
SHMEM+: A Multilevel-PGAS Programming
Model for Reconfigurable Supercomputing

VIKAS AGGARWAL, ALAN D. GEORGE, CHANGIL YOON, KISHORE YALAMAN-

CHILI and HERMAN LAM

NSF Center for High-Performance Reconfigurable Computing (CHREC)

ECE Department, University of Florida

Reconfigurable computing (RC) systems based on FPGAs are becoming an increasingly attrac-

tive solution to building parallel systems of the future. Applications targeting such systems have
demonstrated superior performance and reduced energy consumption versus their traditional coun-

terparts based on microprocessors. However, most of such work has been limited to small system

sizes. Unlike traditional HPC systems, lack of integrated, system-wide, parallel-programming
models and languages presents a significant design challenge for creating applications targeting

scalable, reconfigurable HPC systems. In this paper, we extend the traditional Partitioned Global

Address Space (PGAS) model to provide a multilevel integration of memory, which simplifies
development of parallel applications for such systems and improves developer productivity. The

new multilevel-PGAS programming model captures the unique characteristics of reconfigurable

HPC systems, such as the existence of multiple levels of memory hierarchy and heterogeneous
computation resources. Based on this model, we extend and adapt the SHMEM communication

library to become what we call SHMEM+, the first known SHMEM library enabling coordina-

tion between FPGAs and CPUs in a reconfigurable, heterogeneous HPC system. Applications
designed with SHMEM+ yield improved developer productivity compared to current methods

of multi-device RC design and exhibit a high degree of portability. In addition, our design of
SHMEM+ library itself is portable and provides peak communication bandwidth comparable to

vendor-proprietary versions of SHMEM. Application case studies are presented to illustrate the

advantages of SHMEM+.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent Program-
ming—parallel programming

General Terms: Design, Languages, Performance

Additional Key Words and Phrases: Reconfigurable computing, parallel programming, program-
ming language, programming model, productivity, portability

1. INTRODUCTION

High-performance computing (HPC) is a critical enabling technology for the ad-
vancement of science and engineering, supporting multi-scale simulations and ex-
periments that drive breakthroughs in an ever-broadening range of fields. The field

Author’s address: NSF Center for High-Performance Reconfigurable Computing (CHREC), De-
partment of Electrical and Computer Engineering, University of Florida, Gainesville, Florida

32611; email: aggarwal@chrec.org.
Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c⃝ 20?? ACM 1529-3785/20??/0700-0001 $5.00

Transactions on Reconfigurable Technology and Systems, Vol. ?, No. ?, ?? 20??, Pages 1–27.

2 ⋅ Vikas Aggarwal et al.

of HPC is currently undergoing a major transformation brought on by advances in
device technologies as well as new generations of fixed-logic, reconfigurable-logic,
and/or heterogeneous multicore and many core devices. These technologies are
driving systems to become ever more powerful and efficient but unfortunately also
more complex to program, with multiple types and levels of hardware parallelism
to be understood and exploited.

A special class of such systems featuring reconfigurable computing (RC), based on
closely coupled microprocessors and FPGAs, offers an attractive solution for HPC.
Numerous studies have demonstrated that RC systems can achieve performance
improvements ranging from 10× [Shih et al. 2008] to more than 1000× [Storaasli
2008] over their microprocessor-based counterparts while concomitantly reducing
energy consumption. Despite their superior performance, RC systems are yet to
make a significant impact on the HPC market, largely because of increased com-
plexity of application-design which has been the focus of much commercial activity.
Although advances in device-level languages and tools for FPGAs have been the
subject of much research and commercial activity, system-level design issues have
largely been unaddressed. Such is the case with communication and synchroniza-
tion between multiple devices in RC systems. Unlike traditional HPC systems, lack
of integrated, system-wide, parallel-programming models and languages has limited
most RC applications to small systems. The characteristic differences between RC
systems and traditional HPC systems, such as additional levels of memory in the
system and different execution models of heterogeneous devices present in the sys-
tem, warrant a programming model which can address these differences. Currently,
application developers employ ad-hoc methods and multiple libraries (and APIs)
to incorporate inter- and intra-node communication and synchronization for large-
scale RC systems. As a result, the development productivity for scalable, parallel
RC applications has suffered.

Although shared-memory models have been prevalent in HPC for decades, re-
cently, newer models providing a programmer with a partitioned, global address
space (PGAS) view for abstraction have been gaining popularity, such as Unified
Parallel C (UPC) [El-Ghazawi et al. 2001; Carlson et al. 1999], SHMEM [SGI],
Co-Array Fortran [Numrich and Reid 1998], and Titanium [Yelick et al. 1998].
By extending the memory hierarchy to include an additional, higher-level global
memory layer that is partitioned between nodes in the system, such languages and
libraries allow for explicit or implicit one-sided data exchange (i.e. put, get) through
reading and writing of global variables. Although designed for traditional HPC sys-
tems, the PGAS-based model has the requisite simplicity, syntax, and semantics to
meet the needs of coordination amongst FPGA and CPU devices in reconfigurable
HPC systems. However, the model needs to be adapted and extended to work
with such systems. The virtual memory layer needs to be extended to incorporate
and abstract multiple levels of memory present in RC systems. In particular, the
SHMEM communication library stands out as a strong candidate for extending to
RC systems due to its innate simplicity, low overhead, support for a partitioned
global address space (PGAS), and emphasis upon explicit, fast one-sided communi-
cations. However, architectural differences introduced by incorporating RC devices
in the system warrant re-examination of some concepts and semantics traditionally

Transactions on Reconfigurable Technology and Systems, Vol. ?, No. ?, ?? 20??.

SHMEM+: A Multilevel-PGAS Programming Model for Reconfigurable Supercomputing ⋅ 3

associated with its common usage.
In this paper, we introduce a multilevel-PGAS programming model for RC sys-

tems, which abstracts the memory hierarchy available in the system, and presents
the designer with a flattened, unified view of the system memory. Furthermore,
we employ the model to develop SHMEM+ (i.e. an extended SHMEM library),
the first known implementation of SHMEM that enables communication and syn-
chronization between FPGAs and CPUs in a scalable, reconfigurable HPC system.
Although our work focuses on HPC systems and applications, the proposed mul-
tilevel PGAS model and SHMEM+ library can be employed by high-performance
embedded systems (HPEC) systems which employ a variety of embedded proces-
sors and accelerators. In addition, the ideas and concepts explored here can also be
extended to systems based on other types of accelerators such as GPUs, many-core
processors, etc. The potential uses and impact of SHMEM+ on such systems will
be explored in future research.

Using SHMEM+, designers can create scalable, parallel applications that execute
over a mix of microprocessors and FPGAs. The high-level abstraction provided by
SHMEM+ can yield significant improvement in developer productivity. Concomi-
tantly, for the decomposed tasks of a parallel application, developers of FPGA
cores can employ high-level synthesis tools and languages (e.g. Impulse-C, Carte-
C, Handel-C, etc.) for creating hardware designs for FPGAs to further improve
productivity. We analyze the performance of our implementation of SHMEM+
and investigate its inherent strengths through multiple case studies.

The remainder of this paper is organized as follows. Section 2 describes previous
work. Section 3 provides a description of the multilevel-PGAS programming model.
Section 4 gives an overview of the design of SHMEM+. In Section 5, we benchmark
the performance of data-transfer routines available in SHMEM+. We also present
two case studies to illustrate the design methodology and evaluate the advantages
of application design using SHMEM+. Finally, Section 6 summarizes the work with
conclusions and directions for future work.

2. BACKGROUND AND RELATED RESEARCH

A variety of projects have attempted to simplify application design for FPGAs by
employing High-level Languages (HLLs) such as Impulse-C, Handel-C, etc. While
enabling faster hardware designs for an FPGA, HLLs typically do not address the
system-level issues involved with parallel programming on reconfigurable HPC sys-
tems. Traditionally, developers of parallel programs have performed coordination
between tasks using either message-passing libraries such as MPI [MPI] or shared-
memory libraries such as OpenMP [OpenMP]. Recently, languages and libraries
that present a partitioned global address space (PGAS) to the programmer, such
as UPC [El-Ghazawi et al. 2001; Carlson et al. 1999] and SHMEM [SGI], have
become more visible and popular. These languages provide a simple interface for
developers of parallel applications through implicit or explicit one-sided data trans-
fer functions, while providing comparable performance to message-passing libraries
[Nishtala et al. 2009]. However, since such languages and libraries were developed
for traditional HPC systems, they have been typically limited to homogeneous ex-
ecution contexts of a cluster of microprocessors.

