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________________________________________________________________________ 
 
Run-Time Reconfiguration (RTR) has been traditionally utilized as a means for exploiting the flexibility of 
High-Performance Reconfigurable Computers (HPRCs). However, the RTR feature comes with the cost of high 
configuration overhead which might negatively impact the overall performance. Currently, modern FPGAs have 
more advanced mechanisms for reducing the configuration overheads, particularly Partial Run-Time 
Reconfiguration (PRTR). It has been perceived that PRTR on HPRC systems can be the trend for improving the 
performance. In this work, we will investigate the potential of PRTR on HPRC by formally analyzing the 
execution model and experimentally verifying our analytical findings by enabling PRTR for the first time, to the 
best of our knowledge, on one of the current HPRC systems, Cray XD1. Our approach is general and can be 
applied to any of the available HPRC systems. The paper will conclude with recommendations and conditions, 
based on our conceptual and experimental work, for the optimal utilization of PRTR as well as possible future 
usage in HPRC. 
 
Categories and Subject Descriptors: C.1.3 [Processor Architecture]: Other Architecture Styles - Adaptable 
architectures, Heterogeneous (hybrid) systems. 
General Terms: Design, Experimentation, Measurement, Performance 
Additional Key Words and Phrases: High Performance Computing, Field Programmable Gate Arrays (FPGA), 
Reconfigurable Computing, Dynamic Partial Reconfiguration 
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1. INTRODUCTION  

Reconfigurable Computers (RCs) have recently evolved from accelerator boards to stand-

alone general purpose RCs and parallel reconfigurable supercomputers called High 

Performance Reconfigurable Computers (HPRCs). Examples of such supercomputers are 

SRC-7 and SRC-6 [SRC 2006], SGI Altix/RASC [Silicon Graphics 2007], and Cray 

XT5h and Cray XD1 [Cray 2006]. In these systems, FPGAs are used to implement 

coprocessors to accelerate in hardware the critical functions causing the poor 

performance of the general purpose processors, following HW/SW codesign approaches. 

Several efforts have proved the significant speedup obtained by these systems for many 
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different applications [Aggarwal et al. 2006; Buell et al. 2004; Buell and Sandhu 2003; 

Court and Herbordt 2007; El-Araby et al. 2004; El-Araby et al. 2005; Harkins et al. 2005; 

Kindratenko and Pointer 2006; Michalski et al. 2003; Storaasli 2002] . 

However, one limitation of reconfigurable computing is that some large applications 

require more hardware resources than are available, and the complete design cannot fit in 

a single FPGA chip. One solution to this problem is (Full) Run-Time Reconfiguration 

(RTR). RTR, or FRTR as we will call it in our discussions, is an approach that divides 

applications into a number of modules with each module implemented as a separate 

circuit. These modules are dynamically uploaded onto the reconfigurable hardware as 

they become needed. Recent generations of FPGAs support Partial Run-Time 

Reconfiguration (PRTR) where application modules can be dynamically uploaded and 

deleted from the FPGA chip without affecting other running modules. In other words, in 

the FRTR approach the FPGA is fully configured while in the PRTR only parts of the 

FPGA are configured / reconfigured. The reconfiguration latency (time) introduces a 

significant overhead for FRTR. This is because most existing FPGAs use relatively slow 

interfaces for device configuration. Reconfiguration latency is a challenge in 

reconfigurable computing as it can offset the performance improvement achieved by 

hardware acceleration when dynamic FRTR is considered [El-Ghazawi et al. 2008]. For 

example, applications on some systems spend a considerable amount of their execution 

time performing reconfiguration [Bondalapati and Prasanna 1999; Buell et al. 2007; El-

Ghazawi et al. 2008; Gokhale et al. 2006; Tripp et al. 2005].  

As configuration time could be significant, eliminating or reducing this overhead 

becomes a very critical issue for reconfigurable systems. There have been significant 

efforts directed to address this problem within the domain of embedded systems by 

proposing / utilizing either FRTR or PRTR [Hasan et al. 2007; Hymel et al. 2007; Hübner 

and Becker 2006; Jeong et al. 1999; Ullmann et al. 2004]. On the other hand, many 

solutions based on hardware caching techniques, virtual memory models, and 

configuration pre-fetching algorithms have been proposed to utilize PRTR [Li et al. 2000; 

Li and Hauck 2002; Taher 2005; Taher et al. 2005] for HPRCs. Nevertheless, those 

proposals were based on simulation experiments with assumptions about PRTR that are 

far in the future beyond the current status of the technology.  

In this work, we investigate the performance potential of PRTR on HPRCs from a 

practical perspective. We provide a formal analysis of the execution model supported by 

experimental work. Our work enables PRTR on HPRCs for the first time, to the best of 

our knowledge, by utilizing one of the current HPRC systems, Cray XD1. Our approach 



is general and can be applied to any of the available HPRC systems. We also discuss our 

theoretical and experimental results highlighting the performance bounds of PRTR on 

HPRCs augmented with suggestions for possible future directions. 

