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While the promise of achieving speedup and additional benefits such as high performance per
watt with FPGAs continues to expand, chief among the challenges with the emerging paradigm
of reconfigurable computing is the complexity in application design and implementation. Before a
lengthy development effort is undertaken to map a given application to hardware, it is important
that a high-level parallel algorithm crafted for that application first be analyzed relative to the tar-
get platform, so as to ascertain the likelihood of success in terms of potential speedup. This article
presents the RC Amenability Test, or RAT, a methodology and model developed for this purpose,
supporting rapid exploration and prediction of strategic design tradeoffs during the formulation
stage of application development.
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1. INTRODUCTION

Computing is currently undergoing two reformations, one in device architec-
ture and the other in application development. Using the growth in transistor
density predicted by Moore’s Law for increased clock rates and instruction-
level parallelism has reached fundamental limits, and the nature of current
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and future device architectures is focused upon higher density in terms of
multicore and many-core structures and more explicit forms of parallelism.
Many such devices exist and are emerging on this path, some with a
fixed structure (e.g., quad-core CPU, Cell Broadband Engine) and some
reconfigurable (e.g., FPGAs). Concomitant with this reformation in device
architecture, the complexity of application development for these fixed or re-
configurable devices is at the forefront of fundamental challenges in computing
today.

The development of applications for complex architectures can be defined in
terms of four stages: formulation, design, translation, and execution. The pur-
pose of formulation is exploration of algorithms, architectures, and mappings,
where strategic decisions are made prior to coding and implementation. The
design, translation, and execution stages are where implementation occurs in
an iterative fashion, in terms of programming, translation to executable codes
and cores, debugging, verification, performance optimization, etc. As archi-
tecture complexity continues to increase, so too does the importance of the
formulation stage, since productivity increases when design weaknesses are
discovered and addressed early in the development process. FPGA applica-
tions are particularly noteworthy for the amount of effort needed with existing
languages and tools to render a successful implementation, and thus produc-
tivity of application development for FPGA-based systems can greatly benefit
from better concepts and tools in the formulation stage. This article presents
a novel methodology and model to support the rapid formulation of applica-
tions for FPGA-based reconfigurable computing systems. Known as the RC
Amenability Test, RAT provides a framework for rapid prediction of potential
speedup for a given high-level parallel algorithm mapped to a selected hard-
ware target, so that a variety of strategic tradeoffs in algorithm and archi-
tecture exploration can be evaluated before undertaking weeks or months of
costly implementation.

The need for the RAT methodology stemmed from common difficulties en-
countered during several FPGA application development projects. Researchers
would typically possess a software application but would be unsure about po-
tential performance gains in hardware. The level of experience with FPGAs
would vary greatly among the researchers and inexperienced designers were
often unable to quantitatively project and compare possible algorithmic design
and FPGA platform choices for their application. Many initial predictions were
haphazardly formulated and performance estimation methods varied greatly.
Consequently, RAT was created to consolidate and unify the performance pre-
diction strategies for faster, simpler, and more effective analyses.

Three factors are considered for the amenability of an application to hard-
ware: throughput, numerical precision, and resource usage. The authors be-
lieve that these issues dominate the overall effectiveness of an application’s
hardware mapping. Consequently, analyses for these three factors comprise
the majority of the RAT methodology. The throughput analysis uses a series
of simple equations to predict the performance of the application based upon
known parameters (e.g., interconnect speed) and values estimated from the
proposed design (e.g., volume of communicated data). Numerical precision
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analysis is a subset of throughput encompassing the design trade-offs in
performance associated with possible algorithm data formats and their as-
sociated error. Resource analysis involves estimating the application’s hard-
ware usage in order to detect designs that consume more than the available
resources.

With the computing reformation increasing interest in parallel algorithms
for the RC paradigm, achieving speedup with FPGAs over traditional CPUs is
often a major performance goal. Consequently, accurate throughput analysis
is the primary focus of the RAT methodology. While numerical precision, re-
source utilization, and other issues such as development time or power usage
are not trivial, they are less likely to be the sole contributor to the failure of an
application migration when speedup is the primary goal. Consequently, this
article details the analytic model for estimating performance along with other
considerations for effective usage of RAT. The complete methodology targets
common algorithm and architecture features, primarily deterministic struc-
tures and communication between an FPGA accelerator and its host CPU. The
model is meant to provide reasonable approximations of performance with
minimal effort, and its intended usage is illustrated on several case studies.
Errors less than 20% are generally considered acceptable for RAT predictions,
though this paper attempts to provide greater accuracy where possible as fur-
ther validation of the analytic model. RAT is intended to provide efficient and
quantitative algorithm and platform exploration as a first step in uncovering
suitable hardware mappings. It does not (and should not) replace design-time
simulative and analytic models based on actual code but works synergistically
to ensure the later stages of design focus on the most promising algorithm and
platform choices.

The remainder of this article is structured as follows. Section 2 discusses
background related to FPGA performance prediction and resource utilization.
The fundamental analyse comprising the RAT methodology are detailed in
Section 3. A detailed walkthrough illustrating the usage of RAT with a real
application is in Section 4. Section 5 presents additional case studies using
RAT to further explore the accuracy of the performance prediction methodol-
ogy. Conclusions and future work are discussed in Section 6.