Transactions on Reconfigurable Technology and Systems, Vol. ?, No. ?, ?? 20??.

4 ⋅ Vikas Aggarwal et al.

Fig. 1. Source code for a SHMEM application that transfers an array of data from PE1 to PE0.

In particular, the SHMEM communication library is currently experiencing a
growth in interest in the HPC community due to its innate simplicity, low over-
head, and emphasis upon explicit, high-bandwidth, one-sided communications.
The SHMEM communication library consists of a set of routines that allow ex-
change of data between cooperating parallel processes (called processing elements
or PEs). Programs developed using SHMEM follow the single-program, multiple-
data model (SPMD) [Darema 2001], and are similar in style to programs based on
MPI. SHMEM routines support remote data transfers through put (or get) opera-
tions, which transfer data to (or from) a different PE using remote pointers which
allow direct references to data objects owned by the remote PE. Several other op-
erations are also supported such as broadcast, collective reduction, synchronization
operations, and atomic memory operations. Figure 1 shows the source code of an
example application which uses the SHMEM library to transfer an array of data
from “source” variable on PE1 to “dest” variable on PE0.

Owing to the emergence of a plethora of devices that are used for application
acceleration and coupled with microprocessors in HPC, there has been a quest for
exploring parallel-programming models that are better suited for heterogeneous,
RC systems. TMD-MPI [Saldana et al. 2008] extends the MPI library to support
message-passing between heterogeneous devices, such as a mix of FPGAs and mi-
croprocessors. [Aggarwal et al. 2009] adapts a message-passing model to generate
efficient communication infrastructure between various devices of a heterogeneous
system. Other research groups have shown interest in asynchronous execution in
the PGAS model, leading to Asynchronous PGAS (APGAS) [APGAS 2009], which
lays the foundation for active-message programming and fine-grained concurrency.
However, APGAS is largely tailored towards spawning massively parallel, multi-

Transactions on Reconfigurable Technology and Systems, Vol. ?, No. ?, ?? 20??.

SHMEM+: A Multilevel-PGAS Programming Model for Reconfigurable Supercomputing ⋅ 5

threaded kernel computations at run-time, on accelerators such as GPUs and not
intended for FPGA devices.

Some researchers have attempted to build hybrid models using multiple models
for a system [Farreras et al. 1997]. System-level libraries and languages such as
MPI and UPC were used for coordination between tasks executing on different
nodes of a cluster, and libraries such as OpenMP for coordination between tasks
within each node. Hybrid models require the designer to partition their design into
multiple levels and acquire expertise with multiple programming models, languages,
libraries, and tools. By contrast, we attempt to abstract these details from an
application designer and present an integrated programming model and library.

[El-Ghazawi et al. 2008] extends the UPC programming model to abstract a
system of microprocessors and accelerators through a two-level hierarchy of paral-
lelism. While their work shares the same goal of providing application developers
with a unified programming model, their approach is quite different than ours.
Their approach relies on identifying and extracting sections of code, specified in
a UPC program, which are amenable to hardware acceleration, and re-directing
them through a source-to-source translator and a high-level synthesis tool to gener-
ate hardware designs. Instead of providing a means for creating hardware designs,
we provide a parallel programming model, amenable to HPC systems which have a
hierarchy of computational devices and memory resources, and defer to and lever-
age the efficiency of existing and emerging high-level synthesis tools to raise the
abstraction for device-level design and generate the hardware.

This paper extends our previous work in [Aggarwal et al. 2009] by refining the
design of SHMEM+ to yield better performance, enable more functionality, and
support multiple FPGAs on each node. In addition, SHMEM+ has been ported
and evaluated on our new Novo-G RC supercomputer (details in Section 5). We
further analyze the scalability, portability and productivity advantages of appli-
cations developed using SHMEM+ library through case studies on two different
systems.

3. MULTILEVEL PGAS

Next-generation RC systems will be targeting FPGA devices in their system ar-
chitectures in exotic ways to extract performance, ranging from closely coupled,
in-socket accelerators to PCIe-based accelerator cards. Figure 2 depicts an exam-
ple RC system, where every node contains a set of processing units (PUs), each a
microprocessor or FPGA. With FPGA devices and multicore CPUs, each with one
or more associated memory modules, all within a single node, becoming pervasive
in high-end computing systems, the existence of multiple levels of memory hierar-
chy and different permutations of communication is becoming increasingly difficult
to ignore. As a result, application developers are presented with a daunting task of
orchestrating data amongst heterogeneous devices and several memory components
by employing multiple APIs.

There is a need for a parallel-programming model that provides application devel-
opers with a high level of abstraction and presents a simplified view of the system,
somewhat akin to that provided by the global memory layer in PGAS. However,
there are various challenges involved in applying an existing parallel-programming

Transactions on Reconfigurable Technology and Systems, Vol. ?, No. ?, ?? 20??.

6 ⋅ Vikas Aggarwal et al.

Fig. 2. System architecture of a typical RC machine.

Fig. 3. High-level abstractions for programming heterogeneous systems. (a) An ideal programming

abstraction for application developers, (b) A more practical and realizable approach.

model such as PGAS to reconfigurable HPC systems. Some of the concepts and
semantics associated with PGAS-based programming model on traditional systems
are not directly applicable to such hybrid systems. For example, a majority of
parallel programs are described using the SPMD model, where each node in the
computational system executes the same program while working on a different part
of input data. Heterogeneous systems comprised of devices with different program-
ming paradigms often require an application developer to create separate programs,
one for each type of device in the system, and necessitate a re-definition of SPMD
for such systems. Similarly, the multi-tier memory hierarchy that exists in recon-
figurable HPC systems warrants a re-examination of the distribution of the virtual,
global memory layer of PGAS programming model over the physical memory re-
sources of a system.

From application developers’ point of view, an ideal programming model should

Transactions on Reconfigurable Technology and Systems, Vol. ?, No. ?, ?? 20??.

SHMEM+: A Multilevel-PGAS Programming Model for Reconfigurable Supercomputing ⋅ 7

Fig. 4. Distribution of memory and system resources in multilevel PGAS.

provide an abstraction where the heterogeneous devices present in the system are
treated as logically equivalent PUs (Figure 3a). Using such a model, each PU
will execute a program instance of a SPMD application, obtained by translat-
ing the source code into logically equivalent operations in different programming
paradigms. The PGAS interface on each PU would be responsible for presenting
a logically homogeneous system view to the application developers. While it may
provide a simplified view of the system, such an abstraction would be difficult to
implement and may lead to inefficient utilization of system resources. For example,
FPGA devices yield exceptional performance for computations which have a high
degree of parallelism, but can lead to inefficiencies when implementing complete
functionality of a SPMD program.

A more practical solution would raise the level of abstraction for application de-
velopers while making efficient use of the specialized resources present in a system.
Figure 3b shows such an approach, where each individual task of a SPMD appli-
cation is further partitioned across, and collectively executed by all the PUs on a
node. Such a solution can also extend the concept of partitioned, global address
space to a multilevel abstraction, which integrates a hierarchy of multiple mem-
ory components into a single, virtual memory layer. We call this model multilevel
PGAS.

Figure 4 shows the physical distribution of memory components that form the
global address space in multilevel PGAS. Memory blocks associated with all PUs
in the system, irrespective of their physical location and hierarchy in the system
architecture, can form a part of the virtual memory layer and have globally unique
memory addresses in the system. Both CPUs and FPGAs provide interfaces re-
quired for the global memory abstraction for their corresponding memory blocks.
Note that, all physical memory blocks do not have to be a part of the PGAS. The
memory blocks that do not form a part of the virtual, global memory layer can
be used by their PUs for storing local variables. It should be noted that memory
blocks shown in Figure 4 correspond only to off-chip memory resources for the fo-
cus of our work. On-chip memory structures of an FPGA such as block RAMs and
register files are treated as local storage and not exposed as a part of PGAS. Such
modeling of local storage is similar to that of microprocessor cache and registers,
which are hidden from the PGAS layer in traditional HPC systems. Such resources
were not included in the global address space in our design because the memory
consistency required by parallel applications may preclude the usage of BRAMs as

Transactions on Reconfigurable Technology and Systems, Vol. ?, No. ?, ?? 20??.

