
25

A Simulation Framework for Rapid Analysis
of Reconfigurable Computing Systems

CASEY REARDON, ERIC GROBELNY, ALAN D. GEORGE, and GONGYU WANG
NSF Center for High-Performance Reconfigurable Computing (CHREC),
University of Florida

Reconfigurable computing (RC) is rapidly emerging as a promising technology for the future of
high-performance and embedded computing, enabling systems with the computational density
and power of custom-logic hardware and the versatility of software-driven hardware in an optimal
mix. Novel methods for rapid virtual prototyping, performance prediction, and evaluation are of
critical importance in the engineering of complex reconfigurable systems and applications. These
techniques can yield insightful tradeoff analyses while saving valuable time and resources for re-
searchers and engineers alike. The research described herein provides a methodology for mapping
arbitrary applications to targeted reconfigurable platforms in a simulation environment called
RCSE. By splitting the process into two domains, the application and simulation domains, char-
acterization of each element can occur independently and in parallel, leading to fast and accurate
performance prediction results for large and complex systems. This article presents the design of
a novel framework for system-level simulative performance prediction of RC systems and appli-
cations. The article also presents a set of case studies analyzing two applications, Hyperspectral
Imaging (HSI) and Molecular Dynamics (MD), across three disparate RC platforms within the
simulation framework. The validation results using each of these applications and systems show
that our framework can quickly obtain performance prediction results with reasonable accuracy
on a variety of platforms. Finally, a set of simulative case studies are presented to illustrate the
various capabilities of the framework to quickly obtain a wide range of performance prediction
results and power consumption estimates.
Categories and Subject Descriptors: C.4 [Performance of Systems]: Modeling Techniques; I.6.0
[Simulation and Modeling]: General
General Terms: Performance, Experimentation, Verification
Additional Key Words and Phrases: Reconfigurable computing, discrete-event simulation, perfor-
mance prediction
ACM Reference Format:
Reardon, C., Grobelny, E., George, A. D., and Wang, G. 2010. A simulation framework for rapid
analysis of reconfigurable computing systems. ACM Trans. Reconfig. Techn. Syst. 3, 4, Article 25
(November 2010), 29 pages. DOI: 10.1145/1862648.1862655.
http://doi.acm.org/10.1145/1862648.1862655.

This work was supported in part by the I/UCRC Program of the National Science Foundation under
Grant No. EEC-0642422.
Authors’ address: Department of Electrical and Computer Engineering, University of Florida, PO
Box 116200, 327 Larsen Hall, Gainesville, FL 32611-6200, Contact email: reardon@hcs.ufl.edu.
Permission to make digital or hard copies part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
c© 2010 ACM 1936-7406/2010/11-ART25 $10.00 DOI: 10.1145/1862648.1862655.

http://doi.acm.org/10.1145/1862648.1862655.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 4, Article 25, Pub. date: November 2010.

25: 2 · C. Reardon et al.

1. INTRODUCTION

As computing applications and platforms continue to increase in size and com-
plexity, two reformations are taking place. The first is an architectural ref-
ormation, where improvements in the computational capabilities of devices is
achieved through explicit parallelism, since it has become increasingly difficult
to provide comparable performance increases through higher clock speeds and
implicit instruction-level parallelism alone. In response, an application refor-
mation is underway as well, requiring explicit parallelism in applications to
exploit the parallelism of new hardware. Under these two reformations, Re-
configurable computing (RC) is becoming recognized as an increasingly impor-
tant and viable paradigm for high-performance computing in times where the
size and power consumption of clusters and traditional supercomputers have
grown to alarming levels. With RC, the performance potential of underlying
hardware resources in a system can be fully realized in a highly adaptive man-
ner, extending the fields of large-scale and embedded high-performance com-
puting. Hybrid systems of microprocessors and FPGAs can leverage system-
level concepts from conventional high-performance computing while accommo-
dating hardware reconfigurability. For these reasons, recent trends and re-
search suggest RC systems will become common in fields such as computer
vision [Bondalapati and Prasanna 2002], digital signal processing [Tessier and
Burleson 2001], embedded computing [Garcia et al. 2006], and many others.

Application development typically follows an iterative four-stage process
known as the FDTE model (Figure 1), whose name comes from the four stages
of development: Formulation, Design, Translation, and Execution. The initial
stage in the FDTE development model is formulation, where strategic plan-
ning and exploration is performed before coding a specific implementation.
Early exploration during formulation can help ensure that the proposed imple-
mentation will meet project specifications before intensive coding has begun.
To provide these services, methods for performance prediction and analysis of
abstract designs are needed. Typically, this stage is often bypassed or per-
formed haphazardly using quick and informal techniques, which can have dire
consequences later in the development process. In the design stage, code is
developed to implement the specific solution arrived at during formulation.
The translation stage is then responsible for converting the design code into
an executable format that can be fed to the target platform. In the execution
stage, the program is executed, and runtime data is gathered to aid in the de-
bugging, verification, and optimization processes. The data acquired during
execution is typically fed back to the design stage, where changes to the code
are made to address the issues observed during execution. Thus, the developer
must continuously iterate through these three stages until the specifications of
the project are met, which can be a costly process.

With overall development times and costs expanding, effective formula-
tion techniques becomes increasingly critical to ensure timely development.
Without effective formulation techniques and tools, costly iterations through
the design, translation and execution (DTE) stages are performed, many of
which could have been avoided through careful planning and analysis. The

ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 4, Article 25, Pub. date: November 2010.

Rapid Analysis of RC Systems · 25: 3

Fig. 1. FDTE model of development.

introduction of reconfigurable devices can further increase the design complex-
ity of such systems as well. In addition to traditional design-space parameters
such as processor speed, memory subsystem performance, and network inter-
connect, RC systems must also consider FPGA resources, IO subsystem per-
formance, and reconfiguration capabilities. The large design space increases
the need to conduct algorithm and architecture explorations early in the devel-
opment process, that is, during formulation, to potentially save considerable
amounts of development time. Computer simulation is a popular technique
for performance prediction of complex systems when the application or plat-
form are not readily available to the designer, whether due to cost or time con-
straints. For all of these reasons, a fast and efficient simulation environment is
needed in order to tackle the expanded design space of RC while supporting the
analysis of large-scale systems, otherwise prohibitively long simulation times
will dissuade users from performing this important task.

In this article, we present a framework for simulating applications on RC
systems called the RC Simulation Environment (RCSE), which focuses on
balancing simulation speed and fidelity. Built atop the Fast and Accurate Sim-
ulation Environment (FASE) methodology [Grobelny et al. 2007], RCSE em-
ploys a process where reconfigurable computing applications are described by
a sequence of high-level events, forming a script which stimulates discrete-
event system models. Using a high-level of abstraction, this framework can
rapidly provide a broad range of predictions for a given reconfigurable applica-
tion and system when the performance of the application is data-independent.
Furthermore, simulation results can be obtained for very large-scale and com-
plex RC systems without requiring an inordinate amount of time or resources.
These results can be obtained efficiently during the formulation stage, allowing
designers to make informed strategic decisions early in the development
process.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 4, Article 25, Pub. date: November 2010.

25: 4 · C. Reardon et al.

The remainder of this article is organized as follows. In Section 2, an
overview of related research for performance prediction and simulation of re-
configurable computing systems is provided. Next, a detailed description of the
RCSE framework is presented in Section 3. Section 4 provides a walkthrough
with RCSE, including validation results to verify the accuracy of our approach.
Results from a selected set of application case studies are provided in Section 5
demonstrating the effectiveness and usefulness of this framework. Finally, con-
clusions and future work are summarized in Section 6.

2. BACKGROUND AND RELATED RESEARCH

Typically, acquiring and building large-scale systems to determine how an
application performs is simply not a viable option, due to the enormous costs
associated with this approach. Therefore, modeling and simulation have been
extensively employed to gain insight into the expected performance of these
complex systems and applications. Classically, there are two types of computer
simulation environments: execution-driven and trace-driven. Execution-
driven simulations center around the execution of the program’s code on
simulation models designed to achieve near clock-cycle accuracy, such as the
popular SimpleScalar toolset [Burger and Austin 1997]. While execution-
driven simulation can provide very accurate and useful results, these simula-
tions are often too slow and impractical when considering large-scale systems
and applications. This problem becomes compounded when researchers need
results from a series of simulations to complete their analysis. Therefore,
methods for speeding up these simulations are desired. One approach to ac-
celerate execution-driven simulations is to apply statistical sampling to select
a representative subset of the benchmark application for execution-driven
simulation [Wunderlich et al. 2006; Hamerly et al. 2005; Lafage and Seznec
2001]. This technique reduces simulation times by executing only a portion of
the benchmark under consideration, which is then fed into a detailed processor
simulator. One drawback of this approach is the need for detailed warming,
where sections of code are executed in detail simply to estimate the state of
the system at the beginning of a block of sampled code. Furthermore, it is
unclear how such an approach would be applied to parallel systems, where the
communication between processors could be omitted during sampling.