2. RELATED WORK

Efficient performance modeling for algorithms and systems is an ongoing area
of research for traditional parallel computing. The Parallel Random Access
Machine (PRAM) [Fortune and Wyllie 1978] attempts to model the critical
(and hopefully small) set of algorithm and platform attributes necessary to
achieve a better understanding of the greater computational interaction and
ultimately the application performance. The LogP model [Culler et al. 1993]
(one successor to PRAM) abstracts the computing bandwidth, communication
bandwidth, communication delay, and efficiency of coupling communication
and computation. LogGP [Alexandrov et al. 1997] and additional revisions
such as heterogeneous LogGP (HLogGP) [Bosque and Perez 2004] provide
further modeling fidelity to LogP by addressing specific issues such as
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bandwidth constraints for long messages and heterogeneous system resources,
respectively. The Bulk Synchronous Parallel (BSP) [Valiant 1990] model ex-
tends PRAM to include support for architecture-independent algorithm de-
scriptions and analyses. However, these concepts are not limited to large-scale
systems of general-purpose processors. The evolution towards heterogeneous
many-core devices necessitates increased modeling research and usage due to
rising development time and cost. In particular, RAT seeks to leverage these
ideas of maximizing model flexibility (through parameterization) and fidelity
(through analytic methods).

Understanding and improving algorithm design for FPGAs is an expanding
area of RC research. A performance prediction technique presented in Steffen
[2007] seeks to parameterize the computational algorithm and the FPGA
system itself. The analytic methods have similarities to RAT but the empha-
sis is on projecting potential bottlenecks due to memory throughput, not on
predicting total system performance. Dynamo [Quinn et al. 2007] involves
performance prediction of image processing systems partitioned and compiled
at runtime from existing pipelined kernels. The system provides dynamic op-
timization for application construction exclusively from existing modules and
assumes that efficient algorithm design and analysis is completed prior to the
use of Dynamo. Herbordt et al. [2007] present 12 design techniques for maxi-
mizing the performance of FPGA applications. This research is synergistic to
RAT by potential reducing the number of algorithm and architecture iterations
necessary to achieve suitable performance, however the RAT methodology is
still required to quantitatively evaluate each design iteration.

Simulation is another common outlet for quantifying the performance of RC
application models at a high level. One technique [Smith and Peterson 2005]
focuses on analytic modeling of shared heterogeneous workstations contain-
ing reconfigurable computing devices. The methodology primarily emphasizes
system-level, multi-FPGA architectures with variable computational loading
due to the multi-user environment. In Grobelny et al. [2007], a framework for
simulation of FPGA systems and applications is built on top of the Fast and
Accurate Simulation Environment (FASE). Models are created for the Mission-
Level Designer (MLD) tool based on scripts of algorithm behavior to rapidly
explore large-scale FPGA systems. Another simulation framework is the Hy-
brid System Architecture Model (HySAM) coupled with DRIVE [Bondalapati
2001]. HySAM provides mechanisms for parameterizing architectures, defin-
ing algorithms, and simulating interactions, while DRIVE provides tools for
visualizing results generated by HySAM. Enzler et al. [2005], SimpleScalar
and ModelSIM are combined for system analysis through simultaneous proces-
sor emulation and VHDL simulation. Another tool [Fu and Compton 2006]
uses a Simics-based simulator for capturing precise memory-access patterns
while functionally verifying hardware kernels. While each of these methodolo-
gies provides high-level simulation fidelity, significant cost is associated with
setting up the requisite models. Either actual hardware or software code is
required or effort is spent on constructing custom simulation inputs distilled
from algorithm and system behavior. In contrast, RAT seeks to render perfor-
mance prediction of the application and FPGA platform prior to any significant

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 4, Article 22, Pub. date: January 2009.



RAT: RC Amenability Test for Rapid Performance Prediction · 22: 5

hardware or software coding. By using analytic models instead of simulation
frameworks, prediction effort is minimized while maintaining reasonable ac-
curacy. RAT is currently scoped for single-FPGA platforms, but insight about
modeling larger systems can be leveraged from the multi-FPGA simulation
frameworks.

Though prediction is quite common with FPGA technologies, it is not pri-
marily used for system-level performance. Routing is a common target for
device-level prediction due to the impact on development time and perfor-
mance. In Fang and Rose [2008], a model of the algorithm routing demands is
created early in the FPGA development cycle. In Manohararajah et al. [2006],
prediction is used to mitigate the variability and long run times of commercial
place and route tools for estimating interconnect delay. Other issues including
timing [Xu and Kurdahi 1999], routability [Brown et al. 1993], interconnect
planning [Singh and Marek-Sadowska 2002], and routing delay [Singh et al.
2005] are explored via prediction. Performance is also explored by modeling
issues such as power [Degalahal and Tuan 2005] and wafer yield [Maidee and
Bazargan 2006]. Many of these prediction techniques for lower-level issues mi-
grated from application-specific integrated circuits into the RC domain to more
efficiently model the growing complexity of FPGAs. Similarly, RAT and other
methodologies are branching to RC from existing areas of parallel applica-
tion modeling to bridge the growing need for efficient, high-level performance
prediction.

3. RC AMENABILITY TEST

Figure 1 illustrates the basic methodology behind the RC amenability test.
These throughput, numerical precision, and resource tests serve as a basis for
determining the viability of an algorithm design on the FPGA platform prior
to any FPGA programming. Again, RAT is intended to address the perfor-
mance of a specific high-level parallel algorithm mapped to a particular FPGA
platform, not a generic application. The results of the RAT tests must be
compared against the designer’s requirements to evaluate the success of the
design. Though the throughput analysis is considered the most important
step, the three tests are not necessarily used as a single, sequential procedure.
Often, these tests are applied iteratively during the RAT analysis until a suit-
able version of the algorithm is formulated or all reasonable permutations are
exhausted without a satisfactory solution. The throughput test is a suitable
starting-point for an application wishing to match the numerical precision and
general architecture of a legacy algorithm. However, starting with the numer-
ical precision and resources tests to refine an application prior to throughput
analysis is equally viable.