This paper is organized such that section 2 provides a brief discussion of run-time 

reconfiguration and the concept of hardware virtualization as well as the current status of 

partial reconfiguration. Section 3 describes our analytical model and explains the 

formulation steps of this model. Section 4 shows the experimental work and presents the 

implementation of a partially reconfigurable architecture in Cray XD1. The experimental 

results for a set of hardware functions are shown in section 4. Section 5 provides a 

discussion of results and future directions. Finally, section 6 summarizes the conclusions. 

 

2. RUN-TIME RECONFIGURATION  

In most HPRC systems, FPGA devices are used as malleable coprocessors where 

components of the application can be implemented as hardware functions and be 

configured as needed. However, although the capacity of current FPGAs has grown 

significantly, a second look at hardware acceleration shows that this technique, at least in 

its conventional way, is not suitable to improve the performance of applications when the 

number of functions to be executed in hardware exceeds the chip area. The same problem 

happens when the number of simultaneously running applications in a given workload 

requiring hardware acceleration is increased. 

 

2.1 Hardware Virtualization 

Most of the proposed solutions in many previous research work [Li et al. 2000; Li and 

Hauck 2002; Taher 2005; Taher et al. 2005] is to reproduce the same strategies adopted 

in Operating Systems to support virtual memory such as dynamic loading, partitioning, 

overlaying, segmentation, and paging, etc. The basic idea behind these techniques is to 

virtually enlarge the size of the FPGA from the point of view of the applications. 

Therefore, the concept of “virtual hardware” is an effective and efficient technique to 

increase the availability of hardware resources, implement larger circuits or reduce the 

costs by adopting smaller FPGA when the performance can still be satisfied. The 

possibility to apply this concept requires using special capabilities of the FPGAs namely 

Full Run-Time Reconfiguration (FRTR) and/or Partial Run-Time Reconfiguration 

(PRTR). For example, PRTR has been proposed [Taher 2005] for multitasking and for 

cases of single applications that can change the course of processing in a non-

deterministic fashion based on data. In this model, hardware functions are grouped into 



hardware reconfiguration blocks (pages) of fixed size, where multiple pages can be 

configured simultaneously. By grouping only related functions that are typically 

requested together, processing spatial locality can be exploited. However, all these 

proposed techniques assume that the applications and related hardware functions are 

known previously and FRTR and/or PRTR are well supported on the system. Currently, 

this is true for FRTR while it is not the case for PRTR. Also, they do not take into 

consideration the architectural limitation of using partial reconfiguration on current 

HPRCs. To the end user, HPRC systems when compared to embedded systems are 

“closed black box” systems. Users do not have the possibility to modify the system nor 

have access to the FPGA configuration ports. They can only use the API functions 

provided by the vendor. With this regard, most of previous work is based on simulations 

rather than investigating such practical issues.  

 

2.2 Partial Reconfiguration 

Hardware, like software, can be designed modularly, by creating subcomponents which 

can then be instantiated by higher-level components. In many cases it is useful to be able 

to swap out one or several of these subcomponents while the FPGA is still operating. 

Normally, reconfiguring an FPGA requires it to be held in a reset state while an external 

controller reloads a design onto it. Partial reconfiguration allows for critical parts of the 

design to continue operating while a controller, which can be inside or outside the FPGA, 

loads a partial design into a reconfigurable module.  

Partial reconfiguration is supported by different FPGA vendors like Atmel and Xilinx. 

Xilinx FPGAs are the most popular partial reconfigurable devices among the PRTR 

community. Starting from the Virtex family, all Xilinx FPGAs can be partially 

reconfigured at run-time, that is, part of the chip configuration can be changed while the 

remaining parts continue their normal operation. The minimal unit that can be 

reconfigured is a frame, which is the smallest addressable segment of the configuration 

memory space. However, it is possible to change just one bit of the FPGA configuration, 

as long as the remaining bits of the frame enclosing it are unchanged. If some bits of the 

new frame do not change with respect to the existing configuration, it is guaranteed that 

there will be no glitches on these bits during the reconfiguration.  

From the functionality of the design, partial reconfiguration can be divided into two 

groups, i.e. dynamic partial reconfiguration and static partial reconfiguration. Dynamic 

partial reconfiguration, also known as an active partial reconfiguration, permits changing 

a part of the device while the rest of an FPGA is still running. In static partial 



reconfiguration the device is not active during the reconfiguration process. In other 

words, while the partial data is sent into the FPGA, the rest of the device is stopped (in 

the shutdown mode) and brought up after the configuration is completed. Additionally, 

there are two styles of partial reconfiguration of FPGA devices from Xilinx, i.e. module-

based and difference-based. In our experiments we followed the module-based style. 

