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High-Level Languages (HLLs) for Field-Programmable Gate Arrays (FPGAs) facilitate the use of 

reconfigurable computing resources for application developers by using familiar, higher-level syntax, 

semantics, and abstractions, typically enabling faster development times than with traditional Hardware 

Description Languages (HDLs).  However, programming at a higher level of abstraction is typically 

accompanied by some loss of performance as well as reduced transparency of application behavior, making it 

difficult to understand and improve application performance.  While runtime tools for performance analysis are 

often featured in development with traditional HLLs for sequential and parallel programming, HLL-based 

development for FPGAs have an equal or greater need yet lack these tools.  This paper presents a novel and 

portable framework for runtime performance analysis of HLL applications for FPGAs, including an automated 

tool for performance analysis of designs created with Impulse C, a commercial HLL for FPGAs.  As a case 

study, this tool is used to successfully locate performance bottlenecks in a molecular dynamics kernel in order 

to gain speedup. 

 

Categories and Subject Descriptors: B.8.2 [PERFORMANCE AND RELIABILITY] Performance Analysis and 

Design Aids 

General Terms: Performance, Measurement 

Additional Key Words and Phrases: FPGA, profile, trace, high-level language, high-level synthesis tools, 

Impulse C, Carte C 

________________________________________________________________________ 
 

 

1. INTRODUCTION  

High-level synthesis tools translate high-level languages (e.g., Impulse C [Pellerin et al. 

2005] or Carte C [Poznanovic 2005]) to hardware configurations on FPGAs.  Today’s 

high-level languages (HLLs) simplify software developers’ transition to reconfigurable 

computing and its performance advantages without the steep learning curve associated 

with traditional Hardware Description Languages (HDLs).  While HDL developers have 

become accustomed to debugging code via simulators, software developers typically rely 

heavily upon debugging and performance analysis tools.  In order to accommodate the 

typical software development process, high-level synthesis tools support debugging at the 

HLL source-code level on a traditional microprocessor without performing translation 

from HLL to HDL.  Current commercial high-level synthesis tools provide few (if any) 

runtime tools (i.e., while the application is executing on one or more FPGAs) for 

debugging or performance analysis at the HLL source-code level.  In addition, research 
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on runtime performance analysis1 for FPGAs is lacking with few exceptions and none of 

which is targeted towards HLLs.  

While it is possible for debugging and simulation techniques to estimate basic 

performance, many well-researched debugging techniques may not be suited for 

performance analysis.  For example, halting an FPGA to read back its state will cause the 

FPGA to become temporarily inaccessible from the CPU, potentially resulting in 

performance problems that did not exist before.  Thus, this approach is not viable due to 

the unacceptable level of disturbance caused to the application’s behavior and timing.  

Alternatively, performance can be analyzed through simulation.  However, cycle-accurate 

simulations of complex designs on an FPGA are slow and increase in complexity as 

additional system components are added to the simulation.  Most (if not all) cycle-

accurate simulators for FPGAs focus upon signal analysis and do not present the results 

at the HLL source-code level to a software developer. 

RC applications have potential for high performance, but HLL-based applications can 

fall far short of that potential due to the layer of abstraction hiding much of the 

implementation (and thus performance) details.  Performance analysis tools can aid the 

developer in understanding application behavior as well as in locating and removing 

performance bottlenecks.  Due to the HLL abstraction layer, it is essential for 

performance analysis to provide performance data at that same level, allowing correlation 

between performance data and source line. 

This paper focuses upon performance analysis of an HLL application on a 

reconfigurable system by monitoring the application at runtime.  We have gained the 

majority of our insight about performance analysis with high-level languages from our 

experience with Impulse C, a language designed by Impulse Accelerated Technologies, 

which maps a reduced set of C statements to HDL; however insights gained from Carte 

C, a language designed by SRC Computers, are also discussed to provide an alternate 

perspective of HLL performance analysis.  We develop a performance analysis 

framework based on Impulse C, prototyping this framework into an automated tool in 

order to demonstrate its effectiveness on a molecular dynamics application. 

The remainder of this paper is organized as follows.  Section 2 discusses related work 

and provides background information on runtime performance analysis.  Next, Section 3 

covers the challenges of performance analysis for HLLs targeting FPGAs.  Section 4 

provides details for our performance analysis framework for Impulse C.   Section 5 then 

presents a case study using a molecular dynamics kernel written in Impulse C.  Finally, 

Section 6 concludes and presents ideas for future work. 

 

2. BACKGROUND & RELATED WORK 

Performance analysis can be divided into five steps (derived from Maloney’s work on the 

TAU performance analysis framework for traditional processors [Shende et al. 2006]) 

whose end goal is to produce an optimized application.  These steps are Instrument, 
Measure, Analyze, Present, and Optimize (see Figure 1).  The instrumentation step 

inserts the necessary code (i.e., additional hardware in the FPGA’s case) to access and 

record application data at runtime, such as variables or signals to capture performance 

indicators.  Measurement is the process of recording and storing the performance data at 

runtime while the application is executing.  After execution, analysis of performance data 

to identify potential bottlenecks can be performed.  Some tools such as TAU can 

automatically analyze the measured data to help the user find potential bottlenecks, while 

other tools rely solely upon the developer to analyze the results.  In either case, data is 

                                                           
1 Runtime performance analysis (timing analysis on data gathered during execution) is 

hereafter referred to as performance analysis. 
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typically presented to the programmer via text, charts, or other visualizations to allow for 

further analysis.  Finally, optimization is performed by modifying the application’s code 

or possibly changing the application’s platform based upon insights gained via the 

previous steps.  Since automated optimization is an open area of research, optimization at 

present is typically a manual process.  Finally, these steps may be repeated as many times 

as the developer deems necessary, resulting in an optimized application.  This 

methodology is employed by a number of existing tools for software parallel performance 

analysis including PPW [Su et al. 2008], TAU [Shende et al. 2006], KOJAK [Mohr et al. 