8 ⋅ Vikas Aggarwal et al.

Fig. 5. (a) Physical resource layout of a typical RC system, (b) Logical abstraction provided by
multilevel-PGAS model.

shared resources in most cases. However, our framework does not prevent the usage
of such resources in the global address space if it can be supported by the target
FPGA platform.

Figure 5 depicts a detailed view of the physical distribution of resources within
each node and its equivalent logical abstraction provided by the multilevel-PGAS
model (used by SHMEM+). Although the figure depicts two processing units per
node, one CPU and one FPGA, it can be generalized to include any number and
variety. As shown in Figure 5a, the global address space, partitioned across multiple
nodes in the system, is composed of memory blocks which are physically distributed
across different processing units within a node. However, the logical abstraction
presented to a designer (shown in Figure 5b) is a flattened view of the node’s shared
memory. Thus, application designers do not have to understand the distribution of
data over the physical memory resources when accessing a remote node.

The PGAS interface on each node is responsible for providing application design-
ers with an abstraction of a single, integrated memory block. Similar to the case
for memory resources, the logical view of the PGAS interface presented to the de-
veloper is different from its physical implementation. The physical implementation
of the interface itself is system-dependent and can be realized in different ways by
system architects. While each node provides the entire functionality required by the
PGAS interface, each PU within a node may implement only a subset of this func-
tionality. The distribution of these responsibilities amongst the PUs within a node
is dictated by their capabilities in the system. For example, in our current design,
the CPUs provide a majority of the SHMEM functionality and the FPGAs only
provide assistance for transfers to and from the FPGA’s memory using the vendor-
specific memory controllers. As future work, we intend to investigate the feasibility
of FPGA-initiated transfers, which will require more extensive support from FP-
GAs and may lead to some resource utilization on the FPGAs by SHMEM+, unlike
our current design. The multilevel-PGAS model supports two additional features
which help in attaining high performance for applications. First, it allows appli-
cation developers to specify affinity of various application data to specific memory
components within a node during memory allocation. Therefore, the data can be
placed in a memory block closer to the processing unit that operates on it most
frequently. Second, multilevel-PGAS model requires explicit transfers between lo-
cal memory components. In systems equipped with multiple non-coherent memory
blocks within a node, DMA operations are often employed for data transfer between

Transactions on Reconfigurable Technology and Systems, Vol. ?, No. ?, ?? 20??.

SHMEM+: A Multilevel-PGAS Programming Model for Reconfigurable Supercomputing ⋅ 9

Fig. 6. Data transfer choices available to the developer with SHMEM+.

different memory blocks, which are expensive operations and can significantly ham-
per application performance. Having explicit calls for data transfers within a local
node eliminates the possibility of inefficiencies caused by transparent but expensive
transfers which are implicitly embedded in the application code.

4. OVERVIEW OF SHMEM+

Using the multilevel-PGAS programming model, we extend conventional SHMEM
to become what we call SHMEM+, a communication library which enables addi-
tional communication capabilities between heterogeneous devices. Using SHMEM+,
designers can create highly scalable applications that execute over a mix of mi-
croprocessors and FPGAs. Previous implementations of the SHMEM API have
targeted specific systems [Cray T3ETM Fortran Optimization Guide - 004-2518-
002] and often lacked portability. SHMEM+ is built over services provided by
Global Address Space NETworking (GASNet from UC Berkeley)[Bonachea and
Jeong 2002] which is a language-independent, communications middleware that
provides network-independent, high-performance primitives tailored for implement-
ing parallel GAS languages. As a result, SHMEM+ can be easily ported to other
systems that are supported by GASNet by simply modifying the FPGA interfaces
that employ vendor-specific APIs.

SHMEM+ provides developers with a high-productivity environment for estab-
lishing communication in an RC application, by providing developers with several
choices for data transfers between devices of a heterogeneous RC system, some of
which did not exist in conventional SHMEM library. Figure 6 illustrates the dif-
ferent options for data transfers provided by SHMEM+ in a system with a CPU
and an FPGA on each node. The existing transfer capabilities are marked by la-
bels ‘a’ (CPU-only SHMEM) and ‘b’ (platform-specific APIs) in the figure, and the
ones introduced by SHMEM+ are labeled as ‘x’ and ‘y’. While these additional
data-transfer options simplify the process of developing parallel applications and
improve productivity, the developers should understand the tradeoffs associated
with such transfers. For example, direct transfer between two remote FPGAs elim-
inates the need for a developer to carefully orchestrate the data through the local

Transactions on Reconfigurable Technology and Systems, Vol. ?, No. ?, ?? 20??.

10 ⋅ Vikas Aggarwal et al.

Table I. Baseline functions currently supported in SHMEM+ library

Function SHMEM+ Call Type Purpose

Initialization shmem init Setup Initializes SHMEM library and other re-
sources

Comm. Id my pe Setup Provides a unique ID for each process

Comm. size num pes Setup Provides number of PEs in the system

Finalize shmem finalize Setup De-allocates resources and gracefully termi-
nates

Malloc shmalloc Setup Allocates memory for shared variables

Get shmem int g P2P Reads single element from a remote node

Put shmem int p P2P Writes single element to a remote node

Get shmem getmem P2P Bulk read from a remote node

Put shmem putmem P2P Bulk write to a remote node

Quiet shmem quiet Synch. Waits for completion of outstanding puts

Barrier Sync. shmem barrier all Synch. Synchronizes all the nodes

CPUs on the source and destination nodes. However, it might occasionally reduce
the opportunities of overlapping intermediate steps of communication that exist
in the application. SHMEM+ does not force developers to work at a particular
level of abstraction. Instead it provides transfer functions which improve produc-
tivity along with functions which allow more detailed control over data transfers,
for achieving higher performance. The choice of the data-transfers employed will
often depend on the characteristics and structure of target application.

4.1 SHMEM+ Interface

Our design of SHMEM+ as described in this paper focuses on a subset of baseline
functions selected from the entire API function set of SHMEM. In this paper, we
discuss 11 baseline functions shown in Table I, which include five setup functions,
four point-to-point messaging calls, and two synchronization routines. Some of
these functions can be easily extended to support other SHMEM functions; such is
the case for single-element and contiguous data-transfer routines. In this version
of SHMEM+, we focus primarily on blocking communication. However, we also
provide limited support for non-blocking communication as in the case for transfers
between a CPU and its local FPGAs. More extensive support for non-blocking
transfers is the focus of our ongoing research and future work. In addition, all of
the various transfers are currently initiated by CPU devices which invoke SHMEM+
functions to transfer data between any two locations.

It is our objective to keep the interface of SHMEM+ consistent with previous
SHMEM implementations. However, the functionality provided by SHMEM+ has
been extended in various ways to incorporate support for FPGAs and provide
multilevel-PGAS abstraction. Thus, SHMEM+ functions perform these extra tasks
in addition to the ones performed by traditional SHMEM routines. For example, the
shmem init routine performs FPGA initialization (i.e. configuration of FPGA with
the required hardware design) and FPGA memory-management operations, con-
comitant to initialization and management of CPU memory segments as performed
by the traditional shmem init function. The routines for data transfer (variations
of shmem get and shmem put) perform exchanges between any two devices, such
as two CPUs or between a CPU and an FPGA, etc. Based on the target mem-
ory address specified in the function, SHMEM+ identifies whether the requested

Transactions on Reconfigurable Technology and Systems, Vol. ?, No. ?, ?? 20??.