Module-based partial reconfiguration allowed us to reconfigure distinct modular parts of 

the design [Xilinx 2004].  

Partial reconfiguration has to be supported by the design automation tools. They 

should allow the modification of some blocks of the design while maintaining the rest 

unchanged, and they should also ensure that the placement and routing of the block being 

modified does not overlap with other modules. Xilinx's solution to this problem is Early 

Access Partial Reconfiguration flow [Xilinx 2006] which is based on the Modular Design 

flow [Xilinx 2004]. In current versions of this software, Xilinx supports partial 

reconfiguration on Virtex II, Virtex II Pro, Virtex 4, and Virtex 5 FPGA lines. Modular 

Design flow permits building the final FPGA layout from separated modules, each 

located in a rectangular section of the device. First each module is implemented (mapped, 

placed and routed) separately, and then in a final assembly phase they are merged to 

construct the definitive layout. For example, in the layout shown in Figure 1 there are 

three regions used as configuration space for different application modules. One is a 

static region and the other two regions are dynamically reconfigurable regions typically 

called Partially Reconfigured Regions (PRRs). To change the hardware function of one 

of the regions using partial reconfiguration, the selected module for a given region is re-

implemented as a new design and then merged with other modules, previously created, 

for the static region and all remaining PRRs. As a result, only the PRR dedicated to the 

new module changes in the new layout, because the static region and other PRRs remain 

unmodified. 

 
(a) Virtex-II devices 

 
(b) Virtex-4 and Virtex-5 devices 

Fig. 1. Examples of partial reconfiguration arrangements 



Early Access Partial Reconfiguration ensures that both the placement and routing for 

a module will be confined to a rectangular area of the FPGA [Xilinx 2006]. However, a 

problem arises when trying to interconnect two regions, since the tool does not allow 

making external connections to other regions. The solution is to use a component just for 

interconnection purposes, which does not belong to any of the regions being connected. 

This component which is called bus-macro ensures the communication across the 

reconfigurable region boundaries and serves as a fixed routing bridge that connects the 

reconfigurable region with the remaining parts of the design. Xilinx implements the bus 

macro [Xilinx 2006] using pairs of look-up tables (LUTs): One LUT will be located in 

the area reserved for the first region, and the other in the space for the second region. 

Depending on the type of the selected bus macro, i.e. either “right2left” or “left2right”, 

the communication goes from one region to the second or vice versa. This component is 

implemented as a hard macro to avoid the routes going through region boundaries 

changing when re-implementing the partially reconfigurable region. Bus macros were 

useful for our experimental work. They enabled us to establish communication links 

between neighbor PRRs. 

 

3. EXECUTION MODEL FORMULATION 

In order to investigate the performance potential of PRTR on HPRCs and before 

conducting our experimental work, we derive a formal analysis of the execution model. 

This analysis would provide us with theoretical expectations which would serve as a 

frame of reference against which we can project our experimental results. In addition, it 

helps us gain in-depth insight about the boundaries and/or conditions for performance 

gain using PRTR. In achieving this objective, our approach is based on leveraging 

previous work and concepts that were introduced for solving similar and related 

problems. For example, we include in our analytical model the concept of configuration 

caching as proposed in [Li et al. 2000; Li and Hauck 2002; Taher 2005; Taher et al. 

2005]. In addition, we follow an approach in the derivation of the model similar to what 

has been proposed in [El-Araby 2005; El-Araby et al. 2006; Hadley and Hutchings 1995; 

Smith 2002; Smith and Peterson 2002; Taher et al. 2005]. 

 

3.1 Analysis 

In our analysis we assume that the system receives some applications as input, these 

applications are all designed around a common hardware library. Each application 

requires on the average a few hardware functions (tasks) that need to be executed on the 



reconfigurable system. The execution cycle for any task, i.e. function call, on an HPRC 

consists of the computation time, the total I/O time and an overhead time [El-Araby 

2005; El-Araby et al. 2006; Taher et al. 2005]. The I/O time is the time necessary to 

transfer data between the microprocessor and the FPGA. The overhead time consists of 

setup time, configuration time, and transfer of control time [El-Araby 2005; El-Araby et 

al. 2006; Taher et al. 2005] as shown in Figure 2(a). The transfer of control time is the 

time necessary to start a configured task. The setup time is the time spent for pre-fetching 

related tasks for configuration. In other words, the setup time is the time taken by the 

configuration caching algorithm to decide whether to configure or not to configure 

certain tasks which can equivalently be considered as the decision latency. Tasks need to 

be configured only if they do not exist on the FPGA when needed. This, of course, is 

based on the assumption that a pre-fetching algorithm as proposed in [Li et al. 2000; Li 

and Hauck 2002; Taher 2005; Taher et al. 2005] is being utilized. It is also assumed that 

pre-fetching and/or caching hardware tasks can be performed when the FPGA is divided 

into at least two PRRs. The baseline for our analysis is FRTR. In other words, we will 

consider PRTR with respect to FRTR to investigate the relative performance gain to that 

baseline. This will focus our discussions on applications that are broken down into 

hardware tasks only. Software tasks are excluded from our analysis because, we think, 

that would add unnecessary complications to model the partitioning schemes as well as 

the profiles of scheduling among software and hardware tasks. In addition, we assume 

that each task is fully characterized by its time requirement, Ttask, as shown in Figure 2(b). 