2003] and HPCToolkit [Mellor-Crummey et al. 2002]. 

 

  

Figure 1. Performance analysis steps 

To the best of our knowledge from a comprehensive literature search, little previous 

work exists concerning runtime performance analysis for FPGA applications.  Hardware 

performance measurement modules have been integrated into FPGAs before; however, 

they were designed specifically for monitoring the execution of soft-core processors 

[Tong et al. 2007].  The Owl framework, which provides performance analysis of system 

interconnects, uses FPGAs for performance analysis, but does not actually monitor the 

performance of hardware inside the FPGA itself [Schulz et al. 2005].  Range adaptive 

profiling has been prototyped on FPGAs but was not used for profiling an application 

executing on an FPGA [Mysore 2008].  Runtime debugging of an HLL, Sea Cucumber, 

has been developed by Hemmert et al. [2003].  However, the Sea Cucumber Debugger 

does not support performance analysis.  Calvez et al. [1995] describe performance 

analysis for ASICs while DeVille et al. [2005] discuss performance monitoring probes 

for FPGA circuits; however, neither work targets HLLs.  

This paper significantly extends our previous work on performance analysis for HDL 

applications [Koehler et al. 2008] by expanding this HDL framework to support the 

challenges of high-level synthesis tools.  This paper also extends our previous work on 

performance analysis of HLL-based applications [Curreri et al. 2008] by expanding the 

scope of challenges faced in instrumentation, measurement, and visualization of these 

applications, detailing our framework for automated instrumentation and visualization, 

and providing results from a prototype incorporating this automation and visualization. 

 

3. HLL PERFORMANCE ANALYSIS CHALLENGES 

While all stages of performance analysis mentioned above are of interest for HLL-based 

applications, we limit our discussion to the challenges of instrumentation, measurement, 
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analysis, and visualization for the remainder of this paper; optimization is beyond the 

scope of this paper.  Thus, Section 3.1 covers the challenges of instrumenting an 

application, Section 3.2 explains the challenges associated with measuring performance 

data from an application, Section 3.3 discusses the challenges of analyzing performance 

data, and Section 3.4 examines the challenges of visualizing performance data. 

 

3.1 HLL Instrumentation Challenges 

Instrumentation, the first step of performance analysis, enables access to application data 

at runtime.  For HLL-based applications, this step raises two key issues: at what level of 

abstraction should modifications be made, and how to best select what should be 

accessed to gain a clear yet unobtrusive view of the application’s performance.  Tradeoffs 

concerning the level of abstraction are discussed in Section 3.1.1, while the selection of 

what to monitor is covered in Section 3.1.2. 

 

3.1.1 Instrumentation Levels. Three main instrumentation levels have been 

investigated: HLL software, HLL hardware and HDL.  Each instrumentation level offers 

advantages to a performance analysis tool for HLL-based applications.  For details on 

instrumentation levels below HDL, see Graham et al. [2001].  

The most obvious choice for instrumentation is to directly modify the HLL source 

code.  Instrumentation can be added to the software code requiring timing to be handled 

by the CPU.  Each timing call is sent from FPGA to CPU over a communication channel.  

This is currently used by Impulse C developers since no HLL hardware timing functions 

are available.  For a small number of coarse-grained measurements (e.g., for phases of the 

hardware application), the communication overhead and timing granularity are 

acceptable. 

  Instrumentation can also be added to the HLL source code that describes FPGA 

hardware.  Most high-level synthesis tools lack this feature.  Carte C is an exception in 

that it allows the developer to manually control and retrieve cycle counters, which, along 

with the FPGA’s clock frequency and some adjustment for skew, provides accurate 

timing information between the CPU and FPGA.  The main advantage of this method is 

simplicity; code is added to record data at runtime, and this data can be easily correlated 

with the source line that was modified.  It is also possible that the HLL source code may 

be the only level that can be instrumented (e.g., if encrypted net-lists and bitstreams are 

employed).   

Instrumentation can also be inserted after the application has been mapped from HLL 

to HDL.  Instrumentation of VHDL or Verilog provides greater flexibility than 

instrumentation at the HLL level since measurement hardware can be fully customized to 

the application’s needs, rather than depending upon built-in HLL timing functions.  

Adding instrumentation after the HLL-to-HDL mapping guarantees that measurement 

hardware will run in parallel with the hardware being timed, minimizing the effect of 

measurement on the application's performance and behavior.  In contrast, Carte C 

introduces delays into a program when its timing functions are used.  However, using 

instrumentation below the HLL source level does require additional effort to map 

information gathered at the HDL level back to the source level.  This process is 

problematic due to the diversity of mapping schemes and translation techniques 

employed by various high-level synthesis tools and even among different versions of the 

same tool.  For example, if a performance tool relies upon a textual relation between HLL 

variables and HDL signals, then the performance tool would fail if this naming scheme 

was modified in a subsequent release of the high-level synthesis tool.      

While the simplicity of HLL instrumentation is desirable, we choose to instrument at 

the HDL level in order to provide fine-grained performance analysis that would otherwise 
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be impossible for HLLs that lack hardware timing functions.  Even for HLLs that do 

provide hardware timing functions, HDL instrumentation may incur less overhead and 

generally provides greater flexibility than HLL instrumentation.  HDL instrumentation is 

also utilized by FPGA logic analyzers such as Xilinx's ChipScope [Xilinx 2007] or 

Altera's SignalTap [Altera 2008]. 