Trace-driven simulation offers another alternative by using a method of ab-
straction to formulate a representation of the application used as input into the
simulation models. While using an abstract representation makes it impossible
to replicate the exact behavior of the entire system, relatively accurate results
can be gathered in significantly less time. The exact speed and accuracy of
a trace-based simulator is dependant on the fidelity of the simulation models
and the method of abstraction used for gathering the trace data. Varying ap-
proaches have been proposed for achieving accurate simulation results for high-
performance computing systems without prohibitively long simulations [Uhlig
and Mudge 1997; Snavely et al. 2002; Pllana and Fahringer 2005]. Unfortu-
nately, none of the simulation projects listed thus far support the simulation of
RC-based applications and systems.
ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 4, Article 25, Pub. date: November 2010.

Rapid Analysis of RC Systems · 25: 5

While many research projects have investigated the domain of traditional
computing simulation, comparatively few efforts have focused towards system-
level performance prediction of RC systems. The RC Amenability Test (RAT)
defines a set of analytic equations for predicting the potential speedup of a
particular FPGA core design focusing on accurate throughput analysis, though
the framework considers numerical precision and resource utilization as well
[Holland et al. 2007]. A set of application-specific analytical equations for per-
formance prediction of iterative synchronous programs running on heteroge-
neous clusters with RC devices have been proposed [Smith and Peterson 2002].
Results from case studies show these equations to be reasonably accurate for
the applications under study, but the accuracy of these results diminishes as
the cluster size increases. While the analytical models place great emphasis
on load balancing, it can be hard to predict the precise effects of resource con-
tention in complex systems with such models. Another set of analytical equa-
tions have been proposed to find potential performance bottlenecks imposed by
the memory transfer system with FPGA applications [Steffen 2007]. These an-
alytic models abstractly characterize algorithms based on their data-movement
patterns and computational density, then identify the memory layer that will
act as the largest bottleneck for the algorithm. Thus, the analytical models
are limited to determining the best performance the hardware architecture is
capable of supporting, as opposed to predicting the actual performance the ar-
chitecture is expected to produce. Though analytic models are often valuable
for providing useful data very quickly, their effectiveness is limited for perfor-
mance prediction of large and complex RC systems. Therefore, our methodology
focuses on using simulative techniques to provide performance prediction data.

Other projects have focused on using simulation for performance predic-
tion of RC systems. One example is the Hybrid System Architecture Model
(HySAM) and DRIVE simulation framework [Bondalapati 2001]. Within
HySAM, architectures are defined by a set of attributes describing the capabil-
ities of the system, while applications are partitioned into a series of tasks split
between the CPU and RC device that are fed to DRIVE for visualization. A
separate project created a co-simulation environment which integrated two ex-
isting cycle-accurate simulators [Enzler et al. 2005]. The authors employed the
well-known SimpleScalar tool suite for processor emulation, while incorporat-
ing the ModelSim VHDL simulator for modeling the reconfigurable device. The
reconfigurable device simulator assumes a specified FPGA design, targeted for
the embedded domain. Another system-level RC simulator was built on top
of the Simics platform, using the GEMS memory extension [Fu and Compton
2006]. The Simics-based simulator employs a cycle-accurate processor and
memory simulator, spending significant time and effort capturing the precise
pattern of memory accesses when RC device transfers are involved. Kernels
executed by the reconfigurable device are simply performed by a software
equivalent in the simulator to ensure functional correctness, while the hard-
ware execution time is provided separately to the simulator so as to correctly
advance simulation time. Results have shown both of the latter two simulation
environments to be accurate in the case studies presented, which one would ex-
pect when using cycle-accurate models. However, in both cases, the results are

ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 4, Article 25, Pub. date: November 2010.

25: 6 · C. Reardon et al.

only reported for machines that contain a single processor chip and RC device.
Also, no information is given describing the time and accuracy associated with
each simulator when the system size is scaled to a large number of nodes. Since
the RCSE framework presented in this article aims to provide timely prediction
results for large-scale systems during formulation, a trace-driven approach
is used.

A hierarchical model-based framework for FPGA development is presented
by Mohanty and Prasanna [2007] intended to support evaluation of design al-
ternatives early in the design process. The framework integrates a high-level
performance estimator (HiPerE) and a design space exploration tool (DESERT)
for efficient evaluation of candidate mappings against user-specified perfor-
mance requirements onto architectures that can be described using the Generic
Model (GenM) for System-on-Chip (SoC) architectures [Mohanty et al. 2002].
DESERT is used to prune the design space to eliminate any candidate de-
sign that fails to meet user-specified constraints. HiPerE is then employed
to quickly evaluate the remaining designs using trace-based simulations, in
terms of energy and latency. Both DESERT and HiPerE are integrated into the
MILAN integrated simulation environment for embedded system design
[Bakshi et al. 2001]. HiPerE is only designed to evaluate architectures that
can be described by GenM, which is designed for SoC architectures. In con-
trast, RCSE supports analysis of any architecture that can be constructed
using available component models and/or component models developed by
the user.

Complimentary to performance prediction, a healthy amount of research ex-
ists in the field of power consumption modeling and prediction for hardware
devices, including FPGAs. In addition to their potential for increasing the per-
formance of certain applications, reconfigurable devices also offer the advan-
tage of significant power savings over many current processors. Consequently,
the ability to predict the power consumption of reconfigurable devices is im-
portant in areas where low-power solutions are critical to success, as in many
embedded computing applications. Multiple projects have incorporated power
estimation techniques into existing CAD tools for evaluating an FPGA design
[Poon et al. 2005; Anderson and Najim 2004]. These tools apply information
gathered during synthesis of the FPGA design to accurately estimate the power
consumption of the circuit. Similarly, the power evaluation framework from Li
et al. [2003] is designed for evaluating the power efficiency of the FPGA ar-
chitecture based on attributes such as their LUT size, cluster size, and wiring
scheme. At a higher level, power consumption can be estimated earlier in the
design cycle using a model similar to the one described in [Weiss et al. 2000].
High-level parameters of the device and the design are combined to allow
designers to gain a rough estimate of power consumption before the circuit de-
sign is complete and ready to be tested within the CAD tool environment. Given
that RCSE is intended to provide analysis of potential designs during formu-
lation, a high-level power model similar to the one presented by Weiss et al.
[2000] is used. The remaining power estimation models require information
describing the final core design, which often is not available in the formulation
stage.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 4, Article 25, Pub. date: November 2010.

Rapid Analysis of RC Systems · 25: 7

Fig. 2. Detailed diagram of formulation process.

3. SIMULATION FRAMEWORK OVERVIEW

The goal of the RCSE framework presented in this article is to augment the for-
mulation stage of RC development with a methodology for providing efficient
simulative performance prediction. Beginning with an abstract model that de-
fines a candidate design, developers can perform design-space exploration by it-
erating between strategic designs and simulation before advancing beyond the
formulation stage. Only until the analysis tools provide acceptable feedback
for a candidate design will a developer advance to the remaining development
stages with their abstract design. This process, illustrated in Figure 2, can
greatly improve the overall productivity of RC projects by catching strategic
errors and design flaws early in the development cycle.

To realize the formulation-based development flow described in the previous
paragraph, a simulation framework was created to support efficient algorith-
mic and architectural exploration over many design parameters. This section
details the RCSE framework for performance prediction of RC systems that
balances speed, accuracy and flexibility. To achieve this goal, additional effort
is performed within the application domain to characterize the behavior of the
application so that instruction-level details of the program can be abstracted
to reduce the complexity of the discrete-event simulation. This framework is
split into two separate domains - the application domain and the simulation
domain. This split allows users to characterize applications independently of
the candidate system architectures while supporting concurrent model devel-
opment that is independent of the potential applications. This independence
offers a high level of data and model reusability and modularity which in
turn facilitates rapid analyses of numerous virtually prototyped systems and
applications. With this reusability, users can effectively iterate within the
ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 4, Article 25, Pub. date: November 2010.

25: 8 · C. Reardon et al.

Fig. 3. RCSE framework diagram.

formulation stage by making changes within one domain and simply reusing
the model from the second domain for the next simulation as the design space
is explored. The overall structure of the RCSE framework, and the key steps
within each domain, are illustrated in Figure 3. Sections 3.1 and 3.2 provide
details and examples of the procedures employed in the application and simu-
lation domains, respectively.