The I/O and computations of each task can be overlapped to further enhance the overall 

execution time as proposed in [El-Araby 2005; El-Araby et al. 2006]. However, the 

distribution of the time requirement for each task among data transfer and computations 

is not included in our model because it can be equivalently represented and masked out, 

for simplification, by the overall time requirement, Ttask. 

 
(a) Typical task profile 

 

 
(b) Modeled profile 

Fig. 2. Task profile on an HPRC 



The configuration pre-fetching (caching) algorithms as proposed in [Taher 2005; 

Taher et al. 2005] can be characterized by two parameters:  

 The decision latency (time) which is the setup time needed by the algorithm to 

make the configuration decision (i.e. to configure or not to configure) 

 The hit ratio of the caching algorithm which represents the percentage of the tasks 

that have been successfully pre-fetched to the FPGA and need not be reconfigured 

when needed 

The following notation will be used in our mathematical model: 

 ncalls is the total number of function (task) calls 

 nconfig is the number of (re-)configurations performed 

 Tsetup = Tdecision is the average setup time which equals the pre-fetching latency 

 Tcontrol is the average transfer of control time 

 Ttask is the average task execution time requirement 

 Tconfig = TFRTR is the full configuration time for FRTR 

 TPRTR is the average partial configuration time for PRTR 

 H is the hit ratio of the caching algorithm 

 M is the miss ratio of the caching algorithm (M  = 1-H) 

 TFRTR
total is the total execution time of FRTR 

 TPRTR
total is the total execution time of PRTR 

 S  is the speedup or performance gain of using PRTR relative to FRTR 

The total execution time for the case of FRTR, as shown in Figure 3, can be derived 

as follows: 
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It is worth to mention that Tdecision is not included in the derivation of the total 

execution time for FRTR. This is because configuration pre-fetching is only needed in the 

case of PRTR. When we normalize the variables with respect to the full configuration 

time, TFRTR, equation (1) can be rewritten as: 

 

FRTR

task
task

FRTR

control
control

FRTR

FRTR
totalFRTR

total

taskcontrolcalls
FRTR
total

T

T
Xand

T

T
X

T

T
Xwhere

XXnX





,,

1  (2)

 

Figure 4 shows the execution profiles of tasks using PRTR. In this scenario, tasks can 

be categorized as either missed tasks, see Figure 4(a), or pre-fetched (hit) tasks, see 

Figure 4(b).  As shown in Figure 4(a), the FPGA is assumed to be divided into at least 



two PRRs in order to simultaneously pre-fetch/cache missed tasks while other tasks are 

executing. 

 
Fig. 3. Typical execution profile using FRTR 

 
 

 
(a) Execution profile for missed tasks (i.e. tasks that need to be configured) using PRTR 

 

 
(b) Execution profile for pre-fetched tasks (i.e. tasks that do not need to be configured) using PRTR 

 

Fig. 4. Execution profile using PRTR 

Missed tasks are the tasks that do not exist on the FPGA when needed for execution 

while hit tasks are the tasks that have been previously pre-fetched to the FPGA and are 

available for execution when needed. In this scenario, the total execution time would be 

reduced by the amount of configuration overhead for the hit tasks by overlapping their 

configuration with the execution of previous tasks. Therefore, the total execution time for 

the case of PRTR, as shown in Figure 4, can be derived as follows: 
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Normalizing with respect to TFRTR, equation (3) can be rewritten as follows:  
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As defined earlier, nconfig, is the number of (re-)configurations corresponding to the 

missed tasks. It is obvious that the number of configurations, nconfig, is less than or equal 

to the total number of function calls, ncalls. Therefore, if we define the ratio of the number 

of configurations to the total number of calls as the pre-fetching miss-ratio, 

M=nconfig/ncalls, equation (4) can be rewritten as: 
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The performance gain (speedup) of PRTR in reference to FRTR can be expressed as 

follows by combining equations (2) and (5): 
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In order to estimate the upper bound of the performance of PRTR, we take the limit of 

equation (6) as the number of function calls increases indefinitely. This will help us 

estimate the asymptotic behavior of PRTR with respect to FRTR as follows: 
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Figure 5 shows the asymptotic speedup of PRTR as given by equation (7) when 

minimal pre-fetching latency, i.e. Xdecision=0, is assumed as well as zero overhead of 

transfer of control, i.e. Xcontrol=0. These overheads will reduce the final speedup if non-

zero values are considered. Figure 5 shows the bounds and conditions under which PRTR 

shows an asymptotic behavior. It can be seen in Figure 5 that PRTR speedup for tasks 

characterized by higher execution requirements than the full configuration time, i.e.  