 

3.1.2 Instrumentation Selection.  Application performance can generally be 

considered in terms of communication and computation.  Many HLLs, such as Impulse C 

and Carte C, have built-in functions for communication; these functions typically have 

associated status signals at the HDL level that can be instrumented to determine usage 

statistics such as transfer rate or idle time.  Instrumenting computation is more complex 

due to the various ways that computation can be mapped to hardware.  However, these 

mappings are constrained by the fact that each high-level synthesis tool must preserve the 

semblance of program order and thus will require some control structure to manage this 

ordering.  For example, Impulse C maps computation onto (possibly multi-level) state 

machines, using the top-level state machine to provide high-level ordering of program 

tasks.  For Carte C, computation is mapped to code blocks that activate each other using 

completion signals.  While these control structures are useful for coarse-grained timing 

information, additional information can be obtained from substates within a single state 

of the top-level state machine or signals within a code block, which are used, for 

example, to control a single loop that has been pipelined.  In Impulse C, this pipeline 

would consist of the idle, initialize, run, and flush substates, where the initialize and 

flush substates indicate pipelining overhead and thus provide indication of lost 

performance.  Additionally, signals such as stall, break, write, and continue can be 

instrumented on a per-pipeline-stage basis to obtain even more details if needed.  For 

Carte C, less detail is available since pipelined loops are not broken up into explicit 

stages and state machines are not exposed for instrumentation.  Nonetheless, intermediate 

signals connecting Carte C's hardware macros inside a code block can be instrumented, 

which provide the necessary information to determine pipelined loop iterations and stalls.  

Overall, it is the control structures employed to maintain program order that provide key 

data for monitoring performance of these applications. 

It may also be beneficial to monitor application data directly (i.e., an HLL variable) if 

such information provides a better understanding of application performance and 

behavior.  For example, a loop control variable may be beneficial to monitor if it 

represents the progress of an algorithm.  Unfortunately, selection of an application 

variable is, in general, not automatable due to the need for high-level, application-specific 

knowledge to understand the variable’s purpose and expected value. 

We chose instrumentation of state machines for Impulse C and completion signals for 

Carte C since they provide timing data similar to software profilers.  Since these control 

structures are needed to preserve the order of execution of the HLL, they should be 

targeted for automatic instrumentation. 

When comparing Impulse C and Carte C, it is evident that instrumentation is the 

primary step of performance analysis that requires change for a new HLL.  The 

remaining steps can remain basically unchanged as long as the designer is focused 

primarily on the timing of HLL source code and that reverse mapping is performed.       

 

3.2 HLL Measurement Challenges 

After instrumentation code has been inserted into the developer’s application, monitored 

values must be recorded (measured) and sent back to the host processor.  Section 3.2.1 

presents standard techniques for measuring application data while Section 3.2.2 discusses 

the challenges of extracting measurement data.   
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3.2.1 Measurement Techniques.  Regardless of the programming language used, the 

two common modes for measuring performance data are profiling and tracing.  Profiling 

records the number of times that an event has occurred, often using simple counters.  To 

conserve the logic resources of an FPGA, it is possible to store a larger number of 

counters in block RAM if it can be guaranteed that only one counter within a block RAM 

will be updated each cycle.  This technique is useful for large state machines, since they 

can only be in one state at any given clock cycle.  Profiling data can be collected either 

when the program is finished (post-mortem) or sampled (collected periodically) during 

execution.  At the cost of communication overhead, sampling can provide snapshots of 

profile data at various stages of execution that would otherwise be lost by a post-mortem 

retrieval of performance data. 

In contrast, tracing records timestamps indicating when individual events occurred 

and, optionally, any data associated with each event.  Due to the potential for generating 

large amounts of data, trace records typically require a buffer for temporary storage (e.g., 

Block RAM) until they can be offloaded to a larger memory, such as the host processor’s 

main memory.  While logic resources in the FPGA can also be used for trace data 

storage, this resource is scarce and of lower density than block RAM, making logic 

resources ill-suited for general trace data.  If available, other memory resources such as 

larger, preferably on-board SRAM or DRAM can be used to store trace data as well 

before it is sent to the host processor.  Tracing does provide a more complete picture of 

application behavior, capturing the sequence and timing of events.  Thus, when needed, 

tracing can be justified despite the often high memory and communication overhead. 

The challenges and techniques associated with measurement for HLLs are similar to 

those of HDLs [Koehler et al. 2008].  Therefore, we incorporate their profiling and 

tracing measurement techniques in our framework. 

 

3.2.2 Measurement Data Extraction.  Measurement data gathered in the FPGA 

typically is transferred to permanent storage for analysis.  This data is commonly first 

buffered in large, lower-latency memories while awaiting transfer.  FPGA logic analyzers 

such as Xilinx's ChipScope or Altera's SignalTap use JTAG [IEEE Computer Society 

2001] as an interface for extracting measured data in order to debug hardware.  However, 

while a JTAG interface is available on many FPGA computing platforms, it is not well 

suited towards data extraction for runtime performance analysis.  JTAG is a low-

bandwidth serial communication interface and, in an HPC environment, the setup of all 

required JTAG cables coupled with the possible need to add additional hardware in order 

to receive the JTAG data is cumbersome and scales poorly.   

As an alternative to JTAG, many HLLs use communication interfaces to transfer data 

between the CPU and FPGA.  In order to extract measurement data, an additional 

communication channel can be added to the application’s source code.  Using these built-

in interfaces is advantageous since no change to the physical system is required to 

support performance analysis.  Thus, we have chosen data extraction using HLL 

communication channels since it is more portable and better suited for typical HPC 

environments.  However, since the HLL communication channel is shared with the 

application, care must be taken not to disturb the application’s original behavior. 