The Fast and Accurate Simulation Environment (FASE) is a simulation
methodology that attempts to balance speed and accuracy for simulating
message-passing parallel applications on HPC clusters using a two-stage sim-
ulation process [Grobelny et al. 2007]. The RCSE framework presented in this
section leverages key concepts and models used in FASE, but also proposes
many extensions and additions to support RC-based analyses. While FASE de-
fines two primary stages in its simulation process, the RCSE framework defines
six primary stages, including the hardware core characterization stage which
is unique to RC. In addition, new sets of discrete-event models for RC-based
architectural components have been developed, and the scripting language has
been redefined and significantly expanded in order to effectively represent RC
applications.

As previously mentioned, FASE is primarily designed for simulating
message-passing parallel applications on HPC clusters. Since the RCSE frame-
work incorporates many of the same approaches used by FASE, certain types
of systems are not effectively modeled with RCSE. For example, FASE and
the RCSE are currently designed to predict the performance of a single appli-
cation on an unloaded system, therefore extensions are necessary to support
analysis on a multi-user or loaded system. Streaming applications are not eas-
ily supported either since they cannot be naturally described with the current
scripting language. Finally, RCSE assumes that actions on the RC device are
initiated by commands from a host microprocessor, thus systems in which the
RC device acts autonomously are not currently supported as well.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 4, Article 25, Pub. date: November 2010.

Rapid Analysis of RC Systems · 25: 9

3.1 Application Domain

The purpose of the application domain is to collect characterization data on a
selected application that captures its inherent behavior. The behavior of the
application is captured in order to create an application model in the form of a
script that acts as stimulus data for the simulation models. Algorithmic explo-
ration can then be performed by making changes to the application model, pro-
ducing a new script to stimulate further simulations. The application domain
is divided into three stages; hardware core characterization, application char-
acterization, and script generation. The remainder of this subsection describes
each of the stages that make up the application domain, which are illustrated
by the ovals in Figure 3.

Hardware core characterization, which is not a part of the original FASE
framework, defines the behavior of the kernel or function to be performed
within the RC device. The characterization of hardware cores is performed
by defining a set of parameters for the core. These parameters include compu-
tational delay (in terms of latency and throughput), resource utilization, input
data size, and output data size. The computation time for an RC core can be
obtained from multiple sources. For cases where the hardware core design is
complete and available to the user, this value may be measured experimentally,
or similarly using delays supplied from cycle-accurate functional simulations of
the hardware design from vendor-supplied tools. Both methods provide reason-
ably accurate results assuming deterministic behavior of the RC devices. While
it is possible to integrate a cycle-accurate hardware simulator into our environ-
ment, it makes little sense to use one in cases where a deterministic hardware
core is executed numerous times during a single run of an application. Instead
of performing costly cycle-accurate simulations numerous times, it is more ef-
ficient to extract the performance data from one single run in this early stage.
Furthermore, when a finished hardware core is not available to the user, cores
can be simulated at the beginning of the development cycle by using parameter
estimates based on initial core designs. By leveraging a process such as the
RAT methodology presented by Holland et al. [2007], quick estimates of the
core performance can be obtained by users with a fundamental understanding
of their algorithm. Following the RAT methodology allows the user to estimate
the full set of parameters needed to characterize a hardware core. The re-
source utilization parameters are important in order to consider performance
gains when scaling up device size by squeezing more cores onto the fabric at
once, thus executing on more data in parallel. The modeling of partial recon-
figuration is supported as well by allowing cores to be exchanged within the
RC device during the simulation. However, an in-depth study of this technique
is not included in this paper. The final parameters, the input and output data
sizes, allow accurate modeling of transactions with the RC device. These pa-
rameters are critical in order to accurately capture the communication delays
incurred when passing data between various node components and RC device.

Another vital step in the application domain that can be conducted in par-
allel with characterizing the hardware core is the application characterization
stage. This step involves identifying and gathering a sequence of key events

ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 4, Article 25, Pub. date: November 2010.

25: 10 · C. Reardon et al.

that defines the behavior and attributes of the target application. The events
currently supported include computation conducted by host processors, compu-
tation performed by RC devices, along with inter- and intra-node communica-
tion. When the performance of the application is data-independent, a specific
sequence of these events can be employed to accurately capture the behavior of
any parallel or serial RC application. However, gathering these sequences of
events is a key challenge when dealing with RC applications due to the large
number of programming interfaces implemented to transfer data to and from
RC devices. RCSE addresses this challenge by using a scripting language that
allows the user to manually represent the behavior of an RC application. When
using this approach, classic instrumentation tools can be employed to gather
the data relevant to defining host computation and inter-node communication,
such as the Performance Application Programming Interface (PAPI) from the
University of Tennessee [Browne et al. 2000]. This framework currently uses
PAPI to trace the number of instructions and memory accesses performed by
the host processor during each computation block. This data is used to esti-
mate the amount of time spent by the processor in that computation block,
along with predicting the amount of contention that would be experienced with
shared resources. Presently, the incorporation of RC events into scripts must
be performed manually, since no common standard exists that defines interac-
tions with RC devices. However, the adoption of a standard RC programming
interface or abstract modeling language would remove the requirement of man-
ual script creation, since RC-related events could be detected by an automated
code or model parser. Combined with other standards such as the Message
Passing Interface (MPI) [Walker 1994], a well defined and widely accepted pro-
gramming interface for inter-node communication, the full automatic charac-
terization of a large number of RC and parallel applications could be supported.
However, until a common interface is finalized, manual script generation pro-
vides the most flexible alternative to cover the wide range of RC application
and RC device combinations.

The final step in the application domain deals with generating scripts that
represent the behavior of the target applications. The information collected
during the application and core characterization steps define both the struc-
ture and values needed to construct an application script. Applications scripts
are used in place of an application’s code to stimulate the platform models dur-
ing simulation. Application scripts represent the application as a sequence of
key events, with each event represented as an individual script item. Script
constructs currently include processor computation blocks, inter-node commu-
nication via MPI function calls, configuration of an RC device, and function
calls to a configured RC device within the node. Blocking and nonblocking ver-
sions of MPI and RC device function calls are defined in the scripting language
and supported by the platform models. Miscellaneous capabilities such as con-
trol loops are also included.

Figure 4 illustrates an example of an RC application script for a single node
of a parallel application. The example script is a simplified version of the script
for target detection in the HSI application defined and used in Sections 4 and
5. The script begins by configuring a single target detection (TD) core on the

ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 4, Article 25, Pub. date: November 2010.

Rapid Analysis of RC Systems · 25: 11

Fig. 4. Sample RC application script.

device named dev1 while providing core details obtained during core character-
ization. In this example, the TD core is defined to occupy 4500 slices, operate
at 200 MHz, and execute on 8192-byte input and output data chunks each in
1000 clock cycles. After the TD core has been configured, the script initializes
the node for MPI-based communication via the MPI Init call, followed by 288
µs of computation by the host processor. Afterwards, the node receives 32 MB
of data from node 0, who must have a matching MPI Send in its own script.
The script then proceeds by defining 100 iterations of a loop, with each iter-
ation containing an FPGA-based execution of TD followed by a block of host
computation. Once the 100 iterations have completed, the node returns data to
node 0 via the MPI Send function. After the data has been returned, a block of
host computation follows, after which the script is complete and the simulation
terminates. It must be noted that the current scripting syntax is designed to
support most of the functionalities exercised in current RC applications and is
easily expandable to support other RC events that may arise as the technolo-
gies and programming interfaces mature.

3.2 Simulation Domain

The purpose of the simulation domain is to provide an environment for de-
veloping and simulating virtual prototypes of target platforms. Architectural
exploration can then be performed by replacing or re-tuning components of
the system model. The simulation domain is divided into three stages; model
development, model calibration, and system analysis. The remainder of this
subsection describes each of the stages in the simulation domain, which are
illustrated by the rectangles in Figure 3.

The first step in the simulation domain is the model development stage. In
this stage, models of key system components are constructed. The simulation
environment used for building component and system models is Mission-Level
Designer (MLD) from MLDesign Technologies [Schorcht et al. 2003]. MLD is
ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 4, Article 25, Pub. date: November 2010.

25: 12 · C. Reardon et al.

a graphical discrete-event simulation tool that supports modular, hierarchical
designs of arbitrary systems allowing for quick development times of models
with varying degrees of fidelity. Since the goal of RCSE is performance pre-
diction of RC systems, component models do not fully incorporate mechanisms
to manipulate data. In fact, the actual data is abstracted away by only con-
sidering how much data rather than what data. As a result, the models focus
on the performance timing of the interactions between components exercised
by the application. Focusing on system performance facilitates quick model de-
sign times (due to the reduced detail associated with each component model)
and improved simulation speed (due to less processing needed to execute each
component model).