3.1 Throughput

For RAT, the predicted performance of an application is defined by two terms:
communication time between the CPU and FPGA, and FPGA computation
time. Reconfiguration and other setup times are ignored. These two terms
encompass the rate at which data flows through the FPGA and rate at which
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Fig. 1. Overview of RAT Methodology.

operations occur on that data, respectively. Because RAT seeks to analyze
applications at the earliest stage of hardware mapping, these terms are re-
duced to the most generalized parameters. The RAT throughput test primarily
models FPGAs as accelerators to general-purpose processors with burst com-
munication but the framework can be adjusted for applications with streaming
data.

Calculating the communication time is a relatively simplistic process given
by Equations (1), (2), and (3). The overall communication time is defined as
the summation of the read and write components. For the individual reads
and writes, the problem size (i.e., number of data elements, Nelements) and the
numerical precision (i.e., number of bytes per element, Nb ytes/element) must be
decided by the user with respect to the algorithm. Note that for these equa-
tions, the problem size only refers to a single block of data to be buffered by the
FPGA system. All read or write communication for the application need not
occur as a single transfer but can instead be partitioned into multiple blocks
of data to be independently sent or received. Multiple transfers are consid-
ered in a subsequent equation. The hypothetical bandwidth of the FPGA/CPU
interconnect on the target platform (e.g., 133MHz 64-bit PCI-X which has a
documented maximum throughput of 1GB/s) is also necessary but is generally
provided either with the FPGA subsystem documentation or as part of the in-
terconnect standard. An additional parameter, α, represents the fraction of
ideal throughput performing useful communication. The actual sustained per-
formance of the FPGA interconnect is typically a fraction of the documented
transfer rate.

tcomm = tread + twrite (1)

tread =
Nelements · Nbytes/element

αread · throughputideal

(2)

twrite =
Nelements · Nbytes/element

αwrite · throughputideal

. (3)
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Microbenchmarks composed of simple data transfers can be used to estab-
lish the true communication throughput. The communication times for these
block transfers are measured and compared against the theoretical intercon-
nect throughput to establish the α parameters. It is important for microbench-
marks to closely match the communication methods used by real applications
on the target FPGA platform to accurately model the intended behavior. In
general, microbenchmarks are performed over a wide range of possible data
sizes. The resulting α values can be tabulated and used in future RAT analy-
ses for that FPGA platform. By separating the effective throughput into the
theoretical maximum and the α fraction, effects such as changing the intercon-
nect type and efficiency can be explored separately. This fidelity is particularly
useful for hypothetical or otherwise unavailable FPGA platforms.

Before further equations are discussed, it is important to clarify the con-
cept of an “element.” Until now, the expressions “problem size,” “volume of
communicated data,” and “number of elements” have been used interchange-
ably. However, strictly speaking, the first two terms refer to a quantity of bytes
whereas the last term has units of elements. RAT operates under the assump-
tion that the computational workload of an algorithm is directly related to the
size of the problem dataset. Because communication times are concerned with
bytes and (as will be subsequently shown) computation times revolve around
the number of operations, a common term is necessary to express this relation-
ship. The element is meant to be the basic building block which governs both
communication and computation. For example, an element could be a value in
an array to be sorted, an atom in a molecular dynamics simulation, or a single
character in a string-matching algorithm. In each of these cases, some num-
ber of bytes will be required to represent that element and some number of
calculations will be necessary to complete all computations involving that ele-
ment. The difficulty is establishing what subset of the data should constitute
an element for a particular algorithm. Often an application must be analyzed
in several separate stages, since each portion of the algorithm could interpret
the input data in a different scope.

Estimating the computational component, as given in Equation (4), of the
RC execution time is more complicated than communication due to the con-
version factors. Whereas the number of bytes per element is ultimately a
fixed, user-defined value, the number of operations (i.e., computations) per ele-
ment must be manually measured from the algorithm structure. Generally, the
number of operations will be a function of the overall computational complexity
of the algorithm and the types of individual computations involved. Addition-
ally, as with the communication equation, a throughput term, throughputproc

is also included to establish the rate of execution. This parameter is meant
to describe the number of operations completed per cycle. For fully pipelined
designs, the number of operations per cycle will be a consistent portion of the
number of operations per element, though the two terms are often equal for ele-
ments with linear computational complexity. Less optimized designs will have
lower throughput, requiring multiple cycles to complete an element. Some de-
signs may not use pipelining but process several elements per unit time via
multiple parallel kernels. Again, note that computation time essentially refers

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 4, Article 22, Pub. date: January 2009.



22: 8 · B. Holland et al.

to the time required to operate on the data provided by one communication
transfer. (Applications with multiple communication and computation blocks
are resolved when the total FPGA execution time is computed later in this
section.)

tcomp =
Nelements · Nops/element

fclock · throughputproc

. (4)

Despite the potential unpredictability of algorithm behavior, estimating a
sufficiently precise number of operations is still possible for many types of ap-
plications. However, predicting the average rate of operation execution can be
challenging even with detailed knowledge of the target hardware design. For
applications with a highly deterministic pipeline, the procedure is straightfor-
ward. Throughput can be modeled as accurately as possible or adjustments
can be made for optimistic or pessimistic predictions. But for interdependent
or data-dependent operations, the problem is more complex. For these sce-
narios, a better approach would be to treat throughputproc as an independent
variable and select a desired speedup value. Then one can solve for the par-
ticular throughputproc value required to achieve that desired speedup. This
method provides the user with insight into the relative amount of parallelism
that must be incorporated for a design to succeed. The molecular dynamics
case study in Section 5 illustrates a complex algorithm where the throughput
requirements are based on the desired speedup.