Communication overhead can depend upon several factors.  One major factor 

concerns how much data is generated.  Profile counters and trace buffers should be sized 

according to the number of events expected (with some margin of safety).  Events should 

also be defined frugally to minimize the amount of data recorded while still obtaining the 

information needed to analyze performance.  For example, while it may be ideal to 
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monitor the exact time and number of cycles for all writes, it may be sufficient to know 

the number of writes exceeding a certain number of cycles.    

Another source of overhead comes from the HLL’s communication interface.  The 

bandwidth of streaming and memory-mapped communication interfaces can vary 

significantly between HLLs as well as between FPGA platforms using the same HLL, 

depending upon implementation.  Therefore, it is important for performance analysis 

tools to support as many communication interfaces (e.g., streaming, DMA) as possible to 

provide flexibility and reduce overhead. 

 

3.3 HLL Analysis Challenges 

While analysis of performance data has historically been very difficult to automate, 

automatic analysis can improve developer productivity by quickly locating performance 

bottlenecks.  Automatic analysis of HLL-based applications could focus upon 

recognizing common performance problems such as potentially slow communication 

functions or idle hardware process.  For example, processes replicated to exploit special 

parallelism can be monitored to determine which are idle and for what length of time, 

giving pertinent load-balancing information to the developer.  Processes can also be 

replicated temporally in the form of a pipeline of processes and monitored for 

bottlenecks.  High-level synthesis tools can also pipeline loops inside of a process, either 

automatically (e.g., Carte C) or explicitly via directed pragmas (e.g., Impulse C).  In this 

case, automatic analysis would determine how many cycles in the pipeline were 

unproductive and the cause of these problems (e.g., data not available, flushing of 

pipeline). 

Automatic analysis can also be useful in determining communication characteristics 

that may cause bottlenecks, such as the rate or change in rate of communication.  For 

example, streams that receive communication bursts may require larger buffers, or an 

application may be ill-suited for a specific platform due to a lack of bandwidth.  The 

timing of communication can also be important; shared communication resources such as 

SRAMs often experience contention and should, in general, be monitored.  Monitoring 

these communication characteristics can aid in the design of a network that keeps 

pipelines at peak performance. 

Integration of automatic analysis into our framework will be saved for future work.  

Further study on common reconfigurable computing bottlenecks in applications is needed 

in order to develop a general-purpose automatic analysis framework. 

 

3.4 HLL Visualization Challenges 

One of the strengths of reconfigurable computing is that it allows the programmer to 

implement application-specific hardware.  However, visualizations for high-performance 

computing are typically designed to show computation on general-purpose processors 

and communication on networks that allow all-to-all communication.  Thus, these 

visualizations are ill-suited for HLL-based applications, treating heterogeneous 

components and communication architectures as homogeneous. 

Koehler et al. [2008] presented a mockup visualization for HDL performance 

analysis.  This visualization was organized in the format of the system architecture and 

provides details on CPU usage, interconnect bandwidths, and FPGA state machine 

percentages.  The visualization concepts presented by Koehler can be extended and 

presented in greater detail for HLL-based applications.  HDL code generated by high-

level synthesis tools has a predefined structure, making it more feasible to automatically 

generate meaningful visualizations for HLL-based applications. 
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Visualizations for HLL-based applications can show performance data in the context 

of the application’s architecture, as specified by the programmer.  A potential (mockup) 

visualization is shown in Figure 2.  In this example, profile data representing the time the 

application spent in various states is presented using pie charts.  The communication 

architecture and its associated performance is also shown, connecting the processes 

together with streaming or DMA communication channels (Profile View and Default 
Profile Key in Figure 2).  This type of representation allows all of the application profile 

data to be displayed in a single visualization while capturing the application’s 

architecture. 

 

 
Figure 2. Example HLL performance visualization 

 

Rather than presenting each state used by an HLL for DMA or streaming 

communication, these states can be assigned to one of three categories: transferring, idle, 

or blocking.  For example, blocking can occur if a stream FIFO becomes full and a 

streaming call is made; the function will then block, preventing further execution until an 

element is removed from the FIFO.  However, blocking can also occur when DMA 

communication requires a shared resource that is currently servicing another request.  By 

categorizing any communication channel state into one of three categories, the 

visualization provides better scalability (states are effectively summarized) and is more 

readily understood (all communication channels use the same categories). 

A similar categorization is used for hardware processes (where there can be hundreds 

of states, making categorization essential in order to obtain meaningful visualizations).  

States of a hardware process are assigned to one of three categories: active 

communication, active computation, and a miscellaneous category.  Active 

communication can be defined as time spent for streaming or DMA calls that are non-

blocking.  Active computation can include the use of variables and states corresponding 

to an active pipeline.  In the case where both computation and communication are taking 

place simultaneously in a process (e.g., a Carte C parallel section) time should only be 
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added to the computation category since the overhead of communication is being hidden.  

The miscellaneous category acts as a catch-all for initialization and overhead such as 

pipeline flushing.  However, the definition of overhead can vary depending on the 

application and programmer. 

A further complication exists due to the lack of a one-to-one mapping between HLL 

code and hardware states.  In order to help the programmer link HLL source code to the 

above categories, each line in the source code can be color-coded to match the 

corresponding category's color (Source View in Figure 2).  Note that some lines of code 

may receive no color at all if these lines of code do not require any execution time in 

hardware (e.g.,  defining a variable creates a signal in the HDL but does not consume 

cycles).  In the case where a single line of code contains multiple states, commented lines 

of code can be automatically added beneath that line of code to allow the programmer to 

make a more fine-grained selection between states that could fall into different 

categories.  For example, the four states of an impulse C pipeline (run, flush, initialize, 

and idle) can be added as comments below a CO PIPELINE pragma.  The run state 

would be considered active computation whereas the initialize, flush and idle states 

would fall under the miscellaneous category.  If multiple lines of code are grouped into a 

single state, then those lines of code can only be color-coded as a whole.   