SHMEM+: A Multilevel-PGAS Programming Model for Reconfigurable Supercomputing ⋅ 11

Fig. 7. (a) Task-graph of a multi-FPGA “add-one” application along with the desired mapping

of tasks onto devices, (b) An abstract representation of the architecture of the target RC system.

data resides in CPU or FPGA memory and employs appropriate means of trans-
ferring the data. In addition, transfers to both remote and local FPGAs can be
performed using the same interface, eliminating the need for multiple APIs. With-
out SHMEM+, application developers must decompose the algorithm in multiple
stages, using the conventional SHMEM library for system-level decomposition and
lower-level vendor APIs for distributing the functions across various PUs within a
node, and then carefully orchestrate the communication through multiple libraries
based on the location and type of the target device. The memory allocation rou-
tine (shmalloc), which allocates memory for data variables from the shared address
space, has been modified to allow users to specify the affinity of any data to a
particular memory block in the system. For example, a set of data that is operated
upon by an FPGA can be specified to be allocated on FPGA memory which, as
explained in Section 3, can be beneficial for application performance. The applica-
tion developer conveys this information by specifying the “type” parameter (type
= 0 for CPU memory, 1 for FPGA memory) in the shmalloc function call.

4.2 SHMEM+ Application Example

In order to develop a better understanding and appreciation for SHMEM+, we
highlight the differences introduced by SHMEM+ in an application through an ex-
ample. Figure 7a shows the task-graph of a multi-FPGA “add-one” application
along with the desired mapping of each task onto a device (labeled alongside in
the task graph). The task “Send data”which is mapped on the CPU of Node 0
sends input data to the “Add one” tasks (mapped on the first FPGA of each node)
and collects the output data on completion of processing. The architecture of the
target RC system for the application is presented in Figure 7b. Figure 8 lists the
code snippets of the add-one application designed using (a) SHMEM+ and (b) a
combination of CPU-only SHMEM and vendor-specific APIs. With SHMEM+ an
application developer has the capability of transferring the input data to various
FPGAs (both local and remote) using the same interface of SHMEM+. Tradition-
ally, this transfer would have been achieved by distributing the data from CPU on

Transactions on Reconfigurable Technology and Systems, Vol. ?, No. ?, ?? 20??.

12 ⋅ Vikas Aggarwal et al.

Fig. 8. Code snippets for a multi-FPGA add-one application designed using (a) SHMEM+, (b)

SHMEM.

Node 0 to the CPUs on other nodes. All the nodes would then have to perform a
synchronization operation to ensure the receipt of data before proceeding with a
transfer to their local FPGAs. Although Figure 8b summarizes the transfer to the
local FPGA using a single function call, the process is often less than trivial and
non-uniform across different FPGA platforms. Even for this simplified example,
it is easy to see the benefits of employing SHMEM+ over traditional methods of
application design. More complex applications with more intricate communication
patterns will benefit from larger reduction in program complexity and developer
effort.

SHMEM+ provides application developers with a parallel-programming model
that enables productive and portable design of scalable RC applications. There are
a variety of factors that contribute towards improvement in developer productivity
that are listed in Table II. Applications developed without using SHMEM+ exhibit
higher conceptual complexity. Application developers are often forced to employ
multiple libraries with varying APIs to incorporate communication amongst a clus-
ter of host CPUs and to facilitate coordination between a host CPU and its local
FPGAs. In addition, any communication with an FPGA on a remote node will have
to be explicitly routed by the developer, through the host CPU on that node. The
processing on the host CPU of the remote node will have to be interrupted to service
this communication request, which further increases the complexity of developing
the parallel program. With SHMEM+, a developer is oblivious to such details and
exposed to a higher level of abstraction. Similarly, high-level SHMEM+ functions
eliminate the need to explicitly perform various intermediate steps of communica-
tion, leading to a reduction in code size. Portability and scalability increase the

Transactions on Reconfigurable Technology and Systems, Vol. ?, No. ?, ?? 20??.

SHMEM+: A Multilevel-PGAS Programming Model for Reconfigurable Supercomputing ⋅ 13

Table II. Major factors that contribute towards increased developer productivity when using

SHMEM+

Program complexity High-level abstraction provided by SHMEM+ functions shields the
application developer from various underlying details

Learning curve Familiar APIs and programming model lead to reduced learning

period when migrating to a new system

Source lines of code Each SHMEM+ function can perform several intermediate steps

of communication which eliminates the need for extra code and

function calls

Application portability Applications have longer life cycle as they can be executed on a
variety of platforms

Scalability Reduction in recurring developer effort to execute an application on

systems of different sizes

Fig. 9. (a) Software architecture of SHMEM+, (b) Data transfer example using Active Messages.

application lifespan and reduce the recurring cost that would have been involved
without the use of a library like SHMEM+. A combination of the factors shown
in Table II (and more) have a collective influence on the development time for an
application. We will present a brief discussion about the total development hours
spent in application development by our team for our case studies in Section 5.2.

4.3 Design of SHMEM+

Figure 9a illustrates the software architecture of SHMEM+. It makes use of GAS-
Net’s Core API, Extended API, and Active Message (AM) services. The setup
functions, which perform memory allocation and other initialization tasks, employ
the “Core API” services of GASNet. The data transfers to/from the CPU mem-
ory were built using the “Extended API,” which provides direct support for high-
level operations such as remote memory access. As a result, SHMEM+ functions
that perform transfers between two CPUs can be implemented by simply providing
wrappers around the underlying GASNet functions. Since transfers to/from FPGA
memory are not directly supported by underlying GASNet functions, they were de-
veloped using the AM service in conjunction with FPGA interfaces that we created
for our FPGA-platform (more details about our platform are provided in Section
5).

Figure 9b shows the sequence of steps involved in a transfer using Active Messages
when a CPU requests data from a remote FPGA. The CPU on Node 1 initiates
the transfer by calling the shmem getmem function, which sends an AM request

Transactions on Reconfigurable Technology and Systems, Vol. ?, No. ?, ?? 20??.

14 ⋅ Vikas Aggarwal et al.

Fig. 10. Design methodology for application development using multilevel PGAS and SHMEM+.

to the CPU on remote node (Node 2). Upon receiving the AM request message,
Node 2 invokes an AM request handler which reads the requested data from the
local FPGA in a temporary buffer and sends an AM reply message containing the
requested data to the initiating node. When Node 1 receives the reply message,
it invokes a corresponding reply handler to copy the incoming data into the user-
specified location. The message handlers shown in the figure employ FPGA read
and FPGA write functions, which we developed using the FPGA-board vendor’s
API to communicate with FPGA memory. Due to overhead incurred by AM services
and data access to/from the FPGA board, communication with an FPGA can result
in slightly higher latency and lower bandwidth when compared to CPU transfers.

4.4 Design Methodology With SHMEM+

One of the important goals of multilevel PGAS and SHMEM+ is to provide de-
velopers with a framework for building large-scale RC applications using familiar
techniques of parallel programming. The design methodology for building applica-
tions using SHMEM+ is described in Figure 10. A developer begins with a baseline
algorithm of the application (step a). A parallel algorithm is obtained by system-
level decomposition (step b) of the baseline into multiple tasks, each of which is
assigned to a node in the target RC system. Various conventional techniques of
decomposition can be employed during this stage, such as SPMD, pipelining, etc.
Each task of the parallel algorithm is further decomposed into constituent functions
which are distributed amongst the processing units in each node (step c). In the
following step (step d), the developer describes the functions mapped on FPGAs as
hardware engines using a hardware description language (HDL) or HLLs. Finally,
the remainder of the functions are described in software to be mapped on CPUs
(step e). The software also provides the FPGA with control signals required by the
hardware engines developed in the previous step. The functions that are mapped
on the CPUs employ SHMEM+ routines to access the PGAS in the system and
perform synchronization operations. Although the current version of SHMEM+
only allows CPU-initiated transfers, the capability of FPGA-initiated transfers in
future can provide numerous opportunities for innovative application design. The
design flow described here is further exemplified through multiple case studies in
Section 5.

Transactions on Reconfigurable Technology and Systems, Vol. ?, No. ?, ?? 20??.

SHMEM+: A Multilevel-PGAS Programming Model for Reconfigurable Supercomputing ⋅ 15

Fig. 11. System architecture of the Novo-G RC supercomputer

5. EXPERIMENTAL RESULTS

In this section, we present the performance obtained for various memory transfers
with SHMEM+ and compare it against the performance obtained with the vendor-
proprietary, CPU-only version of SHMEM provided by Quadrics for QsNet systems.
We then present two case studies to illustrate the design methodology, and evaluate
various advantages of application-design using SHMEM+.