Xtask>1, cannot exceed twice that of FRTR no matter how efficient the pre-fetching 

algorithm used is. The efficiency of the pre-fetching algorithm affects the speedup only 

when the task time requirement is less than the full configuration time and is comparable 

to the partial configuration time, i.e. XPRTR <Xtask<1 or 0 <Xtask<XPRTR, see Figure 5. For 

highly efficient pre-fetching characterized by high hit rate, i.e. H1, and M0, the 

speedup decreases monotonically with the task time requirement no matter how large or 

small the partial configuration overhead is. In this case, the speedup depends on the ratio 

between the task time requirement and the full configuration time. On the other hand, for 

much less efficient pre-fetching algorithms, characterized by low hit rate, i.e. H0, and  

 
 

(a) Xdecision=0, Xcontrol=0, H=1, M=0, XPRTR<1 

 



 
 

(b) Xdecision=0.15, Xcontrol=0.15, H=1, M=0, XPRTR<1 

 

 
 

(c) Xdecision=0, Xcontrol=0, H=0, M=1, XPRTR<1 

 

 
 

(d) Xdecision=0.15, Xcontrol=0.15, H=0, M=1, XPRTR<1 

 



 
 

(e) Xdecision=0, Xcontrol=0, H=0, M=1, XPRTR=1 

 

 
 

(f) Xdecision=0.2, Xcontrol=0.2, H=0, M=1, XPRTR=1 
 

Fig. 5. Asymptotic speedup of PRTR 

M1, the speedup reaches its maximum only for those tasks whose time requirement is 

equal to the partial configuration time, i.e. Xtask=XPRTR, see Figure 5. In this case, the 

speedup depends on the ratio between the average partial configuration time and the full 

configuration time. 

 

4. EXPERIMENTAL WORK 

Our experiments have been performed on Cray XD1, one of the current HPRCs [Cray 

2006]. The Cray XD1 is a multi-chassis system. Each chassis contains up to six nodes 

(blades). Each blade consists of two 64-bit AMD 2.4 GHz Opteron processors, one Rapid 

Array Processor (RAP) that handles the communication, an optional second RAP, and an 

optional Application Accelerator Processor (AAP). The AAP is a Xilinx Virtex-II Pro 



XC2VP50-7 FPGA with 16 MB of QDR-II SRAM local memory. The application 

acceleration subsystem acts as a coprocessor to the AMD Opteron processors, handling 

the computationally intensive and highly repetitive algorithms that can be significantly 

accelerated through parallel execution. Figure 6 shows Cray XD1 system architecture.  

 

Fig. 6. Cray XD1 architecture 

 

4.1 Partial reconfiguration in Cray XD1: setup and requirements 

On Xilinx FPGAs, only the JTAG and the parallel (also known as SelectMap) 

configuration interfaces support partial reconfiguration. High-end families like Virtex-II, 

Virtex-4 and Virtex-5 feature an internal access to the parallel interface, i.e. the Internal 

Configuration Access Port (ICAP), specifically designed for self-reconfiguration. These 

ports operate at a maximum of 66 MHz (8-bit configuration data) for the Virtex-II Pro 

devices available in Cray XD1. 

Support for RTR (FRTR) in Cray XD1 is performed by one of the vendor’s software 

API functions. This configuration function, when called, downloads a full bitstream using 

one of the external configuration interfaces previously mentioned, most probably 

SelectMap in this case. The configuration function, however, returns an error for partial 

bitstreams because of a simple check on the size of the bitstream. In other words, partial 

reconfiguration is not natively supported on Cray XD1. Therefore, in order to enable 



partial reconfiguration we see it necessary to modify the vendor’s configuration function 

by doing the following: 

 Do not check the bitstream size 

o Partial bitstreams have an undefined size from a few bytes to the maximum 

of full bitstream 

 Do not check the DONE signal of the configuration interface 

o This is typically overlooked 

o Partial bitstreams are downloaded when the FPGA is already configured, 

which means this signal will be always enabled during the reconfiguration 

process which will fail the check test 

However, modifications to the vendor API libraries are not usually possible. These 

libraries are not open to the user to modify. Therefore, our work-around approach was to 

use the only available configuration interface, i.e. ICAP. The use of this interface requires 

the implementation of an additional control circuit to receive the partial bitstream from 

the host memory, through the conventional data transfer channel between the host and the 

FPGA, and send it to the internal configuration port. This solution presents two 

disadvantages. First, the ICAP port is slower than the dedicated external configuration 

ports which results in higher reconfiguration time. Second, it is necessary to share the 

communication link between the host and the FPGA for transferring both the 

configuration bitstreams and needed data. However, this would not heavily impact the 

overall performance because the communication link in Cray XD1 is a dual channel link, 

i.e. it has two independent channels one for data input and another for data output. 