Similar to an element, one must also examine what is an “operation.”
Consider an example algorithm composed of a 32-bit addition followed by a
32-bit multiplication. The addition can be performed in a single clock cycle,
but to save resources the 32-bit multiplier might be constructed using the
Booth algorithm requiring 16 clock cycles. Arguments could be made that
the addition and multiplication would count as either two operations (addi-
tion and multiplication) or 17 operations (addition plus 16 additions, the basis
of the Booth multiplier algorithm). Either formulation is correct provided that
throughputproc is formulated with the same assumption about the scope of an
operation. Often, deterministic and highly structured algorithms are better
viewed with the number of operations synonymous with the number of cycles.
In contrast, complex or nondeterministic algorithms tend to be viewed as a
number of abstract number of operations with an average rate of execution.
Ultimately, either choice is viable and left to the preference of the user.

Figure 2 illustrates the types of communication and computation interac-
tion to be modeled with the throughput test. Single buffering (SB) repre-
sents the most simplistic scenario with no overlapping tasks. However, a
double-buffered (DB) system allows overlapping communication and compu-
tation by providing two independent buffers to keep both the processing and
I/O elements occupied simultaneously. Since the first computation block can-
not proceed until the first communication sequence has completed, steady-
state behavior is not achievable until at least the second iteration. However,
this startup cost is considered negligible for a sufficiently large number of
iterations.
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Fig. 2. Example Overlap Scenarios.

The FPGA execution time, tRC, is a function not only of the tcomm and
tcomp terms but also the amount of overlap between communication and com-
putation. Equations (5) and (6) model both SB and DB scenarios. For SB,
the execution time is simply the summation of the communication time, tcomm,
and computation time, tcomp. With the DB case, either the communication or
computation time completely overlaps the other term. The smaller latency
essentially becomes hidden during steady state. The DB case is included for
completeness of the RAT model, however the case studies focus on the SB
scenario.

The RAT analysis for computing tcomp primarily assumes one algorithm
“functional unit” operating on a single buffer’s worth of transmitted informa-
tion. The parameter Niter is the number of iterations of communication and
computation required to solve the entire problem.

tRCSB
= Niter · (tcomm + tcomp) (5)

tRCDB
≈ Niter · Max(tcomm, tcomp) . (6)

Assuming that the application design currently under analysis was based
upon available sequential software code, a baseline execution time, tsoft, is
available for comparison with the estimated FPGA execution time to predict
the overall speedup. As given in Equation (7), speedup is a function of the total
application execution time, not a single iteration.

speedup =
tsoft

tRC

. (7)

Related to the speedup is the computation and communication utilization
given by Equations (8), (9), (10), and (11). These metrics determine the frac-
tion of the total application execution time spent on computation and commu-
nication for the SB and DB cases. For SB, the computation utilization can
provide additional insight about the application speedup. If utilization is high,
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Fig. 3. Trends for computational utilization in SB and DB scenarios.

the FPGA is rarely idle thereby maximizing speedup. Low utilizations can in-
dicate potential for increased speedups if the algorithm can be reformulated
to have less (or more overlapped) communication. In contrast to computation
that is effectively parallel for optimal FPGA processing, communication is se-
rialized. Whereas computation utilization gives no indication about the overall
resource usage, since additional FPGA logic could be added to operate in par-
allel without affecting the utilization, the communication utilization indicates
the fraction of bandwidth remaining to facilitate additional transfers since the
channel is only a single resource. For DB, assuming steady-state behavior, the
implications of the utilization terms are slightly different. The larger value,
whether communication or computation, will have a utilization of 1. If compu-
tation is the shorter (i.e., overlapped) time, utilization illustrates how starved
the computation is for data. If communication is the shorter time, utilization
is a measure of the available throughput to support additional parallel compu-
tation. An example of these utilization trends is shown in Figure 3.

utilcompSB
=

tcomp

tcomm + tcomp

(8)

utilcommSB
=

tcomm

tcomm + tcomp

(9)

utilcompDB
=

tcomp

Max(tcomm, tcomp)
(10)

utilcommDB
=

tcomm

Max(tcomm, tcomp)
. (11)

3.2 Numerical Precision

Application numerical precision is typically defined by the amount of fixed-
or floating-point computation within a design. With FPGA devices, where
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increased precision dictates higher resource utilization, it is important to use
only as much precision as necessary to remain within acceptable tolerances.
Because general-purpose processors have fixed-length data types and readily
available floating-point resources, it is reasonable to assume that often a given
software application will have at least some measure of wasted precision. Con-
sequently, effective migration of applications to FPGAs requires a method to
determine the minimum necessary precision before any translation begins.

While formal methods for numerical precision analysis of FPGA applica-
tions are important, they are outside the scope of this paper. A plethora of re-
search exists on topics including maintaining precision with mixed data types
[Buttari et al. 2007], automated conversion of floating-point software programs
to fixed-point hardware designs [Banerjee et al. 2003], design-time precision
analysis tools for RC [Chang and Hauck 2002], and custom or dynamic bit-
widths for maximizing performance and area on FPGAs [Bondalapati and
Prasanna 1999; Gaffar et al. 2002; Perri et al. 2004; Wang et al. 2006].
Application designs are meant to capitalize on these numerical precision tech-
niques and then use the RAT methodology to evaluate the resulting algorithm
performance. Numerical precision must also be balanced against the type
and quantity of available FPGA resources to support the desired format. For
example, 18-bit fixed point may be used in Xilinx FPGAs since it maximizes
usage of single 18-bit embedded multipliers. As with parallel decomposition,
numerical formulation is ultimately the decision of the application designer.
RAT provides a quick and consistent procedure for evaluating these design
choices.