To evaluate portability and scalability of applications designed using SHMEM+,
we conducted our experiments on two different systems. Our first system (Mu
cluster) consists of four Linux servers connected via QsNetII from Quadrics. Each
server is comprised of an AMD 2GHz Opteron 246 processor and a tightly coupled
set of four FPGA accelerators on a PROCStar-III PCIe board from GiDEL. The
FPGA board features four Altera Stratix-III EP3SE260 FPGAs, each with two
external DDR2 memory banks of 2GB and one bank of 256MB. The second system
is our Novo-G RC supercomputer, which is comprised of 24 computer servers (of
which only 16 were operational at the time of this research), each equipped with a
Nehalem quad-core Xeon processor and a PROCStar-III board from GiDEL. The
servers are connected via DDR InfiniBand. An architecture overview of Novo-
G is provided in Figure 11. The SHMEM+ library was initially developed on
the Mu cluster and later ported on Novo-G. Because Novo-G and Mu cluster use
the same FPGA board, porting the SHMEM+ library to the Novo-G system was
a straightforward process, just requiring an installation of GASNet on the new
system. Ideally, any system that is supported by GASNet can be supported by
SHMEM+ with ease, as in the case of Novo-G. However, in general, the process
of porting SHMEM+ onto a new platform requires solving: (a) system-level issues
and (b) FPGA platform-level issues. For supporting a new FPGA platform, the
system architects are responsible for creating functions to interact with the FPGA
board. Although the time to port SHMEM+ is largely dependent on the skills of
a system developer and the complexity of the vendor APIs for the FPGA board,

Transactions on Reconfigurable Technology and Systems, Vol. ?, No. ?, ?? 20??.

16 ⋅ Vikas Aggarwal et al.

Fig. 12. Bandwidth of point-to-point routines using SHMEM+ and Quadrics SHMEM for transfers
between two CPUs on (a) Mu cluster, (b) Novo-G. Note that in the performance results for Mu

cluster, the line graphs of SHMEM GET and SHMEM+ GET overlap each other.

it should be in the order of a couple of weeks for an experienced system developer.
Our current design of SHMEM+ library allows each of the four FPGAs on each
node to support up to 2GB of shared memory which forms a part of the PGAS
layer. The remainder of the memory is available to the FPGAs for storing local
data.

5.1 Benchmarking Performance of Communication Routines

Figure 12 depicts performance of point-to-point communication in SHMEM+ for
transfers between two CPUs on our two systems and compares it with the perfor-
mance obtained by the SHMEM library from Quadrics on the Mu cluster. Bulk
communication routines such as shmem getmem and shmem putmem attain a peak
throughput of about 850MB/s on the Mu cluster. The bandwidth obtained with
SHMEM+ calls, for transfers between two CPUs, is comparable to the proprietary
version of SHMEM available from Quadrics for our Mu cluster. The SHMEM+ rou-
tines for these transfers benefit from direct support provided by GASNet and thus
incur minimal overheads. Novo-G offers higher peak bandwidth (over 1400 MB/s,
approx. 75% of the max. capacity of the network) for point-to-point transfers be-
tween two CPUs when compared to the Mu cluster due to the faster interconnect.
Although the peak bandwidth obtained on Novo-G is higher than Mu cluster, the
performance of GASNet for smaller message sizes is better on Mu cluster. Since
there was no known implementation of SHMEM available for InfiniBand, we com-
pared the performance of SHMEM+ with the performance of synchronous data-
transfer functions present in MVAPICH [Network-Based Computing Laboratory]
(an implementation of MPI over InfiniBand) which is a commonly used commu-
nication library. The graph indicates that SHMEM+ outperforms MVAPICH for
large data transfers and offers a higher peak bandwidth.

Figure 13a shows performance of data transfers between a CPU and an FPGA
using SHMEM+ routines on Novo-G. The “Local PUT” and “Local GET” labels
represent the bandwidth of data transfers between a host CPU and its local FPGA
on the same node. The bandwidth of such local transfers is specific to the particular

Transactions on Reconfigurable Technology and Systems, Vol. ?, No. ?, ?? 20??.

SHMEM+: A Multilevel-PGAS Programming Model for Reconfigurable Supercomputing ⋅ 17

Fig. 13. Bandwidth of point-to-point routines on Novo-G using SHMEM+ for transfers between

(a) CPU and FPGA, (b) Two FPGAs. The label ‘Local’ in the graphs represents transfers between
devices which are on the same node, whereas the label ‘Remote’ represents the transfers between

devices on separate nodes. Note that for transfers between two FPGAS, the line graphs of Local
GET and Local PUT overlap each other.

Table III. End-to-end latency of transfers between various combinations of devices for traditional

SHMEM on Mu cluster, and SHMEM+ on Mu cluster and Novo-G. The times are reported in
microseconds for data transfer of 32 bytes.

Transfers between: SHMEM (Mu) SHMEM+ (Mu) SHMEM+ (Novo-G)

Two remote CPUs 3.87 �s 3.76 �s 7.96 �s

CPU & local FPGA 205.49 �s 213.60 �s 644.92 �s

CPU & remote FPGA 211.67 �s 219.49 �s 664.70 �s

Two remote FPGAs 427.09 �s 425.27 �s 1292.22 �s

FPGA board and depends upon a variety of factors associated with interconnect(s)
between CPU and FPGA, efficiency of the communication controller on the board,
etc. Many RC systems offer a higher bandwidth for read operation from an FPGA
(FPGA to CPU) when compared to write operation (CPU to FPGA). Similarly, our
system yields a peak bandwidth of approximately 275MB/s for local put operations
(CPU to FPGA) and approximately 1000MB/s for local get operations (FPGA to
CPU). The “Remote PUT” and “Remote GET” labels represent the bandwidth of
data transfers between a CPU and an FPGA on a different node. As expected, the
bandwidth for such transfers is observed to be lower than the bandwidth attained
for local transfers. Figure 13b shows performance of transfers between two FPGAs.
The labels “Local” indicate the two devices are on the same node whereas “Remote”
represent transfers between devices on different nodes. Since transfers between any
two FPGAs require two transfers over the PCIe bus internally (a read operation
and a write operation to FPGA), bandwidth obtained for such transfers is lower
than the bandwidth of transfers between a CPU and an FPGA and is limited by
the performance of the write operation. As a result the peak bandwidth obtained
for direct transfers between two FPGAs is approximately 230MB/s.

Table III reports the end-to-end latency (EEL) observed for transfers between
various combinations of devices. The smallest data size for transfers in our exper-
iments was restricted to 32 bytes by the requirements of the FPGA board. The
second and third column in the table compare the latencies observed for traditional

Transactions on Reconfigurable Technology and Systems, Vol. ?, No. ?, ?? 20??.

18 ⋅ Vikas Aggarwal et al.

Fig. 14. Processing steps involved in parallel algorithm for CBIR using SHMEM+.

SHMEM with those observed for SHMEM+ on Mu cluster. The differences between
the two are less than 5% for all the cases. The table also lists the EEL observed for
transfers on Novo-G. The latency for data transfers using GASNet on Novo-G is
higher than on Mu cluster, which concurs with the performance graphs presented
earlier. From results presented in this section, it can be observed that performance
of SHMEM+ compares well with conventional SHMEM for transfers between two
CPUs, and SHMEM+ performs reasonably well for communication with an FPGA.

5.2 Case Study 1: Content-based Image Retrieval

Content-Based Image Retrieval (CBIR) is a common application in computer vision
and consists of searching a large database of digital images for the ones that are
visually similar to a given query image, where the search is based on contents of
the image. The content in this context can be one of the several features present
in the image, such as colors, shapes, textures, or any other information that can
be derived from the image. CBIR has been widely adopted in many domains such
as biomedicine, military, commerce, education, and Web image classification and
searching. Each image in a CBIR system is represented by a feature vector, which
is based on characteristics of the image as cited above. Similarity between a query
image and the set of images in the database is determined by measuring similarity
between their feature vectors. The processes of determining the feature vector and
analyzing images for similarities are often the most computationally intensive stages
in any CBIR system [Guyon et al. 2006]. There are various forms of parallelism
available in the application that can be exploited by RC systems to accelerate the
search process [Skarpathiotis and Dimond 2004].

