
 978-1-5386-2014-4/18/$31.00 ©2018 IEEE
 1

Towards Resilient Spaceflight Systems with Virtualization
Daniel Sabogal, Alan D. George

NSF SHREC Center, ECE Department, University of Pittsburgh
4420 Bayard Street, Suite #560, Pittsburgh, PA, 15213

412-383-8142
{daniel.sabogal, alan.george}@chrec.org

Abstract—Demand for high-performance computing in space-
flight applications is accelerating the development of next-
generation processors for space. These processors, including
Boeing’s High-Performance Spaceflight Computer (HPSC) and
Xilinx's Zynq UltraScale+ MPSoCs, offer feature-rich and
multi-core ARM Cortex-A53 processors with hardware
extensions for efficient execution and isolation of virtualized
systems. This capability for virtualization enables new
opportunities for enhanced fault tolerance through system-level
redundancy of complete flight-software systems. In this paper,
we present Virtualized Space Applications (ViSA), a framework
leveraging the Xen hypervisor for deploying software-based
fault tolerance for flight systems. We evaluate and analyze
ViSA’s enhancements to reliability and availability of the system
in both an experimental lab setting and under neutron
radiation-beam testing at the Los Alamos Neutron Science
Center (LANSCE). As a case study, we investigate software-
based replication and voting on the core Flight Executive (cFE)
suite of flight software from the NASA Goddard Space Flight
Center (GSFC) on the ViSA framework.

TABLE OF CONTENTS
1. INTRODUCTION ... 1
2. BACKGROUND ... 1
3. APPROACH .. 3
4. EXPERIMENT ... 4
5. ANALYSIS .. 6
6. CONCLUSION... 7
ACKNOWLEDGEMENTS .. 7
REFERENCES... 8

1. INTRODUCTION

The increasing demand for high-performance computing
onboard spacecraft has led to the adoption of more
commercial-off-the-shelf (COTS) components in these
systems, over the traditional approach of strictly radiation-
hardened devices. This design tradeoff leads to substantial
benefits in performance, energy-efficiency, and cost.
However, COTS components are highly susceptible to space
radiation. Single-event effects (SEEs) occur when an ionizing
particle strike deposits sufficient energy to influence the
component [1]. The need for dependable computer systems
in harsh space environments poses new challenges for
spacecraft engineers.

The development of next-generation space processors,
including Boeing’s High-Performance Spaceflight Computer

(HPSC) [2] and Xilinx's Zynq UltraScale+ MPSoCs, will
introduce 64-bit, feature-rich and multi-core ARM Cortex-
A53 processors. These processors provide hardware
virtualization extensions that are used by virtual machine
monitors (VMM), such as the Xen hypervisor by the Xen
Project, to create a virtualized system with virtual machines
providing near-native performance. Furthermore, the System
Memory Management Unit (SMMU) available on these
platforms provides the VMM with an additional level of
address translation and protections for DMA-capable
devices, which ensures the isolation between virtual
machines. This capability for virtualization enables new
opportunities for enhancing the fault tolerance of space-
computer systems through system-level redundancy of
complete flight-software systems. Our contribution,
Virtualized Space Applications (ViSA), provides spacecraft
engineers with a framework leveraging the Xen hypervisor
for deploying software-based fault tolerance on next-
generation space processors. As a case study, we investigate
software-based replication and voting on the core Flight
Executive (cFE) software suite from NASA Goddard Space
Flight Center (GSFC) on the ViSA framework. We provide a
brief description of the Xen hypervisor, cFE, and related
work in Section 2. The architecture and design of ViSA are
discussed in Section 3. Our experimentation and evaluation
are presented in Sections 4 and 5. We conclude with final
remarks and future work in Section 6.

2. BACKGROUND
This section provides a cursory overview of key components
that comprise the ViSA design. In addition, this section
describes related work in this field of study.