Therefore, it is possible to overlap the execution of tasks with configurations of other 

tasks as assumed by our analytical model and explained in section 3.1. In this case, partial 

reconfiguration can only be performed after the data has been transferred from the host to 

the FPGA (data input), thus overlapping the configuration with either computation time 

or the data transfer from the FPGA to the host (data output). Although, these two 

problems impact the final performance, the proposed approach enables PRTR on Cray 

XD1, and can be applied to any of the available HPRC systems. 

Figure 7 shows the implemented control unit in order to support partial 

reconfiguration. This control unit includes a small buffer using internal BRAM memories 

to store the partial bitstream. This buffer is necessary because the ICAP has a transfer rate 

of 66 MB/s while the Hypertransport channel bandwidth reaches 1.6 GB/s. In addition, 

buffering the configuration bitstreams in internal BRAM memories allows overlapping 

the transfer of input and /or output data with the configuration of partial bitstream. While 



the ICAP is reading the configurations from the BRAM memory, it would be possible to 

transfer data. Moreover, an additional state machine is implemented to control the 

communication between the host and BRAM memory as well as the communication 

between the BRAM memory and the ICAP. 

 
 

Fig. 7. Internal circuit to support partial reconfiguration using the ICAP configuration port 

 

4.2 Partial reconfiguration in Cray XD1: dynamic scenarios 

In Cray XD1 each FPGA is connected to four memory banks. Also, Cray provides a 

service (interface) block, called Rapid Transport (RT) core, that manages the access to 

these memories and the communication with the host. The RT core supports several 

mechanisms of data transfer between the user logic on the FPGA and the host processor. 

In a typical scenario the host sends the data to the local memory of the FPGA and the 

user logic reads the data from memory, processes the data, and returns the result back to 

memory which is then read back by the host. Additionally, there is a DMA mechanism 

that allows the user logic to initiate the transfer of data in both directions, i.e. write to and 

read from the host memory directly. 

In order to simplify the process of enabling partial reconfiguration, we will assume 

that the hardware functions use local memory banks to read and write the data, while the 

DMA capabilities are not used. In this configuration, a maximum of four hardware 

functions can be implemented if one memory bank is used as input and output. However, 

the final configuration (FPGA layout) that we used in our experiments supported both 

single and dual Partially Reconfigurable Regions (PRRs) in addition to the static region, 

see Figure 8. In the single PRR layout the four banks are available for use by the 

implemented functions in that PRR region. In the dual PRRs layout, two memory banks 

are assigned for each region. This is due to the limitations of partial reconfiguration in 

Virtex-II Pro devices, e.g. a frame includes a whole column of logic resources. 

Furthermore, the available resources for user logic are limited because XC2VP50 FPGA  



 

                  
(a) Single region layout (static region + 1 PRR) 

 

 

(b) Dual region layout (static region + 2 PRRs) 

Fig. 8. FPGA layouts in Cray XD1 
 

in Cray XD1 is not relatively a large device and the two PowerPC (PPC) hard cores 

occupy a fair amount of the FPGA fabric resources. 

Another important design consideration which is imposed by partial reconfiguration 

requirements is the implementation of FIFOs between each memory bank and its 

associated PRR. FIFOs reduced the impact of the fixed allocation of bus macros required 

to interconnect the PRRs with each others or with the static region. Also, FIFOs 

simplified the interface with the hardware functions and relaxed the constraint of 

minimum delay (maximum clock frequency) for the hardware functions. Furthermore, the 

implementation of FIFOs guaranteed data availability for the hardware functions when 

the memory was being read.  

Finally, it is worth to mention that the interface services block, i.e. RT core provided 

by Cray, the reconfiguration control unit, and FIFOs are included in the static region. The 

remaining area of the device is available for the dynamic PRRs, see Figure 8.  