Our implementation presented in this paper employs a technique based on auto-
correlogram of color components [Huang et al. 1997], where the feature vector is
based on color information in the image. A correlogram of an image corresponds to

Transactions on Reconfigurable Technology and Systems, Vol. ?, No. ?, ?? 20??.

SHMEM+: A Multilevel-PGAS Programming Model for Reconfigurable Supercomputing ⋅ 19

a table where the rows are indexed by color pairs (ci, cj) such that the d-th column
in row (ci, cj) stores the probability of finding a pixel of color cj at a distance d
from a pixel of color ci in the image. For the case of auto-correlogram, the table
only consists of rows where ci = cj . In this paper, we use a modified version of
auto-correlogram, which stores an absolute count of the occurrences of a pixel of
color ci instead of the probability of such an event. Similarity between two images
is determined by calculating the sum of absolute differences between their feature
vectors.

The processing steps involved in the parallel algorithm employed in our experi-
ments are shown in Figure 14. We employed the design-flow described in Section 4
to derive this algorithm as follows:

Step a. The serial algorithm iterates over the set of images in the database to
calculate their feature vector and determine their similarity with the query image.
Once all the images in the database have been processed, the results are sorted in
decreasing order of their similarity.

Step b. Parallel algorithm is obtained by distributing the set of images in the
database over the processing nodes in the system.

Step c. The set of images is further partitioned amongst the processing units
within each node. The number of images to be processed on each FPGA and
CPU was determined based on their processing capability. By exploiting fine-grain
parallelism available in algorithm, FPGAs are able to process images at a faster
rate than the CPUs and are assigned a larger subset of images.

Step d. Using VHDL, we developed a hardware engine for FPGAs, which iterates
over its assigned set of input images to compute their feature vectors and evaluate
their similarity to the specified query image.

Step e. We developed software code for processing a subset of images on the
CPU, providing each FPGA with control signals to initiate processing and wait for
completion, and transferring results from all processing units in the system to root
node (node 0) at completion.

In addition to software parallelism described in the algorithm above, our hard-
ware design for each FPGA instantiates multiple computational kernels that operate
on five images in parallel. Figure 15 compares the execution time and speedup ver-
sus a serial software baseline for different implementations of a CBIR algorithm on
the Mu cluster. Our experiments were conducted for an image size of 128 × 128,
with the search database consisting of approximately 2800 images. Advantages
of using FPGA devices are evident through faster execution times for RC-based
implementations over software-only solutions. The FPGAs were able to process
images at a much faster rate than the CPUs leading to over 30× speedup with four
nodes when employing FPGA devices. Figure 15 also compares the performance
of the algorithm implemented using SHMEM+ with solution implemented using a
combination of Quadrics SHMEM (CPU-only) library and platform-specific APIs
for interaction with FPGAs. It is evident that the application developed using
SHMEM+ incurs minimal overhead compared to traditional techniques of develop-
ment where expert developers have access to vendor APIs.

Transactions on Reconfigurable Technology and Systems, Vol. ?, No. ?, ?? 20??.

20 ⋅ Vikas Aggarwal et al.

Fig. 15. Performance comparison of different implementations of parallel CBIR application on

Mu cluster. Software designs involve only CPU devices whereas RC designs involve both CPU
and FPGAs on each node. (a) Execution time of different designs, (b) Speedup obtained by

different designs when compared to a serial software baseline running on a single processor. The

experiments were conducted for a search database consisting of 2800 images, each of size 128×128.

More importantly, SHMEM+ provides application developers with a parallel-
programming model that enables productive and portable design of scalable RC
applications. A combination of the factors shown in Table II (and more) have
a collective influence on the development time for an application. Although a
comprehensive analysis of impact of each of those factors is beyond the scope of
this work, to understand the productivity gains of SHMEM+, we present a brief
discussion about the total development hours spent in application development by
our team.

Table IV compares the development hours spent by our team during various
stages of application design employing (a) traditional techniques of implementa-
tion and (b) SHMEM+ separately. Although the numbers cited are specific to
our team personnel, we believe they are a fair estimate of improvements expected
from SHMEM+. For the numbers cited in Table IV, we assume the developer has
experience in parallel programming and in creating FPGA designs using VHDL.
In addition, we assume the developer is new to the RC system and hence has to
undergo a learning process to familiarize with the platform, which is often the case
when porting applications to a new system. The rows in Table IV report the time
spent (in terms of 8-hour work days) in various phases of application development
which required significant amount of the time and effort. The time spent in each
activity also includes the hours spent for debugging in that phase, wherever applica-
ble. Since SHMEM+ does not modify the process of developing hardware cores for
FPGAs, the time required for FPGA-core development (first two rows of the table)
remains unaffected for both techniques, but has been included here for complete-
ness. It should be noted that we employed HDL for developing our hardware-cores
and further reductions in effort can be obtained by employing HLLs, if they are
supported by the target platform. The time spent in parallel-software develop-
ment includes the amount of time a developer spends in familiarizing with the
platform-specific API, learning the SHMEM API, and finally designing the parallel
application using these APIs. When using SHMEM+, a developer employs the
SHMEM+ interface for interacting with FPGA memory and hence has to spend

Transactions on Reconfigurable Technology and Systems, Vol. ?, No. ?, ?? 20??.

SHMEM+: A Multilevel-PGAS Programming Model for Reconfigurable Supercomputing ⋅ 21

Table IV. Development hours spent in developing CBIR application. Time is reported in terms

of 8-hour work days.

Development Phase
Traditional
SHMEM

SHMEM+

FPGA-core Learning platform-specific wrappers 10 days 10 days

development App-core design 15 days 15 days

Parallel- Platform-specific API learning period 5 days 2 days
software SHMEM API learning period 5 days 5 days

development Parallel-application design 10 days 7 days
Total software development time 20 days 14 days

less time understanding only a subset of platform-specific APIs which are required
for sending (or receiving) control signals (third row in the table). By contrast,
the learning period involved for the SHMEM API remains unaffected as both the
techniques expose the developer to a similar interface. Due to a higher level of ab-
straction provided by SHMEM+, a reduction in the time for designing the parallel
application was observed as indicated by the fifth row in the table. As shown in
the sixth row, an overall reduction in time and effort of about 30% was obtained
for the total time spent in various phases of parallel-software development. Such
an improvement could translate to significant savings in the development hours
and money spent on the design of a complex application. For example, an appli-
cation that required 10 weeks of development time could now be completed in just
7 weeks. Applications with more complex communication patterns are expected to
have higher gains in productivity.

Since SHMEM+ applications do not employ any vendor-specific APIs for inter-
action with FPGAs, applications developed using SHMEM+ are highly portable.
As long as the SHMEM+ library can be supported on a target RC system, any
application designed with SHMEM+ can execute on it without requiring changes
to the application source code. We evaluated the portability by migrating the
CBIR application from our Mu cluster to Novo-G. This process did not require any
modification to software and hardware source code. A simple re-compilation of the
software was required to obtain an executable for the new system. It should be
noted that for a system with a different FPGA board, some modifications will be
needed for the hardware designs. Figure 16 shows the performance of the CBIR
application scaling up to 16 nodes on Novo-G. We expanded our search database to
include approximately 22,000 images on this larger system. The graphs in Figure
16 compare the performance of a design developed using SHMEM+ with a design
based on traditional SHMEM. It is evident that designs developed using SHMEM+
continue to offer comparable performance to designs based on traditional SHMEM
for larger system sizes. The minor variation in performance of the design created
using SHMEM+ when compared to the one created with SHMEM is due to the
difference in the communication mechanism used to gather the results on the root
node in the last processing step. As with any form of high-level abstraction, a
tradeoff exists between productivity and performance. For our application design
using SHMEM+, the ability to use direct transfer to the remote FPGAs eliminates
the opportunity to overlap the intermediate steps of communication for this design.
However, SHMEM+ does not force developers to work at a particular level of ab-
straction. Instead it provides application developers with multiple options to meet

Transactions on Reconfigurable Technology and Systems, Vol. ?, No. ?, ?? 20??.

22 ⋅ Vikas Aggarwal et al.