An overview of key component models in the current RC model library is
described here, all of which are new or significantly updated compared to the
models in the original FASE library. The first component, the RCScriptParser,
converts script commands into appropriate data structures processed by the
models. The RCMiddleware model manages transactions between the host
processor and the RC device, and also includes performance-critical overhead
incurred by the device drivers. The RCCore model was developed as a generic
black-box model, such that any hardware core could be represented. The black-
box model uses the core size, input data size, output data size, and computa-
tional delay as characterized in the application domain to abstract away the
data manipulation inside the core. This abstraction allows for faster simu-
lations of systems while producing reasonably accurate results. Meanwhile,
the parameters of the core that dictate performance can be scaled in order
to predict the core’s execution time on future generations of the RC device.
RCCore typically resides inside an RCFabric model, which is used to repre-
sent the RC device and provide an interface between the RC core and the
rest of the system. The IOBus model captures the communication delays of
data transfers between hardware components sharing the bus through the ap-
plication of simple bandwidth and latency calculations while also considering
contention.

Once the component models have been developed, the next step in the sim-
ulation domain is the calibration of those models. In model calibration, the
parameters of a component model are selected such that the model’s perfor-
mance matches that of the corresponding real-world technology. In general,
the component models in the RC library have all been designed to be generic
and parameterizable. Each of the primary component models accepts a para-
meter file as an input, used to tune a generic component model to match the
particular device of interest. The set of parameters defined in a parameter file
is unique for each type of component. For example, the parameter file for an
instance of an RCFabric model includes parameters such as the size, recon-
figuration time, number of I/O pins, and maximum clock speed of the FPGA
board. By correctly setting the values of the parameter file, the generic RCFab-
ric model can be calibrated to represent any number of different FPGA or other
RC-based modules. In order to calibrate the component models in some cases,
experimental measurements must be obtained from benchmarks that exercise
the target component. Once the experimental data has been gathered, the

ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 4, Article 25, Pub. date: November 2010.

Rapid Analysis of RC Systems · 25: 13

parameter file is filled out to match the measured data points. Various metrics
such as average error or mean squared error can be applied to optimally match
model behavior against the experimental data.

The current framework focuses on the components exercised when transfer-
ring data between the host processor and the RC device due to the common
bottleneck that arises in this data path for many RC applications. As such, the
corresponding component models often require an in-depth calibration process
in order to accurately capture the performance of the data transfers. How-
ever, when attempting to calibrate the components exercised during FPGA data
transfers, it can be very difficult to benchmark either the I/O bus or the drivers
in isolation due to the complexity of the system and the proprietary nature of
the device drivers, respectively. To resolve this problem, the performance of
transactions between the host and RC device are measured as a whole (as seen
by the top-level application), and the optimal set of parameters for the drivers
is obtained using a parameter solver developed by the authors. The parame-
ter solver, built in Matlab, defines bounds on the communication latency and
bandwidth from the experimental data, then iterates over the bounded latency
and bandwidth ranges to find the parameter combination that optimizes the
communication model, within a definable granularity. By using this iterative
approach, the user can choose the error metric used by the parameter solver
to define the optimal parameter set. Calibration results obtained using the
parameter solver, which is applied to calibrate both intra- and inter-node com-
munication systems, are presented in Section 4.2.

The final stage of the simulation domain is system analysis. In this stage,
the RC application script is processed by the system models producing perfor-
mance results for each candidate system architecture. The performance results
can be analyzed to identify bottlenecks in the virtually prototyped systems and
conduct what-if scenarios and tradeoff analyses with respect to various design
options such as algorithm decompositions and mappings and individual compo-
nent specifications. The simulation results can also be used to perform multi-
variable analyses, where designers look to optimize their system over multiple
parameters such as performance, power, cost, etc. In the next section, the steps
outlined above are performed with two applications across three target systems
to demonstrate the capabilities of this approach.

4. SIMULATION FRAMEWORK WALKTHROUGH

In this section, a set of case studies is presented which employs the RCSE
framework described in this article. The goal of these case studies is to demon-
strate the process of simulating an arbitrary reconfigurable system and ap-
plication using RCSE. The results presented during these case studies are
intended to serve as a validation of the framework, while illustrating its
capabilities and features for modeling complex RC systems and applications.
The first subsection provides details about the platforms and applications used
in the following case studies. The second subsection describes details about
how the applications were characterized, and shows results from model cali-
bration for each RC platform. Finally, the results from validation experiments
ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 4, Article 25, Pub. date: November 2010.

25: 14 · C. Reardon et al.

are presented which serve to validate this framework, and serve as a basis for
further simulative experiments in Section 5.

4.1 Experimental Setup

In this section, the applications and experimental platforms used throughout
the case studies are described. The simulation results presented in this section
are composed of case studies with two applications. The first set of experiments
were conducted using a parameterizable benchmark which performs target de-
tection and classification on a hyperspectral image (HSI) [Chang et al. 2004].
A hyperspectral image is a collection of 2-D images, all of the same scene but
each containing a small unique portion of the overall spectrum picked up by
the sensors. For the algorithm discussed in this article, HSI can be divided into
three stages: calculation of the auto-correlation sample matrix (ACSM), weight
computation, and target classification. The FPGA is employed to accelerate
two different stages of the benchmark, ACSM calculation and target detection,
which requires the FPGA to be completely reconfigured between stages. For
calculation of the ACSM, the FPGA core receives a vector for each pixel in the
HSI image with a number of elements equal to the number of spectral bands
in the image data. The outer-product is calculated, and a running sum of the
resulting matrices is constantly kept until all pixels have been processed, at
which point the final matrix can be returned to the host processor. Meanwhile,
target detection is primarily composed of correlating each pixel vector with a
vector that represents the spectral signature of the target classification of in-
terest. For each pixel vector sent to the FPGA, the core returns a floating-point
detection value for each target classification specified at runtime.

The second application, Molecular Dynamics (MD), is the numerical simu-
lation of the physical interactions of atoms and molecules over a given time
interval. Along with standard Newtonian physics, properties such as Van Der
Waals forces and electrostatic charge (among others) are calculated for each
molecule at each time step with respect to the movement and the molecular
structure of every particle in the system. The RC implementation of the paral-
lel algorithm used for this case study was adapted from code provided by Oak
Ridge National Laboratory (ORNL) [Alam et al. 2007]. The code implements
the particle-mesh Ewald (PME) method, a biomolecular algorithm that is part
of the popular Amber MD framework [Pearlman et al. 1995]. For each time
step, the set of molecules in the MD system are sent to the FPGA, in order
to determine the interactions between every pair of molecules. Each molecule
is then passed through a set of parallel computational pipelines, where each
computational pipeline determines a partial net acceleration for that molecule.
As each molecule exits the computational pipelines, the partial accelerations
are accumulated and immediately written to memory while the remaining
molecules are still being processed. After all molecules have been processed,
the results are returned by the FPGA to the host processor where the new loca-
tion of each molecule is updated for the next time step. This process is repeated
until the desired time interval has elapsed.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 4, Article 25, Pub. date: November 2010.

Rapid Analysis of RC Systems · 25: 15

Table I. Summary of Experimental Platforms

System Host Processor RC Device (FPGA) I/O Transport
H101 3.2 GHz P4 Xeon H101-PCIXM board (Xilinx V4LX100) 133 MHz PCI-X
SRC-6 2.8 GHz P4 Xeon MAP board (Xilinx V2-6000) 1.4 GB/s Hi-Bar
XD1000 2.2 GHz Opteron XD1000 module (Altera EP2S180) 1.6 GB/s HT chain

The applications were simulated on three different RC experimental plat-
forms. The three systems employed in these experiments each represent
unique styles of RC system architectures, thus illustrating the versatility of
RCSE. The H101 system is a cluster of Xeon servers each equipped with a
Nallatech H100-series Application Accelerator connected via PCI-X. The SRC-6
system is a custom and scalable supercomputing platform from SRC Inc., which
connects SRC-based CPU and FPGA modules via SRC’s high-performance
HiBar interconnect. Finally, the XD1000 system from Xtreme Data Inc. is a
cluster of servers each featuring a dual-socket Opteron motherboard in which
an FPGA-based XD1000 module is housed in one of the Opteron CPU sockets.
High-speed HyperTransport (HT) links provide connections between the key
components on the motherboard of the XD1000 system. Table I summarizes
the key characteristics of the experimental platforms.

