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Abstract—Demand for high-performance computing in space-
flight applications is accelerating the development of next-
generation processors for space. These processors, including 
Boeing’s High-Performance Spaceflight Computer (HPSC) and 
Xilinx's Zynq UltraScale+ MPSoCs, offer feature-rich and 
multi-core ARM Cortex-A53 processors with hardware 
extensions for efficient execution and isolation of virtualized 
systems. This capability for virtualization enables new 
opportunities for enhanced fault tolerance through system-level 
redundancy of complete flight-software systems. In this paper, 
we present Virtualized Space Applications (ViSA), a framework 
leveraging the Xen hypervisor for deploying software-based 
fault tolerance for flight systems. We evaluate and analyze 
ViSA’s enhancements to reliability and availability of the system 
in both an experimental lab setting and under neutron 
radiation-beam testing at the Los Alamos Neutron Science 
Center (LANSCE). As a case study, we investigate software-
based replication and voting on the core Flight Executive (cFE) 
suite of flight software from the NASA Goddard Space Flight 
Center (GSFC) on the ViSA framework. 
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1. INTRODUCTION 

The increasing demand for high-performance computing 
onboard spacecraft has led to the adoption of more 
commercial-off-the-shelf (COTS) components in these 
systems, over the traditional approach of strictly radiation-
hardened devices. This design tradeoff leads to substantial 
benefits in performance, energy-efficiency, and cost. 
However, COTS components are highly susceptible to space 
radiation. Single-event effects (SEEs) occur when an ionizing 
particle strike deposits sufficient energy to influence the 
component [1]. The need for dependable computer systems 
in harsh space environments poses new challenges for 
spacecraft engineers. 

The development of next-generation space processors, 
including Boeing’s High-Performance Spaceflight Computer 

(HPSC) [2] and Xilinx's Zynq UltraScale+ MPSoCs, will 
introduce 64-bit, feature-rich and multi-core ARM Cortex-
A53 processors. These processors provide hardware 
virtualization extensions that are used by virtual machine 
monitors (VMM), such as the Xen hypervisor by the Xen 
Project, to create a virtualized system with virtual machines 
providing near-native performance. Furthermore, the System 
Memory Management Unit (SMMU) available on these 
platforms provides the VMM with an additional level of 
address translation and protections for DMA-capable 
devices, which ensures the isolation between virtual 
machines. This capability for virtualization enables new 
opportunities for enhancing the fault tolerance of space-
computer systems through system-level redundancy of 
complete flight-software systems. Our contribution, 
Virtualized Space Applications (ViSA), provides spacecraft 
engineers with a framework leveraging the Xen hypervisor 
for deploying software-based fault tolerance on next-
generation space processors. As a case study, we investigate 
software-based replication and voting on the core Flight 
Executive (cFE) software suite from NASA Goddard Space 
Flight Center (GSFC) on the ViSA framework. We provide a 
brief description of the Xen hypervisor, cFE, and related 
work in Section 2. The architecture and design of ViSA are 
discussed in Section 3. Our experimentation and evaluation 
are presented in Sections 4 and 5. We conclude with final 
remarks and future work in Section 6. 

2. BACKGROUND 
This section provides a cursory overview of key components 
that comprise the ViSA design. In addition, this section 
describes related work in this field of study.  

Xen Hypervisor 

The Xen hypervisor [3] is a lightweight Type I hypervisor, 
which is a class of hypervisors that executes directly on the 
hardware to manage system resources and virtual machines, 
called domains. Each domain is allocated a configurable 
number of Virtual CPUs (VCPUs), each of which is 
scheduled by Xen to be run on a physical CPU. VCPUs may 
be pinned to a physical CPU to ensure that domains always 
receive some CPU time. Xen is capable of paravirtualization 
(PV), where modified domains can cooperate with the Xen 
hypervisor directly through a hypercall interface provided by 
the hypervisor. PV is advantageous to full virtualization in 
that it avoids the incurred performance overhead for 
emulating accesses to system resources. Inter-domain 
communication via a PV network is available in Xen by 
pairing together domains with a PV front-end driver in one 
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domain, and a PV back-end driver in the other. Each network 
pair appears as a single virtual interface (VIF) for an Ethernet 
device on both domains accessible by user applications 
through the POSIX API for networking. Virtual interfaces 
can be attached or detached at runtime. The Xen hypervisor 
is supported on various embedded ARM platforms, including 
the Xilinx Zynq UltraScale+ MPSoC. 