While presenting a breakdown of time spent in processes can provide a good 

indication of application performance, pinpointing the cause of bottlenecks may require 

more detailed trace-based data.  Since local storage for trace data is likely to be limited, 

and since communication channels are likely to be shared with the application, it is 

important to define efficient triggers to minimize the trace data generated.  Thresholds for 

trace triggers can be set after examining the Profile View for bottlenecks.  As an 

example, the programmer may want to trigger a trace event when a stream buffer 

becomes full (Timeline View in Figure 2) or when a pipeline is stalled for 100 cycles.  

The programmer can iteratively refine thresholds that control trace-event triggers, if 

necessary, to reduce bandwidth needed for performance data. 

In order to provide a scalable visualization for user-specified trace data, trace events 

can be displayed in a single timeline view for the entire application.  This one-

dimensional view will allow the programmer to quickly scan a timeline and find trace 

events that indicate a potential bottleneck.  In contrast, traditional performance analysis 

visualizations such as Jumpshot [Zaki 1999] would dedicate a row to each parallel node 

(in this case, each process shown in the Profile View of Figure 2 since they are all 

operating in parallel).  This two-dimensional view forces the programmer to scan a 

potentially large number of rows on one axis over a large period of time on the second 

axis in order to find a bottleneck. 

                 

4. HLL PERFORMANCE ANALYSIS FRAMEWORK 

A performance analysis tool for Impulse C was developed in order to illustrate techniques 

that address many of the major challenges described in Section 3.  Impulse C was 

selected due to its support for a variety of platforms.  In order to improve the usability of 

the tool first described in Curreri et al. [2008], two main issues needed to be addressed: 

automation of instrumentation and integration with an existing software performance 

analysis tool.  In Section 4.1, the methods needed to automate instrumentation are 

discussed.  Section 4.2 then covers the steps taken to add performance analysis for 

Impulse-C to an existing software performance analysis tool in order to create a unified, 

dual-paradigm performance analysis tool. 
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4.1 HLL Instrumentation Automation 

Section 3.1.1 concluded that while instrumentation could be inserted at a number of 

levels ranging from HLL source code to binary, instrumenting at the HDL level provided 

the best tradeoff between flexibility and portability.  Additionally, Section 3.2.1 

concluded that extracting measurement data using HLL communication channels offers 

the greatest portability and is often better suited to an HPC environment than JTAG or 

other communication interfaces.  Thus, instrumentation must be performed in two stages.  

Section 4.1.1 describes automated HLL instrumentation that inserts communication 

channels for measured performance data.  Section 4.1.2 then presents an automated tool 

for HDL instrumentation in order to record and store application behavior at runtime. 

 

4.1.1 Automated C Source Instrumentation. In order to communicate measured 

performance data from hardware back to software, our framework first instruments 

Impulse C source code.  Before instrumentation is added, the Impulse C application 

consists of software processes running on the host processors, hardware processes 

running on the FPGAs and communication channels to connect them (shown with white 

boxes and arrows in Figure 3 on the left-hand side).  Automatic instrumentation modifies 

this structure by inserting separate definitions for a hardware process, a software process, 

and communication channels (shown with dark boxes and arrows in Figure 3 on the right-

hand side).  The software process can be declared as an “extern” function to be added 

later.  Since the hardware process will be overwritten during HDL instrumentation, a 

simple loopback process suffices, depicted by the cross-hatched arrow in Figure 3. 

   

 
Figure 3. HLL communication loopback is added.  The loopback channel’s  

HDL is replaced by the HMM, which monitors the application’s signals. 

 

Figure 4 provides a flowchart illustrating the typical design flow (lightly shaded steps) 

as well as the changes made to that flow (darkly shaded steps) when instrumenting code 

for performance analysis.  Instrumentation of Impulse C source code is handled 

automatically by the HLL Instrumenter, as shown in step two of Figure 4; for Impulse C, 

the HLL Instrumenter consists of a Perl script driven by a Java GUI frontend.  The HLL 

Instrumenter modifies only the Impulse C hardware file; the software file remains 

unchanged.  Since Impulse C hardware files must include a configure function to setup 

Impulse C processes and communication channels, the HLL Instrumenter searches for the 

definition of the configure function, adding the loopback hardware process code and 

"extern" software process declaration at the beginning of this function.  The configure 
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function will also be modified so that it declares the new software and hardware process 

and provides the necessary communication channels between them.      

 

4.1.2 Automated HDL Instrumentation.  Once the application is mapped to HDL code 

(step 3 in Figure 4), the HDL Instrumenter is employed, providing the application 

developer the choice between default and custom instrumentation (step 4 in Figure 4).  

Since signals that correspond to state machines in Impulse C are prime candidates for 

instrumentation, the default option simply monitors all state machines.  Impulse C relies 

upon state machines in the generated HDL code to preserve the structure of the original C 

code.  The state machine structure is primarily determined by statements that represent a 

branch in execution, such as if, while, for, etc.  Impulse C handles C statements within a 

branch by placing them either in a single state or in multiple sequential states depending 

upon their aggregated delay.  However, a loop that is pipelined is always represented as 

one state within this state machine.  Instrumenting state machines aids the user in better 

understanding where time is being spent inside their hardware processes. 