 

4.3 Experimental Results 

For our experiments we selected the application of image feature extraction. In this 

particular application object edges were of interest and were extracted after first reducing 

high-frequency noise components. Two different algorithms were used for noise 

reduction. The final images were transferred back to the microprocessor for quality  



 

                  
(a) Median filter core in PRR 

 

 

(b) Complete layout for Median filter (Single PRR) 

 

(c) Sobel filter core in PRR1 
 

(d) Smoothing filter core in PRR2 

 

(e) Complete layout for Sobel and Smoothing filters (Dual PRRs) 

Fig. 9. FPGA layouts for some image processing cores in Cray XD1 



 

checks. More specifically, this application required the execution of a sequence of image 

processing functions, namely median filtering followed by sobel edge detection as well as 

smoothing filtering also followed by sobel edge detection, see Table I. These functions 

were implemented as hardware functions (cores or tasks) and were executed using both 

the single and dual PRR layouts. Figure 9 shows the two FPGA layouts for some of the 

implemented cores. Table II shows data transfer times, configuration times as well as the 

bitstream size associated with each layout configuration that we considered. The 

estimated configuration times for each region are calculated based on the size of the 

region, i.e. bitstream size, and the maximum throughput of the configuration port, i.e. 66 

MB/s for SelectMap in this case. These estimates represent a lower bound, i.e. best case 

scenario, for the configuration times. In addition, the estimated values for data transfers 

were based on the theoretical maximum bandwidth between the microprocessor and the 

FPGA as published in the datasheet [Cray 2006] of the testbed. This bandwidth is 

approximately 1422 MB/s in each [Cray 2006]. The measured values were different from 

the estimated due to overhead introduced by Cray API configuration function for the case 

of full configuration, and by the ICAP configuration scheme we used for the partial 

reconfiguration cases. Furthermore, on Cray XD1 there is a performance gap between 

microprocessor-initiated input transfers and output transfers. Output transfers from the 

 

Table I. Hardware functions and their resource requirements 

Hardware Function LUTs FFs BRAM 
Frequency 

(MHz) 

Static Region 3,372 (7%) 5,503 (11%) 25 (10%) 200 

PR Controller 418 (0%) 432 (0%) 8 (3%) 66 

Median Filter 3,141 (6%) 3,270 (6%) NA 200 

Sobel Filter 1,159 (2%) 1,060 (2%) NA 200 

Smoothing Filter 2,053 (4%) 1,601 (3%) NA 200 

 

 

 

 

 

 

 

 



Table II. Experimental values for model parameters 

Time (msec) Normalized Configuration time, XPRTR 
 

Data Size 
(Bytes) 

Estimated Measured Estimated Measured 

Full 
Configuration 

2381764 36.09 1678.04 1 1 

Single PRR 887784 13.45 43.48 0.37 0.026 

Dual PRR 404168 6.12 19.77 0.17 0.012 

Input Transfer 4194304 2.95 3.00 NA NA 

Output Transfer 4194304 2.95 641.10 NA NA 
 

FPGA to the microprocessor require the processor to wait for a response from the FPGA 

(in other words, the requested data). There is no mechanism for the processor to issue 

burst read requests to the FPGA or to have multiple outstanding read requests. As a 

result, the microprocessor can write to the FPGA much more efficiently than it can read. 

This fact is explicitly stated by Cray in [Cray 2006] and verified by our experiments as 

shown in Table II. 

It is worth to mention that the pre-fetching mechanism adopted for our experiments is 

a worst-case implementation. The goal of our experiments was to show the independent 

performance behavior of PRTR compared to that of FRTR with minimal contribution 

from the pre-fetching techniques. Based on our previous discussion in section 3.1, this 

case can be considered as the one in which the least efficient pre-fetching algorithm was 

implemented. In other words, our hypothetical configuration pre-fetching always misses 

tasks when needed and always reconfigures the called tasks. This can be modeled by  

 
(a) Single PRR results normalized w.r.t. estimated 

configuration time, TFRTR=36.09 ms 

 

 
(b) Single PRR results normalized w.r.t. measured 

configuration time, TFRTR= 1678.04 ms 

Xdecision=0, Xcontrol≈0 
H=0, M=1, XPTR=0.026 

Xdecision=0, Xcontrol≈0 
H=0, M=1, XPTR=0.37 



 
(c) Dual PRR results normalized w.r.t. estimated 

configuration time, TFRTR=36.09 ms 

 
(d) Dual PRR results normalized w.r.t. measured 

configuration time, TFRTR= 1678.04 ms 
 

Fig. 10. Experimental results of PRTR in Cray XD1 
 

Xdecision=0, M=1, H=0. In addition, the transfer of control time was measured to be 

minimal compared to other parameters. The task time requirement was varied by 

changing the amount of data transferred to/from and processed by the task. In other 

words, this was performed by changing the image size. The parameters that we measured 

in our experiments for both cases of single and dual PRR layouts were as follows: 

 ncalls  , Tdecision = 0, Tcontrol  10 µsec 
 H = 0, M = 1 

 

5. DISCUSSION AND FUTURE DIRECTIONS 

Figure 10 shows the results collected in our experiments for both scenarios of a single 

PRR and dual PRRs. It can be seen that the results are in good agreement with what is 

predicted by the model. However, the experimental results are slightly deviated from the 

theoretical expectations because of the transfer of control overhead. It can also be 

noticed, by comparing Figure 10(a) with 10(c) and 10(b) with 10(d), that the speedup for 

the case of dual PRR is almost double that of the single PRR layout. This is due to the 

fact that the size of the single PRR is as twice as that of the dual PRR, see Figure 8 and 

Table II. It is worth to mention that the entries in Table II under the data size column for 

the “Input Transfer” and “Output Transfer” refer to the size of the image being filtered 

while the entries for “Full Configuration”, “Single PRR”, and “Dual PRR” refer to the 

size of the corresponding configuration bitstream in bytes. 