Xen Hypervisor

The Xen hypervisor [3] is a lightweight Type I hypervisor,
which is a class of hypervisors that executes directly on the
hardware to manage system resources and virtual machines,
called domains. Each domain is allocated a configurable
number of Virtual CPUs (VCPUs), each of which is
scheduled by Xen to be run on a physical CPU. VCPUs may
be pinned to a physical CPU to ensure that domains always
receive some CPU time. Xen is capable of paravirtualization
(PV), where modified domains can cooperate with the Xen
hypervisor directly through a hypercall interface provided by
the hypervisor. PV is advantageous to full virtualization in
that it avoids the incurred performance overhead for
emulating accesses to system resources. Inter-domain
communication via a PV network is available in Xen by
pairing together domains with a PV front-end driver in one

2

domain, and a PV back-end driver in the other. Each network
pair appears as a single virtual interface (VIF) for an Ethernet
device on both domains accessible by user applications
through the POSIX API for networking. Virtual interfaces
can be attached or detached at runtime. The Xen hypervisor
is supported on various embedded ARM platforms, including
the Xilinx Zynq UltraScale+ MPSoC.

By design, the first domain booted by Xen, named dom0, is a
privileged domain capable of instructing the Xen hypervisor
to create, destroy, and manage other unprivileged domains
called domUs. Xen is limited in that dom0 is not restartable
and requires a full system reboot to restart it. Domains
running on Xen are isolated from each other. This attribute is
significant because, from a reliability perspective, failure in
one domain does not adversely affect the other domains.
SEEs can cause a domain to behave abnormally or even
crash. In such scenarios, Xen-based systems are capable of
recovery, since failed or faulty domUs can be restored with a
new domain by dom0. Furthermore, as a Type I hypervisor,
a Xen-based system is capable of remaining operational via
graceful degradation even if dom0 has failed. In this scenario,
the domUs will still be operational, however, dom0 will be
unavailable for managing the system. Any additional failures
in domUs cannot be recovered since dom0 is no longer
available to reboot them. In contrast, Type II hypervisors,
such as the Kernel-based Virtual Machine (KVM) [4] for
Linux, manage virtual machines as processes in the kernel
and are vulnerable to a single point of failure in the host
machine’s kernel.

The impact of a dom0 failure on the remainder of a Xen-
based system depends on its configuration. Typical Xen-
based systems have most physical-system resources and PV
back-end drivers residing in dom0. Thus, a dom0 failure in
this system will prevent the remainder of the system from
performing inter-domain communication over the PV
network. Communication with remote hosts will also be
unavailable due to the lack of physical network devices, held
by dom0. Although dom0 could be rebooted to revert the
system to the original setup, doing so will interrupt system
availability for mission-critical applications. To avoid this
issue, dom0 disaggregation techniques, as discussed in [5],
have been explored to migrate services and responsibilities
out of dom0 and into domUs. For example, physical hardware
devices can be given direct and exclusive access to a domU
through Xen’s passthrough virtualization feature.

In an AArch64 Xen-based system, Xen will copy itself to the
highest, 2 MB-aligned bank of physical memory capable of
storing the executable during startup, and resumes execution
from there. All physical memory is memory-mapped by the
hypervisor. When creating dom0, a memory region is
allocated and is mapped one-to-one to physical memory
space. For domUs, Xen creates arbitrary memory maps as
needed. The size used for memory allocated for newly
created domains are specified in the device tree blob and in
the xl.cfg configuration file for dom0 and domUs,
respectively. Each domain is given a set of memory pages,

called the grant table, that can be used to share memory
between domains and the Xen hypervisor.

NASA core Flight Executive (cFE)

The cFE software suite [6] is an open-source, reusable, and
portable framework maintained by NASA GSFC for
developing mission flight software. cFE is available for
operating systems based on Linux, RTEMs, and VxWorks.
Furthermore, this framework has flight heritage and has been
used on both large spacecraft, such as Orion [7], and small
CubeSats including NASA GSFC’s Dellingr [8] and the NSF
Center for High-performance Reconfigurable Computing’s
(CHREC) Space Processor (CSP) sub-experiment on the
Space Test Program - Houston 5 (STP-H5/CSP) on the
International Space Station (ISS) [9]. cFE is designed to load
shared object files, called cFE applications, using the
dlopen function in POSIX.