By design, the first domain booted by Xen, named dom0, is a 
privileged domain capable of instructing the Xen hypervisor 
to create, destroy, and manage other unprivileged domains 
called domUs. Xen is limited in that dom0 is not restartable 
and requires a full system reboot to restart it. Domains 
running on Xen are isolated from each other. This attribute is 
significant because, from a reliability perspective, failure in 
one domain does not adversely affect the other domains. 
SEEs can cause a domain to behave abnormally or even 
crash. In such scenarios, Xen-based systems are capable of 
recovery, since failed or faulty domUs can be restored with a 
new domain by dom0. Furthermore, as a Type I hypervisor, 
a Xen-based system is capable of remaining operational via 
graceful degradation even if dom0 has failed. In this scenario, 
the domUs will still be operational, however, dom0 will be 
unavailable for managing the system. Any additional failures 
in domUs cannot be recovered since dom0 is no longer 
available to reboot them. In contrast, Type II hypervisors, 
such as the Kernel-based Virtual Machine (KVM) [4] for 
Linux, manage virtual machines as processes in the kernel 
and are vulnerable to a single point of failure in the host 
machine’s kernel. 

The impact of a dom0 failure on the remainder of a Xen-
based system depends on its configuration. Typical Xen-
based systems have most physical-system resources and PV 
back-end drivers residing in dom0. Thus, a dom0 failure in 
this system will prevent the remainder of the system from 
performing inter-domain communication over the PV 
network. Communication with remote hosts will also be 
unavailable due to the lack of physical network devices, held 
by dom0. Although dom0 could be rebooted to revert the 
system to the original setup, doing so will interrupt system 
availability for mission-critical applications. To avoid this 
issue, dom0 disaggregation techniques, as discussed in [5], 
have been explored to migrate services and responsibilities 
out of dom0 and into domUs. For example, physical hardware 
devices can be given direct and exclusive access to a domU 
through Xen’s passthrough virtualization feature. 

In an AArch64 Xen-based system, Xen will copy itself to the 
highest, 2 MB-aligned bank of physical memory capable of 
storing the executable during startup, and resumes execution 
from there. All physical memory is memory-mapped by the 
hypervisor. When creating dom0, a memory region is 
allocated and is mapped one-to-one to physical memory 
space. For domUs, Xen creates arbitrary memory maps as 
needed. The size used for memory allocated for newly 
created domains are specified in the device tree blob and in 
the xl.cfg configuration file for dom0 and domUs, 
respectively. Each domain is given a set of memory pages, 

called the grant table, that can be used to share memory 
between domains and the Xen hypervisor. 

NASA core Flight Executive (cFE) 

The cFE software suite [6] is an open-source, reusable, and 
portable framework maintained by NASA GSFC for 
developing mission flight software. cFE is available for 
operating systems based on Linux, RTEMs, and VxWorks. 
Furthermore, this framework has flight heritage and has been 
used on both large spacecraft, such as Orion [7], and small 
CubeSats including NASA GSFC’s Dellingr [8] and the NSF 
Center for High-performance Reconfigurable Computing’s 
(CHREC) Space Processor (CSP) sub-experiment on the 
Space Test Program - Houston 5 (STP-H5/CSP) on the 
International Space Station (ISS) [9]. cFE is designed to load 
shared object files, called cFE applications, using the 
dlopen function in POSIX. 