 

 

 
Figure 4. Design flow for Impulse C performance analysis 

 

Custom instrumentation allows the application developer to instrument Impulse C 

variables.  Due to the fact that Impulse C variable names are used within the names of 

corresponding HDL signals, the HDL signals can often be identified easily by the 

programmer.  Variables can be instrumented by counting each time the variable is above 

or below some threshold, although more advanced instrumentation, such as histograms 

can be constructed if desired.  Currently, custom instrumentation typically involves 

specifying thresholds via concurrent conditional VHDL statements (i.e., VHDL 

"when/else" statements).  These conditional statements convert the instrumented signal 

value from the hardware process to a one or zero value that will then control a profile 

counter or trace buffer.  However, this process could be simplified (e.g., histogram 

generation only requires a value range and bin size to be specified by the user). 
Once the signals to be instrumented have been selected, they are routed into the 

hardware loopback process (thin black arrow in Figure 3).  The loopback process is then 

replaced by the Hardware Measurement Module (HMM) shown in the lower dark box in 

Figure 3.  The HMM contains customized hardware with profiling and tracing 

capabilities (see Figure 5) and was originally designed for HDL performance analysis 

[Koehler et al. 2008].  The HMM allows HDL signals to be used in arbitrary expressions 

that define events such as “buffer is full” or “component is idle.”  These events are used 

to trigger custom profile counters or trace buffers depending upon the type and level of 

detail of performance data required.  A cycle counter is also provided for synchronization 
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and timing information.  The module control provides the interface to software for 

transferring data back to the host processor at runtime as well as clearing or stopping the 

module during execution. 
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Figure 5. Hardware Measurement Module (HMM) 

 

Once instrumentation is complete, the HDL is ready to be converted to a bitstream 

(step 5 in Figure 4) and programmed into the FPGA.  In general, the techniques used in 

section 4.1 and Figure 3 should be valid for any HLL that employs communication 

channels and generates unencrypted and non-obfuscated HDL.   

 

4.2 Performance Analysis Tool Integration 

In order to provide the programmer with traditional microprocessor performance data (as 

well as a GUI frontend for viewing performance data) with minimal design effort, our 

Impulse C hardware performance analysis framework was integrated into an existing 

performance analysis tool, Parallel Performance Wizard (PPW) [Su et al. 2008], which is 

designed to provide performance analysis for several parallel programming languages 

and models including UPC (Unified Parallel C) and MPI (Message Passing Interface).  

Section 4.2.1 explains how PPW+RC (i.e., PPW augmented with our framework for RC 

performance analysis) extracts performance data from the HMM.  Section 4.2.2 then 

describes how measurement data for Impulse C hardware processes are visualized by 

PPW+RC. 

 

4.2.1 Performance Data Extraction.  The software process that extracts measurement 

data from the HMM was originally inserted into the application software.  For Impulse C, 

the measurement extraction process now resides in the PPW+RC backend.  For other 

HLLs, nameshifting could be used to intercept function calls for measurement data 

extraction.  Integrating the measurement extraction process with PPW+RC allows 

PPW+RC to automatically gather performance data from Impulse C hardware processes 

as well as to convert received data to match the format of and mesh well with data being 

collected on the microprocessor (e.g., all times measured on the FPGA must be converted 

from cycle counts to nanoseconds in order to allow easy comparison of the time spent in 

hardware and software processes). Once execution of the application is finished, 

performance data from both hardware and software is stored in a single file for review. 

 

4.2.2 Performance Data Visualization.  The PPW+RC frontend is a Java GUI that is 

used to visualize performance data recorded and stored by the PPW+RC backend.  
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Assuming the programmer has selected the default instrumentation mode (see Section 

4.1.2), the performance data file will contain information on all state machines (which are 

employed by the hardware processes); this information can easily be viewed in an 

expandable table or via pie charts or other graphical views.  State machines associated 

with pipelines will also be displayed if pipelining was used.  Figure 6 shows the 

PPW+RC frontend displaying timing for software processes, hardware processes, and 

pipelines for a DES encryption application.  PPW+RC can also compare multiple 

executions of an application to allow careful analysis of the benefits and effects of 

various modifications and optimizations, or possibly just to study non-deterministic 

behavior between executions of the same version of the application. 

 

 
Figure 6. PPW+RC profile tree table visualization for the DES application (Impulse C) 

 

Currently, the HDL names for signals and states are presented in visualizations.  

Techniques for fully automating the reverse-mapping of HDL code states to HLL source 

lines of code are complex and may not work for all cases.  One possible technique is to 

perform a graph analysis comparison on the hardware control-flow graph (e.g., state 

machine graph) and the control-flow graph produced by a software compiler (e.g., one 

obtained by compiling with gcc after removing non-ANSI-C-compliant HLL statements).  

This could allow loops or branches in the state machine graph to be matched with loop or 

branch source code.  Another reverse-mapping technique involves matching HLL-

specific code statements with corresponding hardware.  For example, HLL pipelined 

loops can be matched with pipeline hardware.  Additional techniques such as variable 

name-matching (e.g., via matching similar names in both the HLL source code and the 

generated HDL in Impulse C to match variables to signals) can aid in matching states to 

source code line numbers. 

Ideally, HLL tool vendors would provide support for reverse mapping, greatly 

simplifying the above process.  For example, the data-flow graph file generated by Carte 

C links hardware code blocks to source lines of code, allowing our tool to perform 

automatic reverse mapping.    For Impulse C, reverse mapping is currently tool assisted.  

Impulse Accelerated Technologies, creators of Impulse C, has expressed interest in 

adding comments to their HDL output to make the reverse-mapping process fully 
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automated [Pellerin 2007].  Reverse-mapping would allow PPW+RC to provide source 

line correlation for both hardware and software processes, allowing the application 

developer to easily locate the line(s) of code associated with measured performance data.  

With fully automated reverse-mapping support, the unfamiliar concept of hardware states 

can be abstracted away allowing the software application developer to see similar 

performance analysis visualizations for both software and hardware. 