Figure 1 shows a set of core applications available in cFE,
including the Events Services (EVS) and Software Bus (SB)
applications. The EVS provides an interface for reporting and
logging diagnostics and events. The SB is designed to use a
publish-subscribe messaging pattern for communication
between cFE applications. The NASA core Flight Software
(cFS) suite consists of cFE bundled with additional cFE
applications for extended functionality, such as a scheduler
(SCH), telemetry downlink (TO_LAB), and command
ingests (CI_LAB). Typically, commands sent to the
command ingest are forwarded to the SB and received by
subscribed cFE applications to perform a designated task.
Custom and mission-specific cFS applications may be added
to the suite through the cFS build system with an adjustable
priority for scheduling.

Related Work

Virtualization-based approaches for fault tolerance have been
explored in various forms. Campagna et al. [10] presented a
prototype architecture leveraging the XtratuM hypervisor on
the LEON3 to perform time-redundant execution of an
application over two separate and identical memory

Figure 1. cFS suite with cFE core applications (yellow)
and bundled mission applications (blue).

3

partitions. Applications running on this system are
instrumented to issue hypercalls. The hypervisor transfers
output buffers to a checker application for performing byte-
by-byte comparisons. In [11], Missimer et al.'s Quest-V
system used hardware-virtualization technology to partition
system resources into separate sandboxes running their own
kernels. The resulting system operated as a distributed system
on a chip, where sandboxes communicate with one another
using established shared-memory channels. Quest-V featured
fault tolerance through triple-modular redundancy in one of
three configurations: voter residing in either the hypervisor,
a single sandbox, or distributed across all sandboxes.

3. APPROACH
The ViSA framework is composed of three components: the
Xen hypervisor, the ViSA middleware, and the mission-
specific flight software. Each domain runs an instance of the
ViSA middleware and the flight software. The number of
domains and the partitioning of resources for each domain is
configurable. An example architecture configuration is
illustrated in Figure 2.

At boot time, the Xen hypervisor begins executing and
launches a Linux-based dom0 kernel. During startup of
dom0, the ViSA service launches as a single process and
queries the system for setup parameters from Xen and ViSA
configuration files. Xen files include the UUID file in the
Linux sysfs filesystem for domain identification. The
ViSA configuration file specifies parameters for each
managed domain, including the number of VCPUs, memory,
kernel images, ramdisks, boot arguments, and passthrough
peripherals. The ViSA process running on dom0 will detect

that it is running on the privileged domain and will then
enable its privileged mode of operation, which is responsible
for managing Xen through the Xenlight library (libxl).
Next, ViSA creates all specified domains via dom0. On each
domU, a ViSA process begins to run in an unprivileged
mode.

Each ViSA process performs periodic broadcasts of heartbeat
messages over the PV network, which enable system errors,
such as crashed domains, to be detected using a timeout. If
dom0 is operational, the failed domU is destroyed and a new
domain is created with the same virtual machine
configuration. The timeout period of a newly-created domain
is configured to be slightly longer than the boot time required
by the domain and, typically, exceeds the timeout assigned to
domains that have already been broadcasting heartbeats.

Disaggregation

Because domUs can remain operational even if dom0 fails,
we disable Xen’s watchdog for dom0 at startup. Otherwise,
Xen would restart the entire system once it detected that
dom0 had failed despite there being operational domUs. We
deploy disaggregation techniques to reduce the impact of a
dom0 failure on the remainder of the system (e.g. disrupted
PV network or lost access to network devices). Without inter-
domain communication, various flight-software tasks
become challenging including comparing computed results
or sensor observations, reaching consensus for autonomous
tasks to perform, and replicating commands. To mitigate
these challenges, redundant network back-end domains and
passthrough for physical network devices are deployed.