 

Figure 1 shows a set of core applications available in cFE, 
including the Events Services (EVS) and Software Bus (SB) 
applications. The EVS provides an interface for reporting and 
logging diagnostics and events. The SB is designed to use a 
publish-subscribe messaging pattern for communication 
between cFE applications. The NASA core Flight Software 
(cFS) suite consists of cFE bundled with additional cFE 
applications for extended functionality, such as a scheduler 
(SCH), telemetry downlink (TO_LAB), and command 
ingests (CI_LAB). Typically, commands sent to the 
command ingest are forwarded to the SB and received by 
subscribed cFE applications to perform a designated task. 
Custom and mission-specific cFS applications may be added 
to the suite through the cFS build system with an adjustable 
priority for scheduling. 

Related Work 

Virtualization-based approaches for fault tolerance have been 
explored in various forms. Campagna et al. [10] presented a 
prototype architecture leveraging the XtratuM hypervisor on 
the LEON3 to perform time-redundant execution of an 
application over two separate and identical memory 

 

Figure 1. cFS suite with cFE core applications (yellow) 
and bundled mission applications (blue). 
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partitions. Applications running on this system are 
instrumented to issue hypercalls. The hypervisor transfers 
output buffers to a checker application for performing byte-
by-byte comparisons. In [11], Missimer et al.'s Quest-V 
system used hardware-virtualization technology to partition 
system resources into separate sandboxes running their own 
kernels. The resulting system operated as a distributed system 
on a chip, where sandboxes communicate with one another 
using established shared-memory channels. Quest-V featured 
fault tolerance through triple-modular redundancy in one of 
three configurations: voter residing in either the hypervisor, 
a single sandbox, or distributed across all sandboxes. 

3. APPROACH 
The ViSA framework is composed of three components: the 
Xen hypervisor, the ViSA middleware, and the mission-
specific flight software. Each domain runs an instance of the 
ViSA middleware and the flight software. The number of 
domains and the partitioning of resources for each domain is 
configurable. An example architecture configuration is 
illustrated in Figure 2. 

At boot time, the Xen hypervisor begins executing and 
launches a Linux-based dom0 kernel. During startup of 
dom0, the ViSA service launches as a single process and 
queries the system for setup parameters from Xen and ViSA 
configuration files. Xen files include the UUID file in the 
Linux sysfs filesystem for domain identification. The 
ViSA configuration file specifies parameters for each 
managed domain, including the number of VCPUs, memory, 
kernel images, ramdisks, boot arguments, and passthrough 
peripherals. The ViSA process running on dom0 will detect 

that it is running on the privileged domain and will then 
enable its privileged mode of operation, which is responsible 
for managing Xen through the Xenlight library (libxl). 
Next, ViSA creates all specified domains via dom0. On each 
domU, a ViSA process begins to run in an unprivileged 
mode. 

Each ViSA process performs periodic broadcasts of heartbeat 
messages over the PV network, which enable system errors, 
such as crashed domains, to be detected using a timeout. If 
dom0 is operational, the failed domU is destroyed and a new 
domain is created with the same virtual machine 
configuration. The timeout period of a newly-created domain 
is configured to be slightly longer than the boot time required 
by the domain and, typically, exceeds the timeout assigned to 
domains that have already been broadcasting heartbeats. 

Disaggregation 

Because domUs can remain operational even if dom0 fails, 
we disable Xen’s watchdog for dom0 at startup. Otherwise, 
Xen would restart the entire system once it detected that 
dom0 had failed despite there being operational domUs. We 
deploy disaggregation techniques to reduce the impact of a 
dom0 failure on the remainder of the system (e.g. disrupted 
PV network or lost access to network devices). Without inter-
domain communication, various flight-software tasks 
become challenging including comparing computed results 
or sensor observations, reaching consensus for autonomous 
tasks to perform, and replicating commands. To mitigate 
these challenges, redundant network back-end domains and 
passthrough for physical network devices are deployed. 