Fig. 16. Performance comparison of different implementations of parallel CBIR application on

Novo-G. Software designs involve only CPU devices whereas RC designs involve both CPU and
FPGAs on each node. (a) Execution time of different designs, (b) Speedup obtained by different

designs when compared to a serial software baseline running on a single processor. The experiments

were conducted for a search database consisting of 22,000 images, each of size 128 × 128.

the demands of the application. Although the performance penalty incurred by the
designs created using SHMEM+ is minimal, we made a minor modification to the
implementation of the quad-FPGA designs to eliminate this penalty as discussed
in the following paragraphs.

Parallel algorithms employing multiple FPGAs on each node exhibit more com-
plex communication patterns and often require increased developer effort to obtain
an efficient implementation. SHMEM+ has the ability to support multiple FP-
GAs on each FPGA board using the same interface, which further simplifies the
development process and yields additional improvement in productivity. Figure 17
compares the performance of different designs employing all of the four FPGAs
on each node of Novo-G. The algorithm designed using SHMEM+ was modified
slightly to optimize the collection of results at the end on root node (Node 0).
Instead of the root node using a “GET” routine to receive results from all the FP-
GAs, each processing node uses a “PUT” function to transfer the results from each
of its local FPGA to the root node. The optimization allows the designs created
with SHMEM+ to exhibit excellent scaling behavior and minimal overheads when
compared to the designs created using a combination of CPU-only SHMEM and
vendor APIs.

5.3 Case Study 2: Two-dimensional FFT

As our next case study of parallel application, a two-dimensional FFT was chosen
because of its emphasis on a more complex communication pattern and its relevance
in a variety of application domains such as medical imaging systems, Synthetic
Aperture RADAR (SAR) systems, and image processing [Brigham 1988; Gonzales
and Woods 2002; Uzun et al. 2005]. The heavy computation demands of Fourier
transform [Cooley and Tukey 1965] poses tremendous pressure on the capabilities
of computation platforms in most real-world applications, as a result of which
several researchers have explored FPGA implementations for the same [Shirazi et al.
1995; Underwood et al. 2001]. A 2-D FFT operation on an image is performed by
decomposing it into a series of 1-D FFT over the rows of the image, followed by a

Transactions on Reconfigurable Technology and Systems, Vol. ?, No. ?, ?? 20??.

SHMEM+: A Multilevel-PGAS Programming Model for Reconfigurable Supercomputing ⋅ 23

Fig. 17. Performance comparison of different implementations of parallel CBIR application on
Novo-G. Software designs involve only CPU devices whereas RC designs involve both CPU and

four FPGAs on each node. (a) Execution time of different designs, (b) Speedup obtained by

different designs when compared to a serial software baseline running on a single processor. The
experiments were conducted for a search database consisting of 22000 images each of size 128×128.

Designs based on SHMEM+ continue to offer minimal overheads when compared to tradition

techniques of application development

Fig. 18. Abstract representation of the processing steps involved in a parallel two-dimensional

FFT algorithm.

series of Fourier transforms over the columns.
Our parallel implementation of 2-D FFT algorithm distributes rows of the input

image across the computational nodes which perform a 1-D FFT over their assigned
subset of rows as shown in Figure 18. A corner-turn (distributed transpose), which
involves all-to-all communication between the processing nodes, is required to re-
distribute the data across all the nodes. The nodes then compute 1-D FFT over the
columns of the image. Another corner turn is required to re-organize the data and
recover the transformed output image. Following the design flow described earlier
we derive our implementation as follows:

Step a. The serial algorithm computes the 2-D FFT of the image by performing
a series of 1-D FFT over the rows followed by 1-D FFT over the columns of the
image.

Step b. Our parallel algorithm is obtained by using block decomposition to dis-
tribute a subset of rows and columns to be transformed on each node. An all-to-all
communication is required to re-distribute the data between the two stages of 1-D
FFTs.

Transactions on Reconfigurable Technology and Systems, Vol. ?, No. ?, ?? 20??.

24 ⋅ Vikas Aggarwal et al.

Table V. Development hours spent for developing Two-dimensional FFT application

Development Phase Traditional SHMEM SHMEM+

FPGA-core Learning platform-specific wrappers 15 days 15 days
development App-core design 15 days 15 days

Parallel- Platform-specific API learning period 5 days 2 days

software Parallel-application design 12 days 10 days

development Total software development time 17 days 12 days

Step c. The FPGA on each node is able to perform 1-D FFT operations faster
than the CPU and is hence assigned to transform the assigned set of rows and
columns. Since the CPUs are more efficient in re-organizing the data in their local
memory than FPGAs, they are assigned to perform the corner turn.

Step d. Using VHDL, we developed a hardware engine for FPGAs, to perform a
series of 1-D FFT over its assigned set of input data. The FPGA waits for control
signal from the CPU to begin processing and indicates completion of transforms
through another control signal.

Step e. Software code on the CPU is responsible for transferring the input data to
the FPGAs and reading the transformed output once FPGA completes processing.
The software code also performs an all-to-all communication to complete the corner-
turn. In addition, it also provides the control signal required by the FPGAs.

Figure 19 compares the execution time and speedup versus a serial software base-
line for different implementations of a parallel 2-D FFT algorithm on Novo-G. Our
experiments were conducted for an 8k×8k image. Similar to our first case study,
designs for 2-D FFT implemented using SHMEM+ yield performance which is
comparable to designs implemented using a combination of traditional, CPU-only
SHMEM library and platform-specific APIs. The minor difference in the perfor-
mance of both of these designs is within reasonable limits of experimental error.
A comparison of the hours spent in developing 2-D FFT algorithm using both of
these techniques is presented in Table V. For this case study, we assume a par-
allel application developer is familiar with the SHMEM API and does not have
to spend any effort/time learning it. However, since platform-specific learning is
a common occurrence each time the application is ported to a new platform, we
retain the learning period for the platform-specific API. Our estimates indicate an
improvement of approximately 25% in developer productivity. Portability experi-
ments were also conducted for the second case study. Since most of the results and
inferences from these experiments were consistent with the first case study, they
are not repeated here.

6. CONCLUSIONS AND FUTURE WORK

The lack of integrated, system-wide, parallel programming models has limited cur-
rent RC applications to small systems sizes. To realize the full potential of reconfig-
urable HPC systems, parallel programming models and languages that are suited
to such systems are critical yet lacking. In this paper, we presented a parallel-
programming model and a communication library for scalable, heterogeneous, re-
configurable systems. The multilevel-PGAS model proposed in this paper is able
to capture key characteristics of RC systems, such as different levels of memory
hierarchy and differences in the execution model of heterogeneous devices present

Transactions on Reconfigurable Technology and Systems, Vol. ?, No. ?, ?? 20??.

SHMEM+: A Multilevel-PGAS Programming Model for Reconfigurable Supercomputing ⋅ 25

Fig. 19. Performance comparison of different implementations of parallel 2-D FFT algorithm on
Novo-G. Software designs involve only CPU devices whereas RC designs involve both CPU and

FPGAs on each node. (a) Execution time of different designs, (b) Speedup obtained by different

designs when compared to serial software baseline running on a single processor. The experiments
were conducted for an 8k × 8k image.

in the system. The existence of such a programming model will enable productive
development of scalable, parallel applications for reconfigurable HPC systems.

Using the multilevel-PGAS programming model, we extend the existing SHMEM
library to SHMEM+, the first known version of the library that enables designers
to create scalable applications that execute over a mix of microprocessors and FP-
GAs. SHMEM+ offers developers of RC applications a high-level of abstraction
that allows them to facilitate complex communication in application between het-
erogeneous devices, while providing high productivity and performance. Results
from our experiments and case studies demonstrate that performance offered by
SHMEM+ is comparable to the existing vendor-proprietary version of SHMEM.
Our case studies showcase the simplified design process involved with SHMEM+
for developing scalable RC applications, which is very similar to traditional meth-
ods for development of parallel applications. More importantly, the higher level of
abstraction provided by SHMEM+ leads to significant improvement in productivity
without sacrificing performance significantly. Although it is difficult to quantify the
productivity gains, our case studies demonstrate an average improvement in pro-
ductivity of about 30%. In addition, by hiding the details of vendor-specific FPGA
communication from developers, SHMEM+ creates highly portable applications.