Figure 2. Xen-based system running the ViSA framework

domU
kernel

VIFs
eth0

voter

cFE-
ViSA

APP APP
APP

CIB

br0

cFE-
ViSA

APP APP
APP

CIB
cFS

cFE-
ViSA

APP APP
APP

CIB

domU
kernel

VIFs

voter

cFE-
ViSA

APP APP
APP

CIB

br0dom0
kernel

eth0HVC0
(uart0)

libxl voter

Software
Bus

br0 domU
kernel

cpu0 cpu1 cpu2 cpu3 gem3uart1

Passthrough

Us
er

sp
ac

e
M

an
ag

e
Xe

n

VIFsttyPS0
(uart1)

voter

br0

Internal
Network

ViSA

Paravirtual Network

 4

Redundant Network Back-end Domains—In a typical Xen-
based system, dom0 provides the PV back-end networking
drivers, while other domUs provide the PV front-end
networking driver to form a networking pair. Consequently,
a failure in dom0 breaks all network pairs resulting in a
system that is incapable of inter-domain communication.
Alternatively, a domU could provide the PV back-end
networking driver. This modification is advantageous
because a failed domU can be restored by dom0, and
therefore the paravirtual network would only experience
occasional downtime. However, this approach has two issues.
First, if both dom0 and the domU providing the PV back-end
networking driver are not operational, then the remaining
domUs will not be able to perform inter-domain
communication over the PV network. Second, if the domU
providing the PV back-end networking driver is inoperable,
all existing virtual-network interfaces become invalid. When
the network back-end domU is restored, new VIFs must be
reattached to replace the invalid interfaces. However, this
dynamic attachment and detachment of VIFs may affect the
behavior of user applications using these interfaces.

The ViSA framework addresses the first issue by deploying
redundant network back-end domains and creating a network
pair between every back-end and front-end driver. Thus, a
system setup of N domains with B redundant back-end
domains has N×B pairs, with each domain having B VIFs.
The second issue is resolved by bridging all VIFs within each
domain to a single interface that is accessed by user
applications. Network back-end domains have shorter
heartbeat timeouts than ordinary domains so that ViSA can
effectively distinguish between a hard failure and an ordinary
domain that operates nominally but is disconnected due to
downtime in the PV network.

Passthrough Network Devices—Additional network devices,
such as Ethernet and UART, are allocated to different domUs
leveraging the passthrough virtualization capability in Xen.
If dom0 continues to operate nominally, failed domUs can be
replaced with new domains to regain access to the physical
devices. During graceful degradation, remote hosts can
remain connected with all operational domains either directly
or indirectly if they remain connected to the PV network. All
network interfaces corresponding to physical devices are
bridged together with the virtual-network interfaces, so that
flight software can communicate on either network through a
single interface. Figure 2 illustrates the bridging of VIFs and
physical network interfaces (e.g. eth0) through br0.

Software-Redundancy

We investigated running NASA GSFC's cFE software suite
in replication using the ViSA framework with minor
modifications as a case study. The primary goal of this study
was to demonstrate a mechanism for fault tolerance, where
certain tasks performed by cFE can be replicated and the
results compared through a voter. The system setup consists
of a single instance of cFE running on each domain. Each cFE
instance loads a custom cFE application called ViSA-cFE to
manage this software-based replication. ViSA-cFE is

responsible for listening to requests in the command ingest
from a remote host. These requests are then replicated and
distributed across all other cFE instances through an internal
network of connected ViSA-cFE apps. Finally, a single 32-
bit value, called a vote, representing the result of the request
(e.g. return code, computed value, or hash of a large output)
is forwarded to the ViSA process local to the domain via
inter-process communication (IPC). Votes for each domain
and task are distributed across the ViSA middleware.
Furthermore, applications in cFE are modified to publish the
result to the software bus using a message identifier to which
ViSA-cFE has been subscribed. The remainder of the cFE
software suite is unaware of the replication scheme.

Two separate approaches to the study were developed with
voting performed either within ViSA-cFE or within ViSA.
The former is representative of distributed flight-software
systems that already deploy a fault-tolerant scheme through
replication. The latter can be used for flight-software systems
not originally designed or intended to be run with replication.
In both approaches, an active-replication scheme is deployed
and votes for each task are distributed across all ViSA-cFE
or ViSA instances, respectively. We note that not all domains
in ViSA are required to participate in software-based
replication. For example, the example architecture shown in
Figure 2 could instead be used to perform triple-modular
redundancy (TMR) across the 3 domUs, and have dom0
perform monitoring operations.