   
Figure 2. Xen-based system running the ViSA framework 
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Redundant Network Back-end Domains—In a typical Xen-
based system, dom0 provides the PV back-end networking 
drivers, while other domUs provide the PV front-end 
networking driver to form a networking pair. Consequently, 
a failure in dom0 breaks all network pairs resulting in a 
system that is incapable of inter-domain communication. 
Alternatively, a domU could provide the PV back-end 
networking driver. This modification is advantageous 
because a failed domU can be restored by dom0, and 
therefore the paravirtual network would only experience 
occasional downtime. However, this approach has two issues. 
First, if both dom0 and the domU providing the PV back-end 
networking driver are not operational, then the remaining 
domUs will not be able to perform inter-domain 
communication over the PV network. Second, if the domU 
providing the PV back-end networking driver is inoperable, 
all existing virtual-network interfaces become invalid. When 
the network back-end domU is restored, new VIFs must be 
reattached to replace the invalid interfaces. However, this 
dynamic attachment and detachment of VIFs may affect the 
behavior of user applications using these interfaces. 

The ViSA framework addresses the first issue by deploying 
redundant network back-end domains and creating a network 
pair between every back-end and front-end driver. Thus, a 
system setup of N domains with B redundant back-end 
domains has N×B pairs, with each domain having B VIFs. 
The second issue is resolved by bridging all VIFs within each 
domain to a single interface that is accessed by user 
applications. Network back-end domains have shorter 
heartbeat timeouts than ordinary domains so that ViSA can 
effectively distinguish between a hard failure and an ordinary 
domain that operates nominally but is disconnected due to 
downtime in the PV network. 

Passthrough Network Devices—Additional network devices, 
such as Ethernet and UART, are allocated to different domUs 
leveraging the passthrough virtualization capability in Xen. 
If dom0 continues to operate nominally, failed domUs can be 
replaced with new domains to regain access to the physical 
devices. During graceful degradation, remote hosts can 
remain connected with all operational domains either directly 
or indirectly if they remain connected to the PV network. All 
network interfaces corresponding to physical devices are 
bridged together with the virtual-network interfaces, so that 
flight software can communicate on either network through a 
single interface. Figure 2 illustrates the bridging of VIFs and 
physical network interfaces (e.g. eth0) through br0. 

Software-Redundancy 

We investigated running NASA GSFC's cFE software suite 
in replication using the ViSA framework with minor 
modifications as a case study. The primary goal of this study 
was to demonstrate a mechanism for fault tolerance, where 
certain tasks performed by cFE can be replicated and the 
results compared through a voter. The system setup consists 
of a single instance of cFE running on each domain. Each cFE 
instance loads a custom cFE application called ViSA-cFE to 
manage this software-based replication. ViSA-cFE is 

responsible for listening to requests in the command ingest 
from a remote host. These requests are then replicated and 
distributed across all other cFE instances through an internal 
network of connected ViSA-cFE apps. Finally, a single 32-
bit value, called a vote, representing the result of the request 
(e.g. return code, computed value, or hash of a large output) 
is forwarded to the ViSA process local to the domain via 
inter-process communication (IPC). Votes for each domain 
and task are distributed across the ViSA middleware. 
Furthermore, applications in cFE are modified to publish the 
result to the software bus using a message identifier to which 
ViSA-cFE has been subscribed. The remainder of the cFE 
software suite is unaware of the replication scheme. 

Two separate approaches to the study were developed with 
voting performed either within ViSA-cFE or within ViSA. 
The former is representative of distributed flight-software 
systems that already deploy a fault-tolerant scheme through 
replication. The latter can be used for flight-software systems 
not originally designed or intended to be run with replication. 
In both approaches, an active-replication scheme is deployed 
and votes for each task are distributed across all ViSA-cFE 
or ViSA instances, respectively. We note that not all domains 
in ViSA are required to participate in software-based 
replication. For example, the example architecture shown in 
Figure 2 could instead be used to perform triple-modular 
redundancy (TMR) across the 3 domUs, and have dom0 
perform monitoring operations. 