4.2 Characterization and Calibration Results

The first steps taken within this framework are to characterize the applications
and hardware cores. The application characterization was performed using a
pure software version of each application, with instrumentation code added to
capture timing and memory data for the various sections of the application. As
mentioned in Section 3.1, the PAPI library is employed for gathering memory
access data. After running the application on each system, application scripts
similar to the one illustrated in Figure 4 were manually generated from the
instrumentation data for each application on each system. It should be noted
that the generation of an application script for a system model does not require
executing the application under study on the target system. While doing so
will most likely produce the most accurate characterization data for a given
scenario, there are many cases where this option is simply not available to
the user. For cases where both the application and system are not available
for instrumentation, an application script can be generated from scratch based
on knowledge of the algorithm, or from instrumentation data gathered on a
separate system.

In addition to characterizing the applications under study, the hardware
cores used in each application must be characterized as well. This characteriza-
tion data can come from multiple sources, such as experimental measurements,
functional-level simulations of the FPGA core, or using early design calcula-
tions such as those presented by Holland et al. [2007]. In the case studies
presented here, core characterization data was obtained through experimental
measurements which in turn were applied to tune mathematical models for

ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 4, Article 25, Pub. date: November 2010.

25: 16 · C. Reardon et al.

the execution time of each core. For example, the execution time of the primary
FPGA core for MD can be divided into three phases and is characterized as

tMD = A×Nmol + B× (
N2

mol − Nmol
)

+ C×Nmol (1)

where Nmol is the number of molecules being processed. Experimental mea-
surements were used to determine values for the constants A, B, and C on
the XD1000 system by measuring the execution time for each phase of the
core. The first product in Eq. (1) represents the time required to scatter each
molecule from on-board memory to the computational pipelines, which must be
performed before force calculations begin. The second product represents the
force calculations performed between each pair of molecules, as each molecule
is broadcasted one at a time to all of the computational pipelines. The final
product represents the additional time required to write each result back to
on-board memory after calculations of all of the molecular interactions have
been completed. A similar approach is employed for the execution time for the
two HSI cores, which were characterized simply as the product of an experi-
mentally measured constant multiplied by the input image size.

For each system, a system model within the discrete-event simulation envi-
ronment was constructed. Once completed, the system model parameters were
then calibrated to match the performance characteristics of the target systems.
For this article, the calibration results are limited to the calibration of the I/O
interconnect between the RC device and host processor, and the system-area
network used to connect nodes within each cluster. To obtain the experimental
data used during calibration, a micro-benchmark executed on each system is
used to measure transfer times for various sized data transfers between a host
processor and its local FPGA, or between nodes across the data network. For all
of the calibration results presented in this section, the model parameter values
used to define the fitted curve were derived using the Matlab-based parameter
solver cited in Section 3.2. In each case, the parameter solver is applied to min-
imize the mean percentage error between the modeled data and experimental
performance.

Figures 5(a) and 5(b) show the experimental results versus simulation re-
sults in terms of throughput values for host processor reads from the FPGA
(FPGA reads) and host processor transfers to the FPGA (FPGA writes), in an
H101 node. For both of these cases, a penalty for large data transfers is au-
tomatically factored in by the parameter solver, due to the negative trend in
average throughput for each set of experimental data as the transfer size grew
beyond 256 KB. The modeling of this phenomenon was incorporated into the pa-
rameter solver and discrete-event models to represent the declining throughput
performance sometimes experienced for extremely large data transfers, often
caused by windowing or memory buffer overruns within the target device or
operating system. Another behavior illustrated here is that for similar-sized
transfers, the host processor in an H101 node is often able to write data to the
FPGA at twice the rate the processor can read data from the FPGA. Such a dis-
parity often has large implications on the performance of RC applications that
ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 4, Article 25, Pub. date: November 2010.

Rapid Analysis of RC Systems · 25: 17

Fig. 5. Throughput for FPGA reads (a) and writes (b) on H101 system based on I/O benchmark.

Fig. 6. Throughput for FPGA reads (a) and writes (b) on XD1000 system based on I/O benchmark.

are communication-bound, therefore it is important for the simulation frame-
work to capture this behavior. The RCMiddleware models in the current frame-
work allow the user to capture this behavior, by introducing additional delays
to those experienced by simply traversing the system interconnect.

Next, Figures 6(a) and 6(b) show the calibration data for host processor reads
and writes, respectively, with the FPGA’s on-board memory on an XD1000 node.
The I/O model curves for the XD1000 did not include a penalty for large trans-
fers or a communication context switch. For the final system, Figures 7(a)
and 7(b) show the calibration data for host processor reads and writes with
the FPGA’s on-board memory on the SRC-6 HiBar system, respectively. The
SRC system exhibits much higher data throughput while writing to the FPGA
as opposed to reading, similar to the behavior observed with the H101 node.
Furthermore, unlike the first two systems, a communication context switch is
used by the parameter solver and simulation models, with the switching point
occurring at 16 KB on the SRC-6. A communication context switch is where
the communication middleware attempts to increase efficiency by changing be-
tween internal transfer mechanisms or protocols, often based on the size of data
to be transferred. A communication context switch should not to be confused
ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 4, Article 25, Pub. date: November 2010.

25: 18 · C. Reardon et al.

Fig. 7. Throughput for FPGA reads (a) and writes (b) on SRC-6 system based on I/O benchmark.

with an FPGA context switch, which refers to a change in the configuration of
an FPGA’s reprogrammable fabric. When a communication context switch is
applied, the performance of the transfer is modeled using two separate sets of
latency and throughput parameters. The use of the appropriate set depends on
which side of the switching point the size of the transfer data lies.

The modeled transfer times for the data sets across all three systems yielded
a mean percentage error that ranged between 2.1% and 5.1% versus their ex-
perimental counterparts. These average values are encouraging, especially
considering that they are mildly inflated in several cases by single erratic ex-
perimental data points that yield double-digit percent errors when compared to
the calibrated model results. Additionally, it is important to note that the I/O
behavior with the RC device varies significantly from system to system. In the
three systems discussed here, one suffered performance penalties for large data
transfers, another exhibited a communication context switch between small
and large transfers, while two of the three systems allowed the host processor
to write to the FPGA at a significantly higher rate than for FPGA reads of the
same size. All of these factors illustrate the importance of a flexible calibra-
tion and modeling approach that can handle such disparate behaviors. Finally,
the same process is employed to calibrate modeled data transfers between in-
dividual H101 or XD1000 nodes across a 20 Gb/s InfiniBand network. In this
case, the model curve results in an average difference of 3.0% compared to the
experimental data.

It is worth noting that users will not always be able to calibrate their
component models with experimental data from benchmarking experiments,
especially when considering notional platforms. In these cases, it is strongly
suggested to use calibration data that can be obtained from a system most
similar to the systems being simulated as a starting point. For example, a
user might want to predict the performance gains expected by using a wider
HyperTransport bus in the next-generation XD1000 platform. An educated
approximation of the hypothetical XD1000 system is obtained by scaling the
appropriate parameters of the calibrated XD1000 model to reflect the wider
ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 4, Article 25, Pub. date: November 2010.

Rapid Analysis of RC Systems · 25: 19

Table II. Summary of Validation Results

App. System Exper. Simulative % Error Simulation
Runtime Prediction Time

HSI H101 (1 Node) 116.12s 123.95s 6.74% 14.76s
HSI H101 (4 Nodes) 44.16s 43.02s 2.58% 107.32s
HSI SRC-6 86.49s 85.05s 1.66% 17.66s
MD XD1000 4.41s 4.39s 0.45% 1.45s

bus. Delays for the middleware would be altered by the simulation models as
well if the host processor or memory subsystem were updated too.

4.3 Validation Results

Once the application scripts have been generated and the system models are
built and calibrated, the scripts can be fed into the system models for system
analysis. In this section, the accuracy of the system models with respect to per-
formance analysis is validated against the baseline applications. Table II sum-
marizes the application validation results. Validation results were collected for
each application/system combination where the corresponding FPGA core was
available. For each of the HSI validation experiments, a 256×256 pixel input
image with 1024 spectral bands was used. The simulative HSI predictions are
validated against experimental executions of HSI on one and four H101 nodes,
and using one CPU and one FPGA module on the SRC-6. For the MD validation
experiment, a molecular system of 16,384 molecules is processed for five time
steps on the XD1000 system. The maximum error between the experimental
runtime and the predicted runtime across all of the validation experiments is
6.74%, where HSI is simulated on a single-node H101 system.