As shown in the experimental results, the relative positioning of the task time 

requirements with respect to the full configuration time affects significantly the achieved 

speedup. For example, in the best configuration scenario the full configuration time is 

estimated to take only 36 ms, see Table II, while most of the data-intensive tasks require 

Xdecision=0, Xcontrol≈0 
H=0, M=1, XPTR=0.17 

Xdecision=0, Xcontrol≈0 
H=0, M=1, XPTR=0.012 



larger execution time given the I/O bandwidth, i.e. 1422 MB/s, on Cray XD1. In this 

case, PRTR speedup is bounded to twice the speedup of FRTR, see Figure 10(a) and 

10(c). For less data-intensive tasks, the PRTR cannot exceed 7 times the speedup of 

FRTR for dual PRR layout and 3.86 times the speedup of FRTR for a single PRR layout, 

see Figure 10(a) and 10(c). This speedup is dependent on the ratio between the partial 

configuration time and the full configuration time, i.e. XPRTR. However, in a realistic 

situation on Cray XD1 the full configuration time, as shown in Table II, is much larger, 

i.e. 1.7 seconds, than the requirements for the majority of tasks including those tasks that 

are data-intensive. Only in this case, where FRTR overhead is high, PRTR is more 

beneficial. The peak speedup, again depending on XPRTR, can reach up to 87x higher than 

the speedup of FRTR for dual PRR layout and up to 40x for single PRR layout, see 

Figure 10(b) and 10(d). In other words, in order to achieve the optimal speedup of fully 

dynamic partial reconfigurable systems through PRTR, the partitions (PRRs) must be so 

fine grained to match the task time requirements, i.e. XPRTR=Xtask. This would reduce the 

configuration overhead and increase the system density in terms of the number of 

Partially Reconfigured Regions (PRRs) per chip.  

Given the analytical findings as well as the experimental results, we conclude that 

PRTR support on HPRCs can be beneficial from the performance perspective. However, 

these benefits are insignificant performance offsets for a broad range of applications as 

compared to those of FRTR. Moreover, given the current status of the technology these 

benefits are associated with many conditions and practical requirements. These practical 

considerations might overweight the gains especially when productivity is added to the 

picture. For example, the current design cycle for PRTR increases exponentially with the 

number of implemented tasks and PRRs. All permutations among the tasks across all 

PRRs must be implemented before PRTR is utilized. This increases dramatically the 

development time. With future support of Operating Systems for PRTR, we see PRTR as 

compared to FRTR is far more beneficial for versatility purposes, multi-tasking 

applications, and hardware virtualization than it is for plain performance. Nevertheless, 

improving versatility and providing more efficient support for multi-tasking and 

hardware virtualization will positively impact the overall performance. 

 

6. CONCLUSIONS 

In this paper we presented an effort of High-Performance Reconfigurable Computing 

(HPRC) support for Partial Run-Time Reconfiguration (PRTR). We investigated the 

performance potential of PRTR on HPRCs from both theoretical and practical 



perspectives. In doing so, we derived a formal and an analytical model of PRTR on 

HPRC systems relative to the baseline of Full Run-Time Reconfiguration (FRTR). The 

model provided us with theoretical expectations which served as a frame of reference 

against which we projected our experimental results. In addition, it helped us gain in-

depth insight about the boundaries and/or conditions for possibilities of performance gain 

using PRTR. In achieving this objective, our approach was based on leveraging previous 

work and concepts that were introduced for solving similar and related problems. For 

example, we included in our analytical model the concept of configuration caching (pre-

fetching) which is usually associated with PRTR. 

In conducting the experimental work, we utilized one of the current HPRC systems, 

Cray XD1. We discussed the issues of PRTR support on HPRCs and provided 

recommendations for vendor support. We also discussed the requirements and the setups 

for PRTR on Cray XD1. Our setup included the design of a special configuration control 

unit managing the configuration of different layouts of Partially Reconfigured Regions 

(PRRs). The approach we followed for Cray XD1 is general and can be applied to any of 

the available HPRC systems. 

Based on our analytical and experimental findings, we see hardware virtualization and 

multi-tasking using PRTR from a versatility perspective as good directions for further 

investigations. 
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