4. EXPERIMENT  
We demonstrated and evaluated the ViSA framework in both 
laboratory conditions as a FlatSat unit, and under neutron 
radiation-beam testing at the Irradiation of Chips Electronics 
(ICE II) facility at the Los Alamos Neutron Science Center 
(LANSCE). The purpose of the FlatSat unit was to validate 
ViSA’s behavior and functionality. We note that the 
radiation-beam test environment differs from typical space 
conditions, because the radiation flux experienced in the 
former are orders of magnitude greater and free-roaming 
neutrons are uncommon in the latter. Nonetheless, this 
experiment provided an opportunity to evaluate ViSA under 
SEEs.  

FlatSat Setup  

In our FlatSat setup, we ran a Xen-based system on a Xilinx 
Zynq UltraScale+ MPSoC ZCU102 board running ViSA 
with four equally-partitioned Linux domains. Each domain 
was allocated 256 MB of DDR memory and a single VCPU 
pinned to a physical CPU core. Hard failures of domains on 
this system were performed by either invoking a custom 
kernel driver to execute illegal code, or by sending a magic 
system request to perform a null-pointer dereference via the 
Linux SysRq interface. By causing dom0 to fail, we can 
observe the status of the remaining domains through a 
passthrough peripheral. In this case, Secure Shell (SSH) was 
used to obtain remote access to the domU with passthrough 
Ethernet controller. From this domU, we can observe that all 
remaining domUs are remotely accessible with SSH, 
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provided that a network back-end domain continued to 
operate and that the necessary VIFs were attached. This 
observation validates that, under graceful degradation, 
domUs are capable of continued remote communication and 
inter-domain communication through the PV network. We 
validate ViSA’s capability for restoring failed domains by 
randomly causing various domUs to fail and observing from 
ViSA’s logs that the correct domUs were identified to have 
failed and were properly restored. Finally, we check that the 
voter component in ViSA functions correctly by replicating 
requests for cFE to perform bilateral-filter image processing 
in cFS. Various cases were tested: submission of incorrect 
votes by altering the input image; removing the input image 
to invoke early error paths in the cFS application, and by 
causing domUs to crash during execution. For various test 
cases, we observed that the voter had determined that the 
image was either correct based upon the majority vote, or 
unreliable due to ties, where there is no majority vote, or lack 
of replication.  

LANSCE Experiment Setup 

In this experiment, we tested two complete flight-software 
systems. 

1. The baseline system is a Buildroot Linux operating 
system (release 2017.02.6) using the v2016.4 
release of the Xilinx’s kernel fork compiled for 
AArch64. Linux runs directly on the hardware with 
access to all CPU cores and 2 GB of memory. 
Shared libraries for AArch32 are included to support 
running cFE in 32-bit mode. 

2. A Xen-based system running ViSA with four 
domains using the v2017.3 release of the Xilinx fork 
of Xen. Each domain uses the same kernel and 
ramdisk as the baseline system. Each domain is 
given a memory partition of 400 MB and a single 
VCPU pinned to a physical CPU core. All domUs 
contribute PV back-end networking drivers to 
ViSA, however, dom0 does not. ViSA was 
configured to use the following heartbeat timeout 
periods: 40 seconds for newly created domains, 5 
seconds for active network-backend domains, and 
10 seconds for all other active domains. 

A single instance of cFE runs on each Linux-based operating 
system. In the baseline system, ViSA and cFE-ViSA are 
disabled. An additional cFE application performs bilateral-
filter image processing on a 1600×1200 RGB PPM-format 
image (~5.4 MB) when requested from the command ingest 
application. The remainder of cFE remains largely idle; with 
cFE’s EVS app reporting all telemetry across serial. Both 
systems are evaluated at separate time intervals on the testbed 
shown in Figure 3. The device under test (DUT) is the Avnet 
UltraZed-EG System-on-Module (SOM) version 1 mounted 
on an IO Carrier card version 1. The DUT features 
Engineering Silicon 1 (ES1) of the Zynq UltraScale+ 
MPSoC. A networked power switch is used to remotely 
power cycle the DUT. The host machine resides outside of 