As previously mentioned, prediction accuracy is sacrificed in order to allow
simulations to complete more quickly and without requiring a coded imple-
mentation. Validation errors under 10% produced by the RCSE are considered
acceptable. Predictions within this bound provide designers with useful insight
while performing strategic design-space exploration. Like many tools, the ex-
act accuracy of the predictions will largely depend on the quality of the input
provided by the user. Instances where characterization data comes from a sys-
tem that is identical or very similar to the system being simulated will pro-
duce prediction results exhibiting error percentages similar to those observed
in Table II. As the simulated system is varied, uncertainty is introduced into
the process and the predictions become less reliable. In these cases, calibra-
tion and validation serve as an important starting point in design-space ex-
ploration, so that simulations involving hypothetical scenarios have a reliable
grounding in reality. Given that the results obtained in each of the validation
experiments yielded acceptable error rates for this framework, we can proceed
to perform simulative analyses of these systems.

The final column of Table II reports the time measured for each simulation to
execute on a 3.2-GHz Xeon processor. The simulation of MD on the XD1000 sys-
tem is the quickest simulation by a substantial margin, largely because there
are a very limited number of computational iterations and data transfers be-
tween system components during the application. Conversely, the simulation
ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 4, Article 25, Pub. date: November 2010.

25: 20 · C. Reardon et al.

of HSI on a 4-node H101 system required the longest simulation. The increased
simulation time results from a number of factors, including the addition of the
high-fidelity simulation of inter-node communication which is not present in
single node simulations. For each of the single-node systems, the time required
to simulate the application is less than the time required to execute the appli-
cation by the system. These simulation times compare extremely well to tradi-
tional functional-level simulators, which typically simulate for periods of time
that are orders of magnitude longer than the experimental execution times of
the application.

5. APPLICATION CASE STUDIES

In most cases, building large-scale or unique systems to measure performance
or scalability is simply not a viable option due to time and cost constraints.
In other cases, developing or porting an application to different platforms can
be a costly process, and may provide disappointing results. Simulation is a
very useful approach to address these issues and avoid potential productivity
barriers by predicting an application’s performance on existing or notional plat-
forms that not physically available to the user. Furthermore, simulation tools
are best suited for performance prediction on large-scale and complex systems
where critical phenomena such as network congestion and resource contention
are difficult to characterize using purely analytic or back-of-the-envelope
approaches.

Using the platforms and applications previously introduced and validated
in Section 4, this section presents design-space exploration case studies in-
tended to demonstrate the usefulness of RCSE. These case studies illustrate
the analysis and insight that RCSE can quickly provide to developers under
the situations discussed in the previous paragraph. First, several performance
studies are conducted using HSI, analyzing changes to the application parame-
ters and device characteristics on multiple systems. Next, a set of case studies
is presented analyzing the scalability of MD on a distributed XD1000 system.
Finally, the RCSE framework is used to estimate the power consumption of the
FPGA core design for MD.

5.1 HSI Performance Case Studies

The following simulative studies analyze impacts of system modifications to
the performance of HSI. The first set of experiments investigates the perfor-
mance of the RC designs for ACSM calculation as the number of spectral bands
in the input image is varied. Figures. 8(a), 8(b), and 8(c) plot the speedup of
the FPGA-based ACSM calculation on all three systems versus the number of
spectral bands in the image, using one and two FPGA nodes. For all of the
HSI case studies, speedup results are compared against the original software
version of HSI running on a single 2.8-GHz Xeon processor, as found in the
H101 system. On the H101 system (Figure 8(a)), the performance increases
dramatically as the number of spectral bands increases from 128 to 1024. This
performance improvement is primarily due to the minimization of the commu-
nication penalty for small data transfers. On the XD1000 and SRC-6 systems,
ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 4, Article 25, Pub. date: November 2010.

Rapid Analysis of RC Systems · 25: 21

Fig. 8. Predicted speedup of ACSM vs. spectral bands.

the predicted speedup is relatively constant for all numbers of spectral bands.
Compared to the H101 system, the SRC-6 and XD1000 provide highly efficient
high-speed communication between the host CPU and the FPGA, thus very
little efficiency is gained by increasing the size of each data transfer.

Another observation is that the XD1000 system only obtains approximately
half of the maximum speedup as the H101 and SRC-6 systems. This result is
troubling considering the XD1000 contains the largest FPGA and the fastest
host-FPGA interconnect of all three systems. After viewing these simulation
results, a reexamination of the FPGA core design for the XD1000 was per-
formed, which identified the single bank of SRAM on the XD1000 FPGA module
as the performance bottleneck. In contrast, the FPGAs on the H101 and SRC-6
systems both contain multiple banks of SRAM, allowing multiple data values
to be extracted from memory at the same time. Thus, the number of pixel vec-
tors that can be processed in parallel is the same as the number of values that
can be extracted from memory simultaneously. In this case, adding additional
banks of memory to the FPGA could dramatically improve the performance of
this FPGA core, and the simulation framework can be used to quickly estimate
the expected performance change. In Figure 9, the performance of ACSM on
the XD1000 is simulated as the number of SRAM banks on the FPGA is in-
creased for an image with 1024 spectral bands. Approximately linear speedup
is predicted as SRAM banks are added to the FPGA, since the FPGA on the
XD1000 is large enough to hold the additional parallel kernels.
ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 4, Article 25, Pub. date: November 2010.

25: 22 · C. Reardon et al.

Fig. 9. Predicted speedup of ACSM vs. SRAM banks on XD1000 system.

Fig. 10. Predicted speedup of HSI vs. system size.

The final HSI-based simulative study analyzes the performance of the entire
HSI application for various system sizes with an image consisting of 1024 spec-
tral bands. Case studies such as this one provide useful information to system
designers investigating systems to efficiently perform the target application.
Figures 10(a) and 10(b) show the speedup of the entire HSI application on the
H101 and XD1000 systems respectively, ranging in size from one to eight nodes.
For each system, the predicted speedup of the RC implementation is provided
for two different input image sizes. Larger speedups are projected in every case
when the image size is increased to 256×256 pixels. The larger image offers
more opportunities to parallelize computations on the FPGA, while increasing
the ratio of computation to communication for the entire application, causing
the larger speedups over the software baseline. On the H101 system, the per-
formance of processing the 128×128 image scales very poorly with system size.
The poor scaling is due to a smaller ratio of computation to communication
combined with the high cost of communication between the CPU and FPGA in
each node.

5.2 MD Performance Case Studies

For each of the simulative studies in this section, the RCSE framework is em-
ployed to analyze the scalability of MD in terms of the size of the application
ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 4, Article 25, Pub. date: November 2010.

Rapid Analysis of RC Systems · 25: 23

(i.e., the number of molecules being processed by the algorithm) and the size
of the system. Furthermore, the framework is used to analyze two different
parallelization strategies for distributed execution of MD, which requires two
slightly different FPGA core designs. The first strategy (Core 1) applies the
baseline MD FPGA core design described in Section 4.1 and used for validation
in Section 4.3. The application is distributed across multiple nodes by assign-
ing each node to calculate partial accelerations for all molecules in the system,
which are then returned to the root processing node and summed for each time
step. Since the partial accelerations for each molecule are known once the mole-
cule has finished passing through all of the computational pipelines within the
FPGA, the value can be immediately written to on-board memory while the
remaining molecules are passing through the pipelines. For this reason, we
can assign a value of zero to the constant C in Eq. (1) used to characterize the
execution time of the MD core. The second parallelization strategy (Core 2)
computes the full accelerations for only a portion of the molecules at each node.
The computational structure of Core 2 reduces the amount of data returned by
each node at the end of the time step, since each node is only responsible for
returning acceleration data for a fraction of the total molecules. Conversely,
this design increases the execution time on the FPGA for each time step, since
the total acceleration for each molecule is stored within the pipelines and is
not known until after every molecule has passed through the computational
pipeline. Since none of results may be written back to on-board memory until
every force calculation has been completed, the constant C in Eq. (1) must be
set equal to A for Core 2, as the time required to write every molecule back to
SRAM is approximately equivalent to the time required to read each molecule
from SRAM.

Figure 11(a) shows the simulation results for the execution time of MD on
a single XD1000 node versus the number of molecules in the application. The
results in Figure 11(a) illustrate that for any number of molecules, the relative
speedup between the FPGA-accelerated versions and the software baseline is
relatively constant. Furthermore, it is interesting to note the very close prox-
imity in performance between Core 1 and Core 2. While Core 1 always executes
slightly faster than Core 2, the difference is practically negligible for a single-
node XD1000 system, which becomes important when considering distributed
versions of this application in the following experiment.