3.3 Resources

By measuring resource utilization, RAT seeks to determine the scalability
of an application design. Empirically, most FPGA designs will be limited in
size by the availability of three common resources: on-chip memory, hardcore
functional units (e.g., fixed multipliers), and basic logic elements (i.e., look-up
tables and flip-flops).

On-chip RAM is readily measurable since some quantity of the memory will
likely be used for I/O buffers of a known size. Additionally, intra-application
buffering and storage must be considered. Vendor-provided wrappers for in-
terfacing designs to FPGA platforms can also consume a significant number of
memories but the quantity is generally constant and independent of the appli-
cation design.

Although the types of dedicated functional units included in FPGAs can
vary greatly, the hardware multiplier is a fairly common component. The de-
mand for dedicated multiplier resources is highlighted by the availability of
families of chips (e.g., Xilinx Virtex-4 and -5 SX series) with extra multipliers
versus other comparably sized FPGAs. Quantifying the necessary number of
hardware multipliers is dependent on the type and amount of parallel oper-
ations required. Multipliers, dividers, square roots, and floating-point units
use hardware multipliers for fast execution. Varying levels of pipelining and
other design choices can increase or decrease the overall demand for these
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resources. With sufficient design planning, an accurate measure of resource
utilization can be taken for a design given knowledge of the architecture of the
basic computational kernels.

Measuring basic logic elements is the most common resource metric. High-
level designs do not empirically translate into any discernible resource count.
Qualitative assertions about the demand for logic elements can be made based
upon approximate quantities of arithmetic or logical operations and regis-
ters. But a precise count is nearly impossible without an actual hardware de-
scription language (HDL) implementation. Above all other types of resources,
routing strain increases exponentially as logic element utilization approaches
maximum. Consequently, it is often unwise (if not impossible) to fill the entire
FPGA.

Currently, RAT does not employ a database of statistics to facilitate
resource analysis of an application for complete FPGA novices. The usage of
RAT requires some vendor-specific knowledge (e.g., single-cycle 32-bit fixed-
point multiplications with 64-bit resultants on Xilinx Virtex-4 FPGAs require
four dedicated 18-bit multipliers). Additionally, the user must consider trade-
offs such as using fixed resources versus logic elements and computational
logic versus lookup tables. Resource analyses are meant to highlight general
application trends and predict scalability. For example, the structure of the
molecular dynamics case study in Section 5 is designed to minimize RAM us-
age and the parallelism is ultimately limited by the availability of multiplier
resources.

3.4 Scope of RAT

The analytic model described in Section 3.1 establishes the basic scope of
RAT as a strategic design methodology to formulate predictions about algo-
rithm performance and RC amenability. RAT is intended to support a diverse
collection of platforms and application fields because the methodology focuses
on the common structures and determinism within the algorithm. Commu-
nication and computation are related to the number of data elements in the
algorithm. Effective usage of the performance prediction models requires mit-
igation of variabilities in the algorithm structure such as data-driven com-
putation. Based on the complexity of the algorithm and architecture, the
RAT model may be used to directly predict performance or instead establish
minimum throughput requirements based on the desired speedup. RAT cur-
rently targets systems with a single CPU and FPGA as a first step towards
a broad RC methodology. The FPGA device is considered a coprocessor to
the CPU but can initiate some operations independently such as DMA. Even
for single-FPGA systems, a range of issues related to parallelism and scal-
able can be explored. RAT is scoped to make a convenient and impactful
model that not only integrates broader issues such as numerical precision
and resource utilization but also contribute to the larger goal of better par-
allel algorithm formulation and design-space exploration. Future research
will expand the RAT methodology for larger scale prediction on multi-FPGA
systems.
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4. WALKTHROUGH

To simplify the RAT analysis in Section 3, a worksheet can be constructed
based upon Equations (1) through (11). Users simply provide the input para-
meters and the resulting performance values are returned. This walkthrough
further explains key concepts of the throughput test by performing a detailed
analysis of a real application case study, one-dimensional probability density
function (PDF) estimation. The goal is to provide a more complete description
of how to use the RAT methodology in a practical setting.

4.1 Algorithm Architecture

The Parzen window technique [Nagarajan et al. 2008] is a generalized non-
parametric approach to estimating probability density functions (PDFs) in a
d-dimensional space. The common parametric forms of PDFs (e.g., Gaussian,
Binomial, Rayleigh distributions) represent mathematical idealizations and,
as such, are often not well matched to densities encountered in practice.
Though more computationally intensive than using histograms, the Parzen
window technique is mathematically advantageous. For example, the result-
ing probability density function is continuous therefore differentiable. The
computational complexity of the algorithm is of order O(Nnd) where N is the
total number of data samples (i.e., number of elements), n is the number of
discrete points at which the PDF is estimated (comparable to the number of
“bins” in a histogram), and d is the number of dimensions. A set of mathe-
matical operations are performed on every data sample over nd discrete points.
Essentially, the algorithm computes the cumulative effect of every data sam-
ple at every discrete probability level. For simplicity, each discrete probability
level is subsequently referred to as a bin.