the beam area and is used to monitor the testbed. In the Xen-
based system, the Ethernet controller is given to a single 
domU and is used to send periodic cFE commands using the 
cFE command utility, while dom0 is given access to the PS 
UART peripheral. Each domU is provided passthrough 
access to an AXI UARTLITE soft peripheral instantiated in 
the FPGA and attached to a PMOD UART-USB add-on 
module. All serial lines are monitored by a custom logger 
application on the host machine. The logger software 
performs an automatic reset of the DUT when all serial lines 
cease to produce output. Timestamps and power switch 
events are included in the serial logs to facilitate analysis. The 
DUT boots from on-board QSPI flash memory. The U-Boot 
bootloader attempts to fetch for bootable images from the 
host machine using TFTP boot through Ethernet. ECC is 
disabled for DDR memory, and L1-cache and L2-cache are 
enabled. We beam-tested the board on both the Zynq 
UltraScale+ MPSoC and the DDR memory units separately. 

 

 
 

 
Figure 3. Testbed setup for the radiation beam test at 

LANSCE (top) and block diagram (bottom). 
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5. ANALYSIS 
This section highlights key findings and results from the 
radiation test at LANSCE. These results provide some 
indication of how a system using ViSA compares against a 
baseline Linux system. We separate our observations at the 
beam test when targeting the Zynq UltraScale+ MPSoC in the 
first subsection, and the DDR memory in the remainder. 

Irradiating the Zynq UltraScale+ MPSoC Device 

Initially, we performed the experiment by targeting the Zynq 
UltraScale+ MPSoC directly with the neutron beam for a 
duration of 18 hours. While testing the baseline system, the 
Error Detection and Correction (EDAC) driver in Linux 
reported approximately 2 errors per minute that were 
successfully detected and corrected in the L1 and L2 caches. 
The resilience of the Zynq UltraScale+ MPSoC APU to the 
radiation beam provided too few failures (e.g. crashed 
domains) to form a conclusive analysis of the system. 
Therefore, we decided to perform the remainder of the beam 
testing by targeting the DDR memory unit. We chose this 
component because it does not have ECC enabled by default. 

Hard-Failure Comparison 

For our reliability and availability analysis, we performed a 
comparison of failures between the ViSA framework and the 
baseline system. Crashes were categorized by scanning the 
serial logs for panic messages or lack of heartbeats at the time 
of the failure and identifying the faulty component (e.g. 
dom0). In Figure 4, we observe that domains experience 
relatively similar failure rates and, collectively, experienced 
4 times as many failures compared to the baseline system. 
This outcome is expected because the area of sensitive 
memory (e.g. kernel memory) is scaled and equally 
partitioned by the number of domains in our system. Fewer 
failures were observed in the Xen hypervisor since it is a 
much smaller target compared to a Linux-based system. On 
one occasion, we have observed that one of the files 
necessary to create a Linux domU (e.g. kernel, ramdisk, or 
device tree blob) had been corrupted, resulting in ViSA 
attempting to create new domains that would immediately 
crash. We note that this behavior could be remedied by using 
redundant images with a fallback mechanism to ensure a 
valid image is used. 

 

The measured mean-time-to-failure (MTTF) for each 
component is shown in Figure 5. We measure the recovery 
time of a domU as the duration between the last heartbeat 
received and the first heartbeat received after a timeout was 
detected by dom0. This duration is the sum of the heartbeat 
timeout delay and the boot time for Linux. The latter is a fixed 
value of approximately 24 seconds since all domains used 
identical Linux-based operating system images. We define a 
trial to be the duration that begins at DUT power-on and ends 
at DUT power-off. A DUT power-off is caused by a complete 
failure in the system (e.g. all domains had crashed, or Xen 
had crashed). The mean-time-to-recovery (MTTR) of each 
domU was measured to be approximately 33 seconds. In 
Figure 6, we observe an improvement in the availability of 
the ViSA system versus the baseline system. On average, the 
uptime of at least one operational domain in the ViSA system 
(33 minutes) is up to 18% longer than the baseline system (28 
minutes). 