The next experiment analyzes the projected speedup of MD parallelized
across a distributed XD1000 system. A data set with 131,072 molecules is
used here since larger data sets will benefit more greatly from distributed exe-
cution, while also illustrating the effectiveness of RCSE to analyze applications
that have been scaled beyond what has been previously performed experimen-
tally. Figure 11(b) shows the speedup of the distributed MD application on
system sizes ranging from one to 16 nodes. For this case study, speedup results
are compared against the original software version of MD running on a single
2.2 GHz Opteron processor, as found in the XD1000 system. Due to the very
high ratio of computation vs. communication, the performance of the paral-
lelized software and FPGA-acceleration applications scale almost linearly with
the number of nodes. As the size of the system grows to 8 nodes and beyond,

ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 4, Article 25, Pub. date: November 2010.

25: 24 · C. Reardon et al.

Fig. 11. Predicted performance of MD on XD1000 system.

Core 2 begins to outperform Core 1 by a noticeable margin. For larger sys-
tem sizes, Core 2 becomes more efficient due to the reduced amount of data
returned to the root node at the end of each time step. The difference becomes
more pronounced as the system size grows, since a larger number of nodes are
simultaneously communicating with the root node at the beginning and end
of each time step. Core 2 is designed to alleviate that network contention, at
the expense of decreased performance within the FPGA. This data can be used
before the design (or coding) stage to decide which core design is ideal for their
scenario, depending on the size and type of system.

5.3 MD Power Case Study

The final case study illustrates the power modeling component of the RCSE
framework. Due to the complexities of modeling and estimating power con-
sumption, the approach employed here only attempts to roughly estimate the
power consumption of RC systems. Therefore, higher error rates observed from
power consumption estimates will be tolerated. In this case study, the power
consumption of a single FPGA core for MD executing on the XD1000 is esti-
mated. To begin, this framework assumes a common model for the total power
consumption of FPGAs, which is

Pest = PIO + Pstat + Pint (2)

where PIO is the power consumption of the FPGA from I/O activity, Pstat is the
static power consumption caused by leakage current, and Pint is the internal
(or dynamic) power consumption of the FPGA. The static power consumption
for an FPGA is available from the device data sheet, and becomes a para-
meter of the FPGA device model. PIO is the product of the number of I/O
pins exercised by the core (NIO) and the power of each pin (which can be de-
rived from the capacitance and switching frequency of each pin). To estimate
the internal power consumption of the FPGA, we apply the following equation
[Weiss et al. 2000]:

Pint = Vcore×K p× fmax×Ures×Tlog (3)
ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 4, Article 25, Pub. date: November 2010.

Rapid Analysis of RC Systems · 25: 25

Table III. Summary of Key Power Model Parameters

Parameter Name Symbol Value Source of Value Model Location
I/O Utilization NIO 485 pins Core compilation report Script (core param)
Resource Utilization Ures 92% Core compilation report Script (core param)
Clock frequency fmax 100 MHz Core compilation report Script (core param)
Core Voltage Vcore 2.5 V FPGA data sheet FPGA device model
Device Constant K p 1.67E-6 FPGA data sheet FPGA device model

In Eq. (3), Vcore represents the voltage level of the FPGA core, fmax is the max-
imum operating frequency of the core, Ures represents the resource utilization
of the core, Tlog is the average transistor toggle rate of the reconfigurable logic,
and K p is a device technology constant. Values for Vcore, Ures and fmax are core-
specific and obtained during core characterization. The toggle rate for Tlog is
difficult to determine without a functional-level simulation, but values ranging
between 0.15 and 0.2 are commonly used as estimates of this parameter. Fi-
nally, K p is a device constant that is specifically defined in datasheets for Xilinx
FPGAs, while Altera datasheets typically provide multiple constants relating
to individual resources on the chip that are averaged in RCSE to obtain a final
estimate for K p [Altera 2001].

Table III summarizes the key parameters used by the power estimation
equations, including the source of the value and where it is specified within
the RCSE framework. To test the accuracy of our power model, the estimated
FPGA power consumption is compared to the value generated by Altera’s Pow-
erPlay tool. PowerPlay is a tool within Altera’s Quartus-II FPGA development
environment used to obtain accurate power estimates of an FPGA design based
on a functional simulation of the final core (similar to the XPower Analyzer for
Xilinx FPGAs). Using these values with Eq. (3), an estimated power consump-
tion of 10.25 W is generated, compared to an estimate of 13.30 W from Power-
Play, resulting in a 3.05 W difference and a 22.9% error. In this case study, the
power estimation error is primarily caused by the derived value of Ures. The
value of Ures is calculated to be the average utilization of slices, BRAM, and
DSP resources by the core. Unfortunately, this average does not provide an
accurate representation of the core for power estimation purposes under sce-
narios where the utilization of one resource is very high compared to the other
two (e.g., the MD core has a very high memory utilization compared to slice
and DSP utilization).

Despite these limitations, results from early power prediction can provide
useful data to RC designers. Designers can obtain rough determinations
regarding the satisfaction of system power constraints from using their
FPGA design, or whether significant power savings will be achieved versus
an alternative device technology. Furthermore, this framework can track
the total energy consumption of the FPGA throughout the lifetime of the
application. The discrete-event device models track the total time the FPGA
core spends performing active computation compared to the entire length of
the application. By applying the total FPGA power consumption estimate to
active computation periods and the static power consumption estimate to the
remaining time, a prediction of the total energy consumption for the FPGA
ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 4, Article 25, Pub. date: November 2010.

25: 26 · C. Reardon et al.

can be calculated. Meanwhile, estimating the power consumption of other
components such as microprocessors, memories [Hicks et al. 1997], etc. is well
studied. Data sheet parameters or existing high-level models based on archi-
tectural parameters [Macii et al. 1998] can be used to obtain component power
approximations. Combining each component power consumption estimate
with the FPGA power consumption calculated by the simulation models will
provide an approximation of total system power consumption.

6. CONCLUSIONS

Thanks to an architectural reformation in computing that favors the use of de-
vice technologies exploiting explicit parallelism to achieve greater performance,
reconfigurable devices such as FPGAs are becoming an increasingly important
option for accelerating applications in high-performance and/or embedded com-
puting, from satellites to supercomputers. Unfortunately, RC devices cannot
deliver desirable speedup with all applications and their mappings to a partic-
ular system. Applications need to be carefully designed to effectively exploit
the parallelism of the underlying device technologies. As a result, an appli-
cation reformation is taking place where explicit parallelism in applications
is required to take advantage of emerging device technologies. To alleviate
the cost and difficulty of RC application and system development under these
two reformations, simulation early in the development process can provide a
relatively quick and cost-effective means to perform design-space exploration
involving applications and systems that incorporate RC devices. However, as
the architectural and application reformations continue, and RC systems and
applications scale in size and complexity, simulation times need to be managed
in order to provide researchers and engineers a timely method of exploring the
increasingly growing design space.

In this article, a framework for rapid simulations of applications on recon-
figurable systems was introduced, called the Reconfigurable Computing Sim-
ulation Environment, or RCSE. This framework divides the modeling process
into two domains, the application and simulation domains, which provides a
methodology for mapping arbitrary applications to a variety of RC systems fa-
cilitating rapid in-depth performance projections and analyses. The complexity
of simulating RC systems is managed by abstracting away the details of com-
putation. For the case of the RC device, the execution of a core is replaced
with an appropriate black-box model to represent the performance of the RC
device. This methodology was illustrated with a set of simulative case stud-
ies using two applications and three different RC systems. Validation results
showed our system models could predict the overall performance of the appli-
cation within a modest range of error, ranging from 0.45% to 6.74% in the case
studies presented in this article. After the application validation tests, a set
of simulative studies were presented to demonstrate the ability of the RCSE
framework to identify bottlenecks and trends in performance as various pa-
rameters pertaining to the application and system were varied. For example,
the MD case studies showed how performance gains on a distributed XD1000
system with more than four nodes could be obtained using a slightly modified
ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 4, Article 25, Pub. date: November 2010.

Rapid Analysis of RC Systems · 25: 27

FPGA core design. Finally, a case study was presented to illustrate the support
for power modeling of RC devices in our methodology using the MD applica-
tion core, which produced an FPGA power consumption estimate with a 22.9%
error.

Future work in this area will include expanding the model library to sup-
port additional new and emerging RC systems. Case studies featuring sys-
tems and applications employing partial reconfigurability will be performed as
well. Furthermore, a new formulation language is under development allow-
ing scientists to efficiently create an abstract model of their application and
system. The abstract model can then be fed to RCSE to complete the formula-
tion process. Finally, a detailed core modeler is being designed to allow users to
define the structure of their FPGA core design through a block-oriented inter-
face within the simulation environment. The detailed core modeler would then
analyze the core design after being mapped onto an RC device model. The de-
vice model interacts with the core design by providing micro-benchmark data
that characterizes specific behaviors within the device, such as memory access
delays and clock degradation as the chip is fully utilized.