 

5. MOLECULAR-DYNAMICS CASE STUDY 

To demonstrate the benefits of HLL performance analysis and explore its associated 

overhead, we analyze a molecular-dynamics (MD) kernel written in Impulse C.  MD 

simulates interactions between atoms and molecules over discrete time intervals.  MD 

simulations take into account standard physics, Van Der Walls forces, and other 

interactions to calculate the movement of molecules over time.  Alam et al. [2006] 

provides a more in-depth overview of MD simulations.  Our simulation keeps track of 

16,384 molecules, each of which uses 36 bytes (4 bytes to store its position, velocity and 

acceleration in each of the X, Y and Z directions).  Our focus is on the kernel of the MD 

application that computes distances between atoms and molecules.    

We obtained serial MD code optimized for traditional microprocessors from Oak 

Ridge National Lab (ORNL).  We redesigned the MD code in Impulse C using an 

XD1000 [Altera 2007] as the target platform.  The XD1000 is a reconfigurable system 

from Xtreme Data Inc. containing a dual-processor motherboard with an Altera Stratix-II 

EP2S180 FPGA on a module in one of the two Opteron sockets.  The HyperTransport 

interconnect provides a sustained bandwidth of about 500 MB/s between the FPGA and 

host processor with Impulse-C.  Using this platform, a speedup of 6.2 times was obtained 

versus the serial baseline running on the 2.2 GHz Opteron processor in the same XD1000 

server.  Using our prototype performance analysis tool, we analyzed the performance of 

our MD code to determine if further speedup could be obtained.  

There are three hardware processes defined in the MD hardware subroutine (Figure 

7).  The two processes named Collector and Distributor are used to transfer data to and 

from SRAM, respectively, in order to provide a stream of data running through the third 

process, Accelerator.  Accelerator calculates the position values of molecules and is 

pipelined using Impulse C pragmas.  The process is then replicated 16 times, so that 

FPGA resources are nearly exhausted, so as to increase performance. 

 

 

Figure 7. MD hardware subroutine 

 

We instrumented and analyzed the MD kernel, with a focus on understanding the 

behavior of the state machine inside of each Accelerator process (Figure 8).  The 
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number of cycles spent in each state was recorded by the HMM and sent back to the host 

processor post-mortem.  Upon examination, three groups of states in the main loop of the 

Accelerator process were of particular interest.  The first group keeps track of the total 

number of cycles used by the input stream (arrows pointing to Accelerator in Figure 7) 

of the Accelerator process.  The second group of states keeps track of the total number 

of cycles used by the pipeline inside of the Accelerator process.  Finally, the third group 

of states keeps track of the total number of cycles used by the output stream (arrows 

pointing to the Collector in Figure 7) in the Accelerator process.  Tracing was used to 

find the start and stop times of the FPGA and all Accelerator processes.  The cycle 

counts from these three groups were then converted into a percentage of the Accelerator 
runtime (Figure 8) by dividing by the total number of cycles used by the MD hardware 

subroutine (i.e. FPGA runtime).  Since the state groups vary by less than one-third of a 

percent when compared across all 16 Accelerators, we only present data from one of the 

Accelerator processes. 

 

void Accelerator (co_stream in, co_stream out)
{
�

for(t=0;t<16384;t++){
co_stream_read(in, &x, #);
co_stream_read(in, &y, #);
co_stream_read(in, &z, #);
�

for(i=0;i<1024;i++)
{//Perform MD calculations

#pragma CO PIPELINE
�

}
co_stream_write(out, &x, #);
co_stream_write(out, &y, #);
co_stream_write(out, &z, #);

}
�

}
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47.98%

Percent 
Runtime

(not shown)

States
b4s1
b4s2
b4s3
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b6s1
b6s2

b5s0

 

Figure 8. Accelerator process source with profiling percentages 

  

Our performance analysis tool successfully identified a bottleneck in the MD 

hardware subroutine.  In the Accelerator processes, almost half of the execution time 

was used by the output stream to send data to the Collector process (state b6s2 in Figures 

8 and 9).  An optimal communication network would allow the pipeline performing MD 

operations to execute for nearly 100% of the FPGA runtime minimizing the number of 

cycles spent blocking for a transfer to complete.  This trait is an indicator that the stream 

buffers which hold 32-bit integers are becoming full and causing the pipeline to stall.  

Increasing the buffer size of the streams by 32 times only required a change of one 

constant in the program.  This increase changes the stream buffer size to 4096 bytes for 

all 16 input and output streams of the Accelerator processes.  Since the Impulse C 

compiler can only increase the stream buffer size by a power of 2, a buffer size of 4096 

bytes is the maximum size that will pass place and route.  Figure 10 shows the tradeoff 

between application runtime and various stream buffer sizes.  The larger stream buffers 
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reduced the number of idle cycles generated by the output stream (top bar in Figure 10) 

while the pipeline’s runtime (bottom bar in Figure 10) remained the same thus reducing 

the MD kernel’s runtime.  This simple change increased the speedup of the application 

from 6.2 to 7.8 versus the serial baseline running on the 2.2 GHz Opteron processor. 

 

 
Figure 9.  PPW+RC pie chart visualization of the states in Accelerator process.  

State b5s0 correspond to the pipeline and state b6s2 corresponds to the output stream..    

 

 
Figure 10. PPW+RC visualization depicting MD kernel performance improvement due to 

increased stream buffer size (128 to 4096 elements).  State b5s0 corresponds to the 

pipeline in Accelerator while states b6s1 and b6s2 correspond to the output stream. 