In order to better understand the assumptions and choices made during
the RAT analysis, the chosen algorithm for PDF estimation is highlighted
in Figure 4. A total of 204,800 data samples are processed in batches of 512
elements against 256 bins. Eight separate pipelines are created to process data
samples with respect to a particular subset of bins. Each data sample is an
element with respect to the RAT analysis. The data elements are fed into the
parallel pipelines sequentially. Each pipelined unit can process one element
with respect to one bin per cycle. Internal registering for each bin keeps a
running total of the impact of all processed elements. These cumulative totals
comprise the final estimation of the PDF function.

4.2 RAT Input Parameters

Table I provides a list of all the input parameters necessary to perform a RAT
analysis. The parameters are sorted into four distinct categories, each refer-
ring to a particular portion of the throughput analysis. Note that Nelements is
listed under a separate category when it is used by both communication and
computation. It is assumed that the number of elements dictating the compu-
tation volume is also the number of elements that are input to the application
(although the effective bit-widths may differ due to the fixed width of the com-
munication channel). While applications can exhibit unusual computational
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Fig. 4. Parallel algorithm and mapping for 1-D PDF.

Table I. Input Parameters for RAT

Dataset Parameters

Nelements, input (elements)
Nelements, output (elements)
Nbytes/element (bytes/element)

Communication Parameters

throughputideal (MB/s)
αwrite 0 < α < 1
αread 0 < α < 1

Computation Parameters

Nops/element (ops/element)
throughputproc (ops/cycle)
fclock (MHz)

Software Parameters

tso f t (sec)
Niter (iterations)

trends or require significant amounts of additional data (e.g., constants, seed
values, or lookup tables), these instances may be considered uncommon. Alter-
ations can be made to account for uncorrelated communication and computa-
tion but such examples are not included in this paper.

Table II summarizes the input parameters for RAT analysis of the specified
algorithm for 1-D PDF estimation. The dataset parameters are generally the
first values supplied by the user, since the number of elements will ultimately
govern the entire algorithm performance. Though the entire application in-
volves 204,800 data samples, each iteration of the 1-D PDF estimation will
involve only a portion, 512 data samples, or 1/400 of the total set. This algo-
rithm effectively consumes all of the input values. Only one cumulative value
is left after each iteration per bin but these results are retained on the FPGA.
Values are only transferred back to the host after computation for all iterations
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Table II. Input Parameters of 1-D PDF

Dataset Parameters

Nelements, input (elements) 512
Nelements, output (elements) 1
Nbytes/element (bytes/element) 4

Communication Parameters (Nallatech)

throughputideal (MB/s) 1000
αwrite 0 < α < 1 0.099
αread 0 < α < 1 0.001

Computation Parameters

Nops/element (ops/element) 768
throughputproc (ops/cycle) 20
fclock (MHz) 75/100/150

Software Parameters

tso ft (sec) 0.578
Niter (iterations) 400

is complete. The final output communication must be represented as individ-
ual partial transfers, one per iteration, to correspond with the RAT model, but
the throughput efficiency is adjusted to correspond with a single block of data.

The number of bytes per element, Nb ytes/element, is rounded to four (i.e.,
32 bits). Even though the PDF estimation algorithm only uses 18-bit fixed
point, the interconnect uses 32-bit communication. The data was not byte-
packed and the remaining 14 bits per word of communication are unused.
During the algorithmic formulation, several formats including 18-bit fixed
point, 32-bit fixed point, and 32-bit floating point were considered for use
in the PDF algorithm. However, the maximum error percentage was found
to be only 3.8% for 18-bit fixed point, which is satisfactory precision for the
application. Ultimately 18-bit fixed point was chosen so that only one Xilinx
18 × 18 multiple-accumulate (MAC) unit would be needed per multiplication.
Though slightly smaller bitwidths also had reasonable error constraints, no
performance gains or appreciable resource savings would have been achieved.

The communication parameters are provided by the user since they are
merely a function of the target RC platform, which is a Nallatech H101-PCIXM
card containing a Virtex-4 LX100 user FPGA for this case study. The card is
connected to the host CPU via a 133MHz PCI-X bus which has a theoretical
maximum bandwidth of 1GB/s. The α parameters were computed using a mi-
crobenchmark consisting of a read and write for data sizes comparable to those
used by the 1-D PDF algorithm. The resulting read and write times were mea-
sured, combined with the transfer size to compute the actual communicate
rates, and finally used to calculate the α parameters by dividing by the theo-
retical maximum. The α parameters for the target FPGA platform are low due
to communication protocols and middleware used by Nallatech atop PCI-X and
high latencies associated with the small 2KB (512 × 4B) transfers.

The computation parameters are the more challenging portion of RAT per-
formance prediction, but are still simplistic given the deterministic behavior
of PDF estimation. As mentioned earlier, each element that comes into the
PDF estimator is evaluated against each of the 256 bins. Each computation
requires 3 operations: comparison (subtraction), multiplication, and addition.
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Therefore, the number of operations per element totals 768 (i.e., 256 × 3).
This particular algorithm structure has 8 pipelines that each perform 3 opera-
tions per cycle for a total of 24. However, this value is conservatively rounded
down to 20 to account for implementation details such as pipeline latency and
computation overhead. This conservative parameter was selected prior to the
algorithm coding and has not (nor has any parameter for any case study) been
adjusted for any “fudge factor” created from runtime data. Preimplementation
adjustments to the RAT parameters such as reducing the throughput value
are not required but are sometimes useful to create more optimistic or pes-
simistic predictions and account for application- or platform-specific behaviors
not modeled by RAT. Similarly, a range of throughput values could be exam-
ined to explore the effect on performance when the implementation is better or
worse than expected. However, this case study focuses on a specific value for
each parameter to validate the RAT model.