 

 

During graceful degradation mode, it was observed that 
domains holding passthrough peripherals were generally 
always accessible from the host machine. However, it was 
observed that the PV network would be unavailable upon 
dom0 failure. We suspect that the way dom0 fails affects 
critical Xen services, such as xenstored, that reside in 

 

Figure 4. Total failures observed  
after 20 hours of beam time. 
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Figure 5. MTTF measured after 20 hours of beam time. 
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Figure 6. Average uptime of operational components 
(operating systems) across all trials after 20 hours of 

beam time. 

28

9

8

4

12

0
5

10
15
20
25
30
35

Baseline ViSAAv
er

ag
e 

Up
tim

e 
(m

in
ut

es
)

Number of Operating Systems
1 2 3 4



 

 7 

dom0. This contrasts with the FlatSat experiment, where 
Linux trapped on executing illegal instructions and panicked 
in a controlled manner. Further analysis is needed to 
determine the extent of the interactions between the Xen-
based system and the targeted DDR memory in this test. Our 
FlatSat experiment may need adjustments to include fault-
injections into DDR memory to better reflect the radiation 
beam test when targeting the DDR.  

Software Replication 

We evaluate software replication of cFE on the ViSA 
framework with the voter residing in ViSA. Since individual 
domains may be unavailable at the time that a cFE command 
is sent, ViSA was configured to only accept the result if at 
least dom0 was operational. As presented in Figure 7, the 
ViSA voter had successfully masked all votes corresponding 
to an erroneous result All requests having results with no 
clear majority vote were marked as unreliable. There were no 
trials where a majority of submitted votes corresponded to an 
incorrect result. The baseline system, which did not perform 
voting, yielded some incorrect results. 
 

 

6. CONCLUSIONS 
Spacecraft computer engineers are challenged with demands 
for high-performance and dependable computing in space. 
Virtualization technology on next-generation space 

processors enables new opportunities for enhanced fault 
tolerance through replication of complete flight-software 
systems. In this paper, we introduced the Virtualized Space 
Applications (ViSA) framework leveraging the Xen 
hypervisor for enhancing the dependability of complete 
flight-software systems. An inherent weakness in Xen-based 
systems is the loss of the privileged domain (dom0). ViSA 
mitigates this issue by deploying disaggregation techniques 
to reduce the impact of dom0 failure on the remainder of the 
system to allow for an operational and reliable mode of 
graceful degradation. Software-based replication and voting 
help to detect and mask abnormal behavior or incorrect 
results originating from data corruption. We validated 
ViSA’s functional behavior on a FlatSat in a laboratory 
setting by simulating failures or data corruption in the system. 
We evaluated ViSA’s capabilities for reliability and 
availability against a baseline Linux operating system under 
neutron-beam testing at LANSCE. 
 
The ViSA framework offers improvements in the availability 
of the system. In addition, the voting scheme deployed by 
ViSA is capable of masking incorrect results caused by silent 
data corruption. The Zynq UltraScale+ MPSoC APU’s 
resilience to upsets under neutron-beam testing at LANSCE 
posed a challenge in data collection. Our strategy for keeping 
the PV network operational during graceful degradation was 
shown to not function as expected under beam testing. 
Further study and more extensive testing under fault-
injection may be required to determine if this is a limitation 
of the framework on the MPSoC or a limitation caused by 
system interactions with the DDR memory.  
 
Future work entails fault-injection of the system, purely 
focusing on the Zynq UltraScale+ MPSoC APU instead of 
the DDR memory, which may be negligible if the system 
design has radiation-hardened memory. In addition, future 
work includes a study of alternative approaches to providing 
highly available inter-domain communication during 
graceful degradation. Prospects include the design of a 
shared-memory channel accessible by all domains and 
exposed as a VIF for flight software to use. Furthermore, 
extending ViSA with an interface for flight software to 
monitor and manage the system offers flexibility for space 
systems engineers to adapt the framework to mission 
requirements. For example, flight software on autonomous 
spacecraft with mission profiles that can tolerate minor 
downtimes can leverage this interface to coordinate full-
system reboots, including the completion of pending tasks, to 
recover dom0. 
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