4. EXPERIMENT
We demonstrated and evaluated the ViSA framework in both
laboratory conditions as a FlatSat unit, and under neutron
radiation-beam testing at the Irradiation of Chips Electronics
(ICE II) facility at the Los Alamos Neutron Science Center
(LANSCE). The purpose of the FlatSat unit was to validate
ViSA’s behavior and functionality. We note that the
radiation-beam test environment differs from typical space
conditions, because the radiation flux experienced in the
former are orders of magnitude greater and free-roaming
neutrons are uncommon in the latter. Nonetheless, this
experiment provided an opportunity to evaluate ViSA under
SEEs.

FlatSat Setup

In our FlatSat setup, we ran a Xen-based system on a Xilinx
Zynq UltraScale+ MPSoC ZCU102 board running ViSA
with four equally-partitioned Linux domains. Each domain
was allocated 256 MB of DDR memory and a single VCPU
pinned to a physical CPU core. Hard failures of domains on
this system were performed by either invoking a custom
kernel driver to execute illegal code, or by sending a magic
system request to perform a null-pointer dereference via the
Linux SysRq interface. By causing dom0 to fail, we can
observe the status of the remaining domains through a
passthrough peripheral. In this case, Secure Shell (SSH) was
used to obtain remote access to the domU with passthrough
Ethernet controller. From this domU, we can observe that all
remaining domUs are remotely accessible with SSH,

5

provided that a network back-end domain continued to
operate and that the necessary VIFs were attached. This
observation validates that, under graceful degradation,
domUs are capable of continued remote communication and
inter-domain communication through the PV network. We
validate ViSA’s capability for restoring failed domains by
randomly causing various domUs to fail and observing from
ViSA’s logs that the correct domUs were identified to have
failed and were properly restored. Finally, we check that the
voter component in ViSA functions correctly by replicating
requests for cFE to perform bilateral-filter image processing
in cFS. Various cases were tested: submission of incorrect
votes by altering the input image; removing the input image
to invoke early error paths in the cFS application, and by
causing domUs to crash during execution. For various test
cases, we observed that the voter had determined that the
image was either correct based upon the majority vote, or
unreliable due to ties, where there is no majority vote, or lack
of replication.

LANSCE Experiment Setup

In this experiment, we tested two complete flight-software
systems.

1. The baseline system is a Buildroot Linux operating
system (release 2017.02.6) using the v2016.4
release of the Xilinx’s kernel fork compiled for
AArch64. Linux runs directly on the hardware with
access to all CPU cores and 2 GB of memory.
Shared libraries for AArch32 are included to support
running cFE in 32-bit mode.

2. A Xen-based system running ViSA with four
domains using the v2017.3 release of the Xilinx fork
of Xen. Each domain uses the same kernel and
ramdisk as the baseline system. Each domain is
given a memory partition of 400 MB and a single
VCPU pinned to a physical CPU core. All domUs
contribute PV back-end networking drivers to
ViSA, however, dom0 does not. ViSA was
configured to use the following heartbeat timeout
periods: 40 seconds for newly created domains, 5
seconds for active network-backend domains, and
10 seconds for all other active domains.

A single instance of cFE runs on each Linux-based operating
system. In the baseline system, ViSA and cFE-ViSA are
disabled. An additional cFE application performs bilateral-
filter image processing on a 1600×1200 RGB PPM-format
image (~5.4 MB) when requested from the command ingest
application. The remainder of cFE remains largely idle; with
cFE’s EVS app reporting all telemetry across serial. Both
systems are evaluated at separate time intervals on the testbed
shown in Figure 3. The device under test (DUT) is the Avnet
UltraZed-EG System-on-Module (SOM) version 1 mounted
on an IO Carrier card version 1. The DUT features
Engineering Silicon 1 (ES1) of the Zynq UltraScale+
MPSoC. A networked power switch is used to remotely
power cycle the DUT. The host machine resides outside of