While previous parameters could be reasonably inferred from the deter-
ministic structure of the algorithm, a priori estimation of the required clock
frequency is very difficult. Empirical knowledge of FPGA platforms and al-
gorithm design practices provides some insight as to a range of likely values.
However, attaining a single, accurate estimate of the maximum FPGA clock
frequency achieved is generally impossible until after the entire application
has been converted to a hardware design and analyzed by an FPGA vendor’s
layout and routing tools. Consequently, a number of clock values ranging from
75MHz to 150MHz for the LX100 are used to examine the scope of possible
speedups.

The software parameters provide the last piece of information necessary to
complete the speedup analysis. The software execution time of the algorithm is
provided by the user. Often, software legacy code is the basis for the hardware
migration initiative. FPGA development could be based directly on mathe-
matical models, but there would be no baseline for evaluating speedup. The
baseline software for the 1-D PDF estimation was written in C, compiled us-
ing gcc, and executed on a 3.2 GHz Xeon. Lastly, the number of iterations is
deduced from the portion of the overall problem to reside in the FPGA at any
one time. Since the user decided to only process 512 elements at a time from
the set of 204800 element set, there must be 400 (i.e., 204800/512) iterations
of the algorithm. The case study is implemented in VHDL.

4.3 Predicted and Actual Results

The RAT performance numbers are compared with the experimentally mea-
sured results in Table III. Each predicted value in the table is computed using
the input parameters and equations listed in Section 3.1. For example, the
predicted computation time when fclk =150MHz is calculated as follows:

tcomp =
512 elements · 768 ops/element

150 MHz · 20 ops/cycle

=
393216 ops

3E+9 ops/sec
= 1.31E-4 secs .
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Table III. Performance Parameters of 1-D PDF (Nallatech)

Predicted Predicted Predicted Actual

fclk (MHz) 75 100 150 150
tcomm (sec) 2.47E-5 2.47E-5 2.47E-5 2.50E-5
tcomp (sec) 2.62E-4 1.97E-4 1.31E-4 1.39E-4
utilcommSB

9% 11% 16% 15%
utilcompSB

91% 89% 84% 85%
tRCSB

(sec) 1.15E-1 8.85E-2 6.23E-2 7.45E-2
speedup 5.0 6.5 9.3 7.8

The communication time is computed using the corresponding equation. Be-
cause the application is single-buffered, the total RC execution time is simply:

tRCSB
= 400 iterations · (2.47E-5 secs + 1.31E-4 secs)

= 6.23E-2 secs .

The speedup is simply the division of the software execution time by the
RC execution time. The utilization is computed using the corresponding SB
equations.

The communication and computation times for the actual FPGA code were
measured using the wall-clock time of the CPU. The error in the prediction of
the communication time was minimal, approximately 1%, due to detailed mi-
crobenchmarking for these exact transfer sizes. A relatively accurate tcomp pre-
diction is expected given the deterministic structure of the parallel algorithm.
However, the high degree of accuracy (two significant figures) between the pre-
dicted and actual computation times with fclk =150MHz was unusual, since the
computational throughput was a conservatively estimated parameter. Much of
the 1-D PDF algorithm is pipelined but the lower effective throughput, due to
the latency in the short 0.14ms of computation time, closely matched the con-
servatively estimated value for throughputproc (i.e., the 20 ops/cycle used in the
RAT prediction instead of the theoretical 24). Also, this lower throughput ac-
counted for extra overhead time involved with polling the FPGA for completion
of computation.

The total execution time for the FPGA is also measured using the wall-clock
time, rather that calculated from Equation (5), to ensure maximum accuracy.
Additional factors may be present in the total time that are not accounted in
the individual communication and computation. In this case study, the total
error was 16% but the comunication and computation errors were only 1% and
6%, respectively. The discrepancy is due to overheads with managing and reg-
ulating data transfers by the host CPU that are not expressly part of the indi-
vidual RAT models. The impact of these overheads and other synchronization
issues will vary depending upon the particular FPGA platform and size of the
overhead time relative to the total RC execution time. For 1-D PDF, the extra
8.5ms was significant compared to the 75ms of execution time. The relatively
low resource usage in Table IV illustrates a potential for further speedup by
including additional parallel kernels albeit at the risk of increasing the impact
of the system overhead.
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Table IV. Resource Usage of 1-D PDF (XC4VLX100)

FPGA Resource Utilization

BRAMs 15%
48-bit DSPs 8%
Slices 16%

5. ADDITIONAL CASE STUDIES

Several case studies are presented as further analysis and validation of the
RAT methodology: 2-D PDF estimation, coordinate calculation for LIDAR
processing, the traveling salesman problem, and molecular dynamics. Two-
dimensional PDF estimation continues to illustrate the accuracy of RAT for
algorithms with a deterministic structure. Coordinate calculation uses pre-
diction on a communication-bound algorithm. Traveling salesman explores a
computation-bound searching algorithm with pipelined structure. However,
the molecular dynamics application serves as a counterpoint given the relative
difficulty of encapsulating its data-driven, non-deterministic computations. A
diverse collection of vendor platforms, Nallatech, Cray, SRC, and XtremeData,
is used for 2-D PDF, LIDAR, traveling salesman, and molecular dynamics, re-
spectively. Each of these case studies has single-buffered communication and
computation. As with one-dimensional PDF estimation, the design emphasis
is placed on throughput analyses because the overall goal is to minimize exe-
cution time for these designs.