ACKNOWLEDGMENTS

The authors gratefully acknowledge vendor equipment and/or tools provided by
Xlinx, Altera, MLDesign Technologies, SRC, Nallatech, and the George Wash-
ington University that helped make this work possible.

REFERENCES

ALAM, S., AGRAWAL, P., SMITH, M., VETTER, J., AND CALIGA, D. 2007. Using FPGA devices to
accelerate biomolecular simulations. IEEE Computer 39, 4, 66–73.

ALTERA. 2001. Evaluating power for altera devices. Application Note 74 version 3.1.
ANDERSON, J. H. AND NAJIM, F. N. 2004. Power estimation techniques for FPGAs. IEEE Trans.

VLSI Syst. 12, 10, 1015–1027.
BAKSHI, A., PRASANNA, V. K., AND LEDECZI, A. 2001. Milan: A model based integrated simula-

tion framework for design of embedded systems. In Proceedings of the ACM SIGPLAN workshop
on Languages, Compilers and Tools for Embedded Systems (LCTES’01). ACM, 82–93.

BONDALAPATI, K., AND PRASANNA, V. K. 2002. Reconfigurable computing systems. Proc.
IEEE 90, 7, 1201–1217.

BONDALAPATI, K. K. 2001. Modeling and mapping for dynamically reconfigurable hybrid archi-
tectures. Ph.D. thesis, University of Southern California, Los Angeles, CA.

BROWNE, S., DONGARRA, J., GARNER, N., HO, G., AND MUCCI, P. 2000. A portable program-
ming interface for performance evaluation on modern processors. Int. J. High Perf. Appli. 14, 3,
189–204.

BURGER, D., AND AUSTIN, T. M. 1997. The simpleScalar tool set, version 2.0. ACM SIGARCH
Comput. Architect. News 25, 3, 13–25.

CHANG, C.-I., REN, H., AND CHIANG, S.-S. 2004. Real-time processing algorithm for target de-
tection and classification in hyperspectral imagery. IEEE Trans. Geosci. Remote Sensing 39, 4,
760–768.

ENZLER, R., PLESSL, C., AND PLATZNER, M. 2005. System-level performance evaluation of recon-
figurable processors. Microprocess. Microsyst. 29, 2-3, 63–75. (Special Issue on FPGA Tools and
Techniques).

FU, W., AND COMPTON, K. 2006. A simulation platform for reconfigurable computing research.
In Proceedings of the International Conference on Field Programmable Logic and Applications.
(FPL’06). 1–7.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 4, Article 25, Pub. date: November 2010.

25: 28 · C. Reardon et al.

GARCIA, P., COMPTON, K., SCHULTE, M., BLEM, E., AND FU, W. 2006. An overview of reconfig-
urable hardware in embedded systems. EURASIP J. Embed. Syst., 1–19.

GROBELNY, E., BUENO, D., TROXEL, I., GEORGE, A., AND VETTER, J. 2007. FASE: A framework
for scalable performance prediction of HPC systems and applications. Simulation: Trans. Soc.
Model. Simul. Int. 83, 10, 721–745.

HAMERLY, G., PERELMAN, E., LAU, J., AND CALDER, B. 2005. Simpoint 3.0: Faster and more
flexible program phase analysis. J. Instruct.-Level Paral. 7, 1–28.

HICKS, P., WALNOCK, M., AND OWENS, R. M. 1997. Analysis of power consumption in memory
hierarchies. In Proceedings of International Symposium on Low Power Electronics and Design.
ACM, 239–242.

HOLLAND, B., NAGARAJAN, K., CONGER, C., JACONS, A., AND GEORGE, A. 2007. RAT: A method-
ology for predicting performance in application design migration to FPGAs. In Proceedings
of High-Performance Reconfigurable Computing Technologies and Apps Workshop (HPRTCA).
1–10.

LAFAGE, T., AND SEZNEC, A. 2001. Choosing representative slices of program execution for mi-
croarchitecture simulations: A preliminary application to the data stream. In Workload Charac-
terization of Emerging Computer Applications, Kluwer International Series in Engineering and
Computer Science Series, Kluwer Academic Publishers, 145–163.

LI, F., CHEN, D., HE, L., AND CONG, J. 2003. Architecture evaluation for power-efficient FP-
GAs. In Proceedings of the ACM/SIGDA International Symposium on Field Programmable Gate
Arrays. 175–184.

MACII, E., PEDRAM, M., AND SOMENZI, F. 1998. High-level power modeling, estimation, and op-
timization. IEEE Trans. Comput.-Aid. Des. Integ. Circ. Syst. 17, 11, 1061–1079.

MOHANTY, S., AND PRASANNA, V. K. 2007. A model-based extensible framework for efficient ap-
plicatin design using FPGA. ACM Trans. Des. Autom. Electr. Syst. 12, 2, 13.

MOHANTY, S., PRASANNA, V. K., NEEMA, S., AND DAVIS, J. 2002. Rapid design-space exploration
of heterogeneous embedded systems using symbolic search and multi-granular simulation. In :
Proceedings of the joint conference on Languages, Compilers and Tools for Embedded Systems
(LCTES/SCOPES’02). ACM, New York, 18–27.

PEARLMAN, D. A., CASE, D. A., CALDWELL, J. W., ROSS, W. S., CHEATHAM III, T. E., DEBOLT,
S., FERGUSON, D., SEIBEL, G., AND KOLLMAN, P. 1995. AMBER, a package of computer pro-
grams for applying molecular mechanics, normal mode analysis, molecular dynamics and free
energy calculations to simulate the structural and energetic properties of molecules. Comput.
Phys. Commun. 91, 1-3, 1–41.

PLLANA, S., AND FAHRINGER, T. 2005. Performance prophet: A performance modeling and predic-
tion tool for parallel and distributed programs. In Proceedings of the Internation Conference on
Parallel Processing. 509–516.

POON, K. K., WILTON, S. J., AND YAN, A. 2005. A detailed power model for field-programmable
gate arrays. ACM Trans. Des. Autom. Elect. Syst. 10, 2, 279–302.

SCHORCHT, G., TROXEL, I., FARHANIGAN, K., UNGER, P., ZINN, D., MICK, C., GEORGE, A. D.,
AND SALZWEDEL, H. 2003. System-level simulation modeling with mldesigner. In Proceedings
of the 11th IEEE/ACM International Symposium on Modeling, Analysis and Simulation of Com-
puter and Telecommunication Systems (MASCOTS). 207–212.

SMITH, M. C. AND PETERSON, G. D. 2002. Analytical modeling for high-peroformance recongi-
furable computers. In Proceedings of the SCS International Symposium on Performance Evalua-
tion of Computer and Telecommunications Systems (SPECTS).

SNAVELY, A., CARRINGTON, L., WOLTER, N., LABARTA, J., BADIA, R., AND PURKAYASTHA, A.
2002. A framework for performance modeling and prediction. In Proceedings of the ACM/IEEE
SC2002 Conference. 21–21.

STEFFEN, C. P. 2007. Parametrization of algorithms and fpga accelerators to predict performance.
In Proceedings of the Reconfigurable System Summer Institute (RSSI). 17–20.

TESSIER, R., AND BURLESON, W. 2001. Recongifugrable computing for digital signal processing:
A survey. J. VLSI Signal Proces. 28, 1-2, 7–27.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 4, Article 25, Pub. date: November 2010.

Rapid Analysis of RC Systems · 25: 29

UHLIG, R. A., AND MUDGE, T. N. 1997. Trace-driven memory simulation: A survey. ACM Comput.
Surv. 29, 2, 128–170.

WALKER, D. W. 1994. The design of a standard message passing interface for distributed memory
concurrent computers. Paral. Comput. 20, 4, 657–673.

WEISS, K., OETKER, C., KATCHAN, I., STECKSTOR, T., AND ROSENSTIEL, W. 2000. Power es-
timation approach for SRAM-based FPGAs. In Proceedings of the ACM/SIGDA International
Symposium on Field Programmable Gate Arrays. 195–202.

WUNDERLICH, R. E., WENISCH, T. F., FALSAFI, B., AND HOE, J. C. 2006. Statistical sampling of
microarchitecture simulation. ACM Trans. Mod. Comput. Simul. 16, 3, 197–224.

Received August 2008; revised February 2009; accepted April 2009

ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 4, Article 25, Pub. date: November 2010.