the beam area and is used to monitor the testbed. In the Xen-
based system, the Ethernet controller is given to a single
domU and is used to send periodic cFE commands using the
cFE command utility, while dom0 is given access to the PS
UART peripheral. Each domU is provided passthrough
access to an AXI UARTLITE soft peripheral instantiated in
the FPGA and attached to a PMOD UART-USB add-on
module. All serial lines are monitored by a custom logger
application on the host machine. The logger software
performs an automatic reset of the DUT when all serial lines
cease to produce output. Timestamps and power switch
events are included in the serial logs to facilitate analysis. The
DUT boots from on-board QSPI flash memory. The U-Boot
bootloader attempts to fetch for bootable images from the
host machine using TFTP boot through Ethernet. ECC is
disabled for DDR memory, and L1-cache and L2-cache are
enabled. We beam-tested the board on both the Zynq
UltraScale+ MPSoC and the DDR memory units separately.

Figure 3. Testbed setup for the radiation beam test at

LANSCE (top) and block diagram (bottom).

 6

5. ANALYSIS
This section highlights key findings and results from the
radiation test at LANSCE. These results provide some
indication of how a system using ViSA compares against a
baseline Linux system. We separate our observations at the
beam test when targeting the Zynq UltraScale+ MPSoC in the
first subsection, and the DDR memory in the remainder.

Irradiating the Zynq UltraScale+ MPSoC Device

Initially, we performed the experiment by targeting the Zynq
UltraScale+ MPSoC directly with the neutron beam for a
duration of 18 hours. While testing the baseline system, the
Error Detection and Correction (EDAC) driver in Linux
reported approximately 2 errors per minute that were
successfully detected and corrected in the L1 and L2 caches.
The resilience of the Zynq UltraScale+ MPSoC APU to the
radiation beam provided too few failures (e.g. crashed
domains) to form a conclusive analysis of the system.
Therefore, we decided to perform the remainder of the beam
testing by targeting the DDR memory unit. We chose this
component because it does not have ECC enabled by default.

Hard-Failure Comparison

For our reliability and availability analysis, we performed a
comparison of failures between the ViSA framework and the
baseline system. Crashes were categorized by scanning the
serial logs for panic messages or lack of heartbeats at the time
of the failure and identifying the faulty component (e.g.
dom0). In Figure 4, we observe that domains experience
relatively similar failure rates and, collectively, experienced
4 times as many failures compared to the baseline system.
This outcome is expected because the area of sensitive
memory (e.g. kernel memory) is scaled and equally
partitioned by the number of domains in our system. Fewer
failures were observed in the Xen hypervisor since it is a
much smaller target compared to a Linux-based system. On
one occasion, we have observed that one of the files
necessary to create a Linux domU (e.g. kernel, ramdisk, or
device tree blob) had been corrupted, resulting in ViSA
attempting to create new domains that would immediately
crash. We note that this behavior could be remedied by using
redundant images with a fallback mechanism to ensure a
valid image is used.

The measured mean-time-to-failure (MTTF) for each
component is shown in Figure 5. We measure the recovery
time of a domU as the duration between the last heartbeat
received and the first heartbeat received after a timeout was
detected by dom0. This duration is the sum of the heartbeat
timeout delay and the boot time for Linux. The latter is a fixed
value of approximately 24 seconds since all domains used
identical Linux-based operating system images. We define a
trial to be the duration that begins at DUT power-on and ends
at DUT power-off. A DUT power-off is caused by a complete
failure in the system (e.g. all domains had crashed, or Xen
had crashed). The mean-time-to-recovery (MTTR) of each
domU was measured to be approximately 33 seconds. In
Figure 6, we observe an improvement in the availability of
the ViSA system versus the baseline system. On average, the
uptime of at least one operational domain in the ViSA system
(33 minutes) is up to 18% longer than the baseline system (28
minutes).

During graceful degradation mode, it was observed that
domains holding passthrough peripherals were generally
always accessible from the host machine. However, it was
observed that the PV network would be unavailable upon
dom0 failure. We suspect that the way dom0 fails affects
critical Xen services, such as xenstored, that reside in

Figure 4. Total failures observed
after 20 hours of beam time.