These RAT case studies represent a range of experiences with estimating
computational throughput based on different user backgrounds and prediction
emphases. Consequently, 2-D PDF estimation, LIDAR, and traveling salesman
focus on more exact throughput parameterization in contrast to the conserva-
tive prediction in 1-D PDF. However, the performance of molecular dynamics
could not be reliably estimated prior to implementation because of the diffi-
culty of analyzing the complex and data-dependent algorithm structure as de-
scribed by a high-level language. Instead, the target throughput is computed
from the speedup requirements. While this prediction will be inaccurate if the
minimum throughput is unrealizable, the RAT estimation provides a starting
point for implementation and insight about the performance ramifications of a
suboptimal architecture.

5.1 2-D PDF Estimation

As previously discussed, the Parzen window technique is applicable in an
arbitrary number of dimensions [Nagarajan et al. 2008]. However, the two-
dimensional case presents a significantly greater problem in terms of commu-
nication and computation volume than the original 1-D PDF estimate. Now
256 × 256 discrete bins are used for PDF estimation and the input data set is
effectively doubled to account for the extra dimension. The basic computation
per element grows from (N − n)2 + c to ((N1 − n1)2 + (N2 − n2)2 + c where N1 and
N2 are the data sample values and n1, n2 are the probability levels for each
dimension, and c is a probability scaling factor. But despite the added com-
plexity, the increased quantity of parallelizable operations intuitively makes
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Table V. Input Parameters of 2-D PDF

Dataset Parameters

Nelements, input (elements) 1024
Nelements, output (elements) 65536
Nbytes/element (bytes/element) 4

Communication Parameters (Nallatech)

throughputideal (MB/s) 1000
αwrite 0 < α < 1 0.147
αread 0 < α < 1 0.026

Computation Parameters

Nops/element (ops/element) 196608
throughputproc (ops/cycle) 48
fclock (MHz) 75/100/150

Software Parameters

tso ft (sec) 158.8
Niter (iterations) 400

Table VI. Performance Parameters of 2-D PDF (Nallatech)

Predicted Predicted Predicted Actual

fclk (MHz) 75 100 150 100
tcomm (sec) 1.01E-2 1.01E-2 1.01E-2 1.06E-2
tcomp (sec) 5.59E-2 4.19E-2 2.80E-2 4.46E-2
utilcommSB

15% 19% 27% 19%
utilcompSB

85% 81% 73% 81%
tRCSB

(sec) 2.64E+1 2.08E+1 1.52E+1 2.21E+1
speedup 6.0 7.6 10.4 7.2

this algorithm amendable to the RC paradigm, assuming sufficient quantities
of hardware resources are available.

Table V summarizes the input parameters for the RAT analysis for our 2-D
PDF estimation algorithm. Again, the computation is performed in a two-
dimensional space, so twice the number of data samples are sent to the FPGA.
In contrast to the 1-D case, the 65,535 (256 × 256) PDF values are sent back to
the host processor after each iteration of computation due to memory size con-
straints on the FPGA. The same numerical precision of four bytes per element
is used for the dataset. The interconnect parameters model the same Nallatech
FPGA card as in the 1-D case study but for different transfer sizes. The αread

term is small for the relatively large output of 65,536 elements because data is
transferred in 256 batches of 256 elements each, incurring a large latency over-
head. Each of the 65,536 bins requires three operations for a total of 196,608
operations. Eight kernels, each containing two pipelines (one per dimension),
perform three operations per pipeline per cycle for a total of 48 simultaneous
computations per cycle. Again, the same range of clock frequencies is used for
comparison. The software baseline for computing speedup values was written
in C and executed on the same 3.2GHz Xeon processor. The algorithm requires
the same 400 iterations to complete the computation and VHDL is also used.

The RAT performance predictions are listed with the experimentally mea-
sured results in Table VI. These three predictions are based on the range of
clock frequency values listed in Table V, but the accuracy of the actual 100MHz
design is only evaluated against the comparable 100MHz prediction. The
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Table VII. Resource Usage of 2-D PDF (XC4VLX100)

FPGA Resource Utilization

BRAMs 21%
48-bit DSPs 33%
Slices 22%

communication time is within 5% of the predicted value with a discrepancy
of 0.5 milliseconds again due to accurate microbenchmarking of the Nallatech
board’s PCI-X interface. This difference is potentially significant given the 400
iterations required to perform this algorithm. The overall impact on speedup is
further affected by variation in the computation time. An underestimation by
approximately 2.7 milliseconds creates a total discrepancy just over 3 millisec-
onds per iteration. This larger error in the computational throughput parame-
ter as compared to 1-D PDF is due to the more exact modeling of the pipeline
behavior without adjustments for potential overhead. These overheads from
pipeline latency and polling were assumed insignificant due to the length of
the overall execution time but instead had noticeable effect each iteration. In
total, the speedup was 6% less than the predicted speedup. This error mar-
gin is excellent given the fast and coarse-grained prediction approach of RAT
compounded over hundreds of iterations. Greater attention to communication
behavior and the nuances of the computation structure can further reduce this
error if desired. To the extent possible while maintaining fast performance es-
timation, insight about shortcomings in previous RAT predictions can be fac-
tored into future projects to further boost accuracy. Comparing Table VII to the
resource utilization from the 1-D algorithm, the hardware usage has increased
but still has not nearly exhausted the resources of the FPGA. Additional par-
allelism could be exploited to improve the performance of the 2-D algorithm if
additional revisions are desired.

5.2 Coordinate Calculation for LIDAR

Airborne light detection and ranging (LIDAR) [Shih et al. 2008] is emerging as
an important remote sensing modality for providing high-resolution position
information on targets of interest, primarily ground-based features such as
terrain topology, from long distances. LIDAR processing begins with the calcu-