Directions for future work include various expansions to the SHMEM+ library
and its communication capabilities. We plan to enhance the communication model
by investigating mechanisms for FPGA-initiated transfers, which are often not sup-
ported by FPGA platforms and hence will have to be supported through a virtual
abstraction. Nevertheless, the capabilities offered by such transfers provide op-
portunities for innovative application design. The multilevel PGAS programming
model and the SHMEM+ library can be easily extended and applied to other sys-
tems besides HPC, such as high-performance embedded systems (HPEC) which
employ a variety of embedded processors and accelerators, including GPUs and
many-core processors. The application of SHMEM+ to such systems and its po-
tential impact will be explored in future research. In addition, we intend to inves-

Transactions on Reconfigurable Technology and Systems, Vol. ?, No. ?, ?? 20??.

26 ⋅ Vikas Aggarwal et al.

tigate, develop, and evaluate tools to support performance analysis for SHMEM+
applications.

ACKNOWLEDGMENTS

This work was supported in part by the I/UCRC Program of the National Sci-
ence Foundation under Grant No. EEC-0642422. This work was also supported
by the United States Department of Defense and used resources of the Extreme-
Scale Systems Center at Oak Ridge National Laboratory. The authors gratefully
acknowledge equipment and tools from Altera and GiDEL. We would also like to
thank Rafael Garcia, former M.S. student in our lab, for his contributions to this
work.

REFERENCES

Aggarwal, V., Garcia, R., Stitt, G., George, A., and Lam, H. 2009. SCF: a device- and

language-independent task coordination framework for reconfigurable, heterogeneous systems.

In HPRCTA ’09: Proceedings of the Third International Workshop on High-Performance Re-
configurable Computing Technology and Applications. ACM, New York, NY, USA, 19–28.

Aggarwal, V., George, A., Yalamanchili, K., Yoon, C., Lam, H., and Stitt, G. 2009. Bridg-

ing parallel and reconfigurable computing with multilevel PGAS and SHMEM+. In HPRCTA
’09: Proceedings of the Third International Workshop on High-Performance Reconfigurable

Computing Technology and Applications. ACM, New York, NY, USA, 47–54.

APGAS 2009. Workshop on Asynchrony in the PGAS Programming Model. Available at http:

//research.ihost.com/apgas09/.

Bonachea, D. and Jeong, J. Spring 2002. GASNet: A portable high-performance communication

layer for global address-space languages. CS258 Parallel Computer Architecture Project.

Brigham, E. O. 1988. The Fast Fourier Transform and its Application. Prentice Hall.

Carlson, W. W., Draper, J. M., Culler, D. E., Yelick, K., Brooks, E., and Warren, K.
1999. Introduction to UPC and language specification. Tech. rep., University of California-

Berkeley, Berkeley, CA, USA.

Cooley, J. W. and Tukey, J. W. 1965. An algorithm for the machine computation of the

complex fourier series. Mathematics of Computation 19, 297–301.

Cray T3ETM Fortran Optimization Guide - 004-2518-002. SHMEM. http://docs.cray.com/

books/004-2518-002/html-004-2518-002/z826920364dep.html.

Darema, F. 2001. The SPMD model: past, present and future. In Proceedings of the 8th Euro-
pean PVM/MPI Users’ Group Meeting on Recent Advances in Parallel Virtual Machine and

Message Passing Interface. Springer-Verlag, London, UK.

El-Ghazawi, T., Serres, O., Bahra, S., Huang, M., and El-Araby, E. 2008. Parallel pro-
gramming of high-performance reconfigurable computing systems with Unified Parallel C. In
Proc. of Reconfigurable Systems Summer Institute. Urbana, Illinois.

El-Ghazawi, T. A., Carlson, W. W., and Draper, J. M. 2001. UPC language specifications

v1.0. http://upc.gwu.edu/docs/upc_spec_1.1.1.pdf.

Farreras, M., Marjanovic, V., Ayguade, E., and Labarta, J. 1997. Gaining asynchrony by
using hybrid UPC/SMPSs. In Workshop on Asynchrony in the PGAS Programming Model.
Yorktown Heights, NY, USA.

Gonzales, R. and Woods, R. E. 2002. Digital Image Processing. Addison-Wesley.

Guyon, I., Gunn, S., Nikravesh, M., and Zadeh, L. 2006. Feature Extraction, Foundations and
Applications. Springer.

Huang, J., Kumar, S., Mitra, M., Zhu, W.-J., and Zabih, R. 1997. Image indexing using color

correlograms. In Computer Vision and Pattern Recognition, 1997. Proceedings., 1997 IEEE
Computer Society Conference on. 762–768.

MPI. MPI standard. http://www.mcs.anl.gov/research/projects/mpi/.

Transactions on Reconfigurable Technology and Systems, Vol. ?, No. ?, ?? 20??.

SHMEM+: A Multilevel-PGAS Programming Model for Reconfigurable Supercomputing ⋅ 27

Network-Based Computing Laboratory. MVAPICH: MPI over InfiniBand and iWARP. http:

//mvapich.cse.ohio-state.edu.

Nishtala, R., Hargrove, P. H., Bonachea, D. O., and Yelick, K. A. 2009. Scaling
communication-intensive applications on BlueGene/P using one-sided communication and over-

lap. In IEEE International Parallel & Distributed Processing Symposium. Rome, Italy, 1–12.

Numrich, R. W. and Reid, J. K. 1998. Co-Array Fortran for parallel programming.

OpenMP. The OpenMP API specification for parallel programming. http://openmp.org/wp/.

Saldana, M., Patel, A., Madill, C., Nunes, D., Danyao, W., Styles, H., Putnam, A., Wittig,
R., and Chow, P. 2008. MPI as an abstraction for software-hardware interaction for HPRCs.

In HPRCTA ’08: Proceedings of the Third International Workshop on High-Performance Re-

configurable Computing Technology and Applications. ACM, New York, NY, USA.

SGI. Introduction to the SHMEM programming model. http://docs.sgi.com/library/tpl/

cgi-bin/getdoc.cgi?coll=linux&db=man&fname=/usr/share/catman/man3/intro_shmem.3.

html&srch=intro_shmem.

Shih, K., Balachandran, A., Nagarajan, K., Holland, B., Slatton, C., and George, A.
2008. Fast real-time LIDAR processing on FPGAs. In Proc. of International Conference on

Engineering of Reconfigurable Systems and Algorithms. Las Vegas, NV, USA.

Shirazi, N., Athanas, P. M., and Abbott, A. L. 1995. Field Programmable Logic and Ap-
plication. Springer Berlin, Chapter Implementation of a 2-D fast Fourier transform on an

FPGA-based custom computing machine, 282–292.

Skarpathiotis, C. and Dimond, K. 2004. Field Programmable Logic and Application. Springer

Berlin, Chapter A Hardware Implementation of a Content Based Image Retrieval Algorithm,
1165–1167.

Storaasli, O. 2008. Accelerating senome sequencing 100-1000X with FPGAs. In Many-core

and Reconfigurable Supercomputing Conference (MRSC). The Queen’s University of Belfast,
Northern Ireland.

Underwood, K. D., Sass, R. R., and Walter B. Ligon, I. 2001. Acceleration of a 2d-fft

on an adaptable computing cluster. In FCCM ’01: Proceedings of the the 9th Annual IEEE

Symposium on Field-Programmable Custom Computing Machines. Washington, DC, USA, 180–
189.

Uzun, I., Amira, A., and Bouridane, A. 2005. FPGA implementations of fast Fourier trans-

forms for real-time signal and image processing. Vision, Image and Signal Processing, IEE
Proceedings 152, 3 (June), 283 – 296.

Yelick, K., Semenzato, L., Pike, G., Miyamoto, C., Liblit, B., Krishnamurthy, A., Hil-

finger, P., Graham, S., Gay, D., Colella, P., and Aiken, A. 1998. Titanium: A high-

performance Java dialect. In ACM 1998 Workshop on Java for High-Performance Network
Computing. ACM Press, New York, NY 10036, USA.

Received 20??; November 20??; accepted January 20??

Transactions on Reconfigurable Technology and Systems, Vol. ?, No. ?, ?? 20??.