49
57

30
38

17
44

0 10 20 30 40 50 60

domU3
domU2
domU1

dom0
Xen

Baseline

Failures

Figure 5. MTTF measured after 20 hours of beam time.

16
15
15

20
28

0 5 10 15 20 25 30

domU3
domU2
domU1

dom0
Baseline

Minutes

Figure 6. Average uptime of operational components
(operating systems) across all trials after 20 hours of

beam time.

28

9

8

4

12

0
5

10
15
20
25
30
35

Baseline ViSAAv
er

ag
e

Up
tim

e
(m

in
ut

es
)

Number of Operating Systems
1 2 3 4

 7

dom0. This contrasts with the FlatSat experiment, where
Linux trapped on executing illegal instructions and panicked
in a controlled manner. Further analysis is needed to
determine the extent of the interactions between the Xen-
based system and the targeted DDR memory in this test. Our
FlatSat experiment may need adjustments to include fault-
injections into DDR memory to better reflect the radiation
beam test when targeting the DDR.

Software Replication

We evaluate software replication of cFE on the ViSA
framework with the voter residing in ViSA. Since individual
domains may be unavailable at the time that a cFE command
is sent, ViSA was configured to only accept the result if at
least dom0 was operational. As presented in Figure 7, the
ViSA voter had successfully masked all votes corresponding
to an erroneous result All requests having results with no
clear majority vote were marked as unreliable. There were no
trials where a majority of submitted votes corresponded to an
incorrect result. The baseline system, which did not perform
voting, yielded some incorrect results.

6. CONCLUSIONS
Spacecraft computer engineers are challenged with demands
for high-performance and dependable computing in space.
Virtualization technology on next-generation space

processors enables new opportunities for enhanced fault
tolerance through replication of complete flight-software
systems. In this paper, we introduced the Virtualized Space
Applications (ViSA) framework leveraging the Xen
hypervisor for enhancing the dependability of complete
flight-software systems. An inherent weakness in Xen-based
systems is the loss of the privileged domain (dom0). ViSA
mitigates this issue by deploying disaggregation techniques
to reduce the impact of dom0 failure on the remainder of the
system to allow for an operational and reliable mode of
graceful degradation. Software-based replication and voting
help to detect and mask abnormal behavior or incorrect
results originating from data corruption. We validated
ViSA’s functional behavior on a FlatSat in a laboratory
setting by simulating failures or data corruption in the system.
We evaluated ViSA’s capabilities for reliability and
availability against a baseline Linux operating system under
neutron-beam testing at LANSCE.

The ViSA framework offers improvements in the availability
of the system. In addition, the voting scheme deployed by
ViSA is capable of masking incorrect results caused by silent
data corruption. The Zynq UltraScale+ MPSoC APU’s
resilience to upsets under neutron-beam testing at LANSCE
posed a challenge in data collection. Our strategy for keeping
the PV network operational during graceful degradation was
shown to not function as expected under beam testing.
Further study and more extensive testing under fault-
injection may be required to determine if this is a limitation
of the framework on the MPSoC or a limitation caused by
system interactions with the DDR memory.

Future work entails fault-injection of the system, purely
focusing on the Zynq UltraScale+ MPSoC APU instead of
the DDR memory, which may be negligible if the system
design has radiation-hardened memory. In addition, future
work includes a study of alternative approaches to providing
highly available inter-domain communication during
graceful degradation. Prospects include the design of a
shared-memory channel accessible by all domains and
exposed as a VIF for flight software to use. Furthermore,
extending ViSA with an interface for flight software to
monitor and manage the system offers flexibility for space
systems engineers to adapt the framework to mission
requirements. For example, flight software on autonomous
spacecraft with mission profiles that can tolerate minor
downtimes can leverage this interface to coordinate full-
system reboots, including the completion of pending tasks, to
recover dom0.

ACKNOWLEDGEMENTS
This research was funded by industry and government
members of the NSF SHREC Center, and the National
Science Foundation (NSF) and its I/UCRC Program under
Grant Nos. IIP-1161022 and CNS-1738783. We would like
to thank Christopher Wilson from SHREC and Jonathan
Wolff and Austin Owens from Innoflight Inc. for their
feedback and guidance throughout the development of ViSA.

Figure 7. Comparison of outputs with voter in ViSA

(top) versus the baseline system (bottom) after 20 hours
of beam time.

921
13

4

ViSA

Correct Incorrect Masked Unreliable

1425

7
Baseline

Correct Incorrect

 8

We would also like to thank the Los Alamos Neutron Science
Center (LANSCE) for providing us with the opportunity to
evaluate ViSA's capabilities in an artificially harsh
environment. We extend our thanks to Dr. Steve Wender, the
Instrument Scientist for ICE II, for supervising and assisting
us with the usage of the facility.

REFERENCES
[1] F. W. Sexton, “Destructive single-event effects in

semiconductor devices and ICs,” IEEE Transactions on
Nuclear Science, June 2003.

[2] R. Doyle, R. Some, W. Powell, G. Mounce, M. Goforth,
S. Horan, M. Lowry, “High Performance Spaceflight
Computing (HPSC) Next Generation Space Processor
(NGSP) A Joint Investment of NASA and AFRL,” Proc.
Int. Symp. Artificial Intelligence, Robotics and
Automation in Space, 2014.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.
Ho, R. Neuge-bauer, I. Pratt, A. Warfield, “Xen and the
Art of Virtualization,” SOSP '03: Proceedings of the
nineteenth ACM symposium on Operating systems
principles, pp. 164-177, 2003.

[4] Darko Petrovi, Schiper Andre, “Implementing virtual
machine replication: A case study using xen and kvm,”
Advanced Information Networking and Applications
(AINA) 2012 IEEE 26th International Conference on.
IEEE, 2012.

[5] J. Groß, “A Fault Tolerant Virtualization Server Based on
Xen,” Xen Developer Summit, August 18, 2015.

[6] J. Wilmot, “Implications of Responsive Space on the
Flight Software Architecture,” Proc. of AIAA 4th
Responsive Space Conference, 2006.

[7] L. Prokop, “Advanced Exploration Systems (AES) Core
Flight Software (CFS) Project,” Workshop on Spacecraft
Flight Software, Laurel, MD, Oct 27-29, 2015.

[8] L. Kepko, et al., “Dellingr: NASA Goddard Space Flight
Center’s First 6U Spacecraft,” Proc. of 31st Annual
AIAA/USU Conference on Small Satellites, Logan, UT,
August 5-10, 2017.

[9] C. Wilson, J. Stewart, P. Gauvin, J. MacKinnon, J. Coole,
J. Urriste, A. D. George, G. Crum, E. Timmons, J. Beck,
T. Flatley, M. Wirthlin, A. Wilson, A. Stoddard, “CSP
Hybrid Space Computing for STP-H5/ISEM on ISS,”
Proc. of the 29th Annu. AIAA/USU Conf. on Small
Satellites, UT, August 8-13, 2015.

[10] S. Campagna, M. Hussain, M. Violante, “Hypervisor-
based virtual hardware for fault tolerance in COTS
processors targeting space applications,” Proc. Int. Symp.
Defect Fault Tolerance VLSI Sys., pp. 44-51, 2010.

[11] E. Missimer, R. West, Y. Li, “Distributed real-time fault
tolerance on a virtualized multi-core system,” OSPERT,
2014.

BIOGRAPHY
Daniel Sabogal is a graduate student
researcher in the resilient and
dependable computing group at the
NSF Center for Space, High-
performance, and Resilient
Computing (SHREC) at the University
of Pittsburgh. His research interests
include operating systems, software-
based fault tolerance, and compilers.

Alan D. George is Department Chair
and R&H Mickle Endowed Chair in
Electrical and Computer Engineering
in the Swanson School of Engineering
at the University of Pittsburgh. He
founded and directs the NSF Center
for Space, High-performance, and
Resilient Computing (SHREC), which
replaced the NSF Center for High-

performance Reconfigurable Computing (CHREC) in late
2017. Dr. George's research interests are in advanced
architectures, apps, networks, services, systems, and
missions for reconfigurable, parallel, distributed, and
dependable computing. He is a Fellow of the IEEE.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