 

Although per-loop analysis is currently not supported by automatic instrumentation 

and visualization, more detail analysis of the blocking stream calls can be performed by 

examining the stream transfer time for each loop iteration.  Since these times are so 

small, they will be presented in cycles.  The outer loop of the Accelerator process 

(Figure 8) is performed once per molecule (16384 times).  Only one of the three output 

transfer states in the loop generates idle cycles (Figure 10); thus only that transfer state 

needs to be monitored.  After each loop iteration, the number of cycles required by the 

output stream to transfer data is counted.  The cycle count range is segmented into sub-

ranges or bins, each 256 cycles wide.  A counter is used for each range to keep track of 

the number of times the transfer count falls in that range.  Figure 11 shows the stream 

transfer cycle count segmented into bins.  Per-loop analysis of the output stream provides 
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additional insight into the bottleneck and the effect of the buffer size on the loop iteration 

cycle count.  As the buffer size increases, longer cycle counts become less frequent and 

cluster into different regions.  The region corresponding to a one-cycle stream transfer 

represents the case where no idle cycles are generated.  Even with a stream buffer size of 

4096 bytes, less than 30% of the stream transfers are ideal.      

 

Output Stream Overhead

12-256

1025-1280

1537-1792

2305-2560

2561-2816

2817-3072

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

128 256 512 1024 2048 4096

Stream buffer size (bytes)

L
o

o
p

 i
te

ra
ti

o
n

s

2817-3072

2561-2816

2305-2560

2049-2304

1793-2048

1537-1792

1281-1536

1025-1280

513-1024

257-512

2-256

1

Stream transfer cycles

 
Figure 11. Output stream overhead for the Accelerator process. 

 

The overhead caused by instrumentation and measurement of the Accelerator 
process with a stream buffer size of 4096 bytes on the XD1000 is shown in Table 1.  The 

instrumented version in Table 1 includes all additional hardware for performance analysis 

(i.e., the HMM and additions to the Impulse C communication wrapper).  Instrumentation 

and measurement hardware increased total FPGA logic utilization by 3.90%.  Profile 

counters and timers used an additional 3.70% of the FPGA’s logic registers, whereas 

tracing buffers required 1.27% additional block memory implementation bits.  An 

additional 2.73% of combinational Adaptive Look-Up Tables (ALUTs) were also needed.  

For routing, instrumentation increased block interconnect usage by 2.56%.  Finally, the 

FPGA experienced a slight frequency reduction of 2.64% due to instrumentation.  

Overall, the overhead for performance analysis was found to be quite modest. 

 

Table 1. Performance analysis overhead 

EP2S180 Original Instrumented Overhead 

Logic used 

(143520) 

126252 

(87.97%) 

131851 

(91.87%) 

+5599 

(+3.90%) 

Comb. ALUT 

(143520) 

100344 

(69.92%) 

104262 

(72.65%) 

+3918 

(+2.73%) 

Registers 

(143520) 

104882 

(73.08%) 

110188 

(76.78%) 

+5306 

(+3.70%) 

Block memory 

(9383040 bits) 

3437568 

(36.64%) 

3557376 

(37.91%) 

+119808 

(+1.27%) 

Block Interconnect 

(536440) 

288877 

(53.85%) 

300987 

(56.11%) 

+12110 

(+2.56%) 

Frequency (MHz) 80.57 78.44 

 

-2.13 

(-2.64%) 
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6. CONCLUSIONS 

High-level languages have the potential to make reconfigurable computing more 

productive and easier to use for application developers.  While this higher-abstraction 

level allows the high-level synthesis tools to implement many of the design details, this 

higher-abstraction can also make it easier for the developer to introduce bottlenecks into 

their application.  Performance analysis tools allow the application developer to 

understand where time is spent in their application so that the best strategy for application 

optimization can be taken.  

Many challenges for performance analysis of HLL-based FPGA applications have 

been identified in this paper.  A number of instrumentation levels and associated 

challenges were discussed; in the end, instrumentation at the HDL level was chosen for 

its flexibility and portability between high-level synthesis tools and platforms.  In 

addition, many different HLL structures have the potential to be instrumented once 

mapped to an HDL.  We discussed instrumenting control hardware employed to maintain 

program order, pipelines, and communication channels.  These structures are amenable to 

automated instrumentation and can provide performance data relevant to a wide range of 

applications.  Communication of measured data via JTAG and HLL channels at runtime 

was also discussed.  HLL communication channels were selected due to their portability 

between platforms and minimal external hardware requirements.  We also commented on 

the use of measured performance data for automatic bottleneck detection at the HLL 

source-code level to increase developer productivity.  An HLL-specific visualization 

displaying performance information in the context of the application's architecture was 

presented, providing the programmer with an overview of application performance.  The 

visualization also displayed bottleneck-specific tracing. 

An automated framework for performance analysis of Impulse C was also presented 

that implements many of the techniques needed to address the challenges above.  The 

framework incorporates automatic instrumentation of Impulse C hardware processes.  

State machines in each process can be instrumented to provide an execution time 

breakdown.  Timing data gathered from these state machines are collected and visualized 

using a performance analysis tool, Parallel Performance Wizard.  Since PPW was 

originally designed for performance analysis of parallel computing languages (e.g., MPI 

and UPC), our extension to PPW allows it to provide performance analysis of both 

hardware and software simultaneously.   

A case study was presented to demonstrate the utility of profiling and tracing 

application behavior in hardware, allowing the developer to gain an understanding of 

where time was spent on the reconfigurable processor.  We also observed low overhead 

(in terms of FPGA resources) when adding instrumentation and measurement hardware, 

demonstrating the ability to analyze applications that use a large portion of the FPGA.  In 

addition, we noted that a slight reduction in frequency (less than 3%) resulted from 

instrumentation.  Since data was gathered after execution completed, there was no 

communication overhead. 

Although the mapping between HDL and HLL code is not currently presented to the 

programmer, our future plans are to link all HDL-based data back to the HLL source, 

permitting the programmer to remain fully unaware of the HDL generated by a high-level 

synthesis tool.  Additional future work includes developing more advanced visualizations 

for HLL-based applications and expanding our tool to support performance analysis for 

Carte C. 
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