without
further optimization.

Fig. 4 provides a visualization of CNN-JPEG compression
on a single band of the data cube. A standard JPEG compres-
sion of the same band is also provided for comparison. Ideally,
the reconstructed image should appear exactly the same as
the original image with no perceptible difference between the
two. At first glance, the CNN-JPEG reconstruction is visually
similar to the original uncompressed image. Upon closer
inspection, the CNN-JPEG reconstruction exhibits unique ar-
tifacts in the extreme values of the image. The highest and
lowest values are replaced by a binary distinctive noise pattern
as a result of instabilities in the network driving the pixel value
either very high or very low. Given that these instabilities only
occur in the brightest white or darkest black regions of the
reconstructed image, the reconstructed image suffers a loss in
effective dynamic range over the original image. This loss of
dynamic range is reflected in the PSNR of the reconstructed
bands, which on average are lower than that of the standard
JPEG transform. Additionally, depending on the hyperspectral
application, this may have an adverse effect on accuracy, and,
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Fig. 4. Visual comparison of CNN-JPEG reconstruction with original and standard JPEG compressed images.

as a result, may be an unsatisfactory solution. Additional post
processing of the image could be utilized to correct these
instabilities. Applying image processing techniques such as
Gaussian smoothing or color interpolation may restore some
degree of visual fidelity of the image. In this way it is possible
to reduce the PSNR loss of the CNN-JPEG reconstructed
image.

VI. CONCLUSIONS

Space platforms are subject to limited and contested com-
munications bandwidth. For platforms that produce large
amounts of data, as is the case with hyperspectral sensors,
these limitations on communications impose strict require-
ments on the ability to downlink data. To remedy this, we
opt to make more efficient use of available bandwidth using
lossy compression. By applying CNN-JPEG to large datasets
such as those created by hyperspectral sensors, we can achieve
compression ratios of 17× on average. This is a significant
improvement in compression over standard JPEG transforms.
However, this enhanced capability for compression comes at
the cost of reduced image reconstruction quality, as well as
the introduction of image artifacts.

Depending on the application, the increased compression
offered by CNN-JPEG is greatly beneficial to first-pass apps
that favor transmission throughput over precision. In apps that
are highly dependent on precision, the loss in quality of CNN-
JPEG is not be acceptable. For this reason, the loss in image
quality must be considered an acceptable price for enhanced
compression. CNN-JPEG is best employed for quick-look
hyperspectral imaging apps that do not require precise quality.
Future investigations of this topic include a study of the effects
of CNN-JPEG compression on the performance of imaging
apps and comparisons with other hyperspectral compression
techniques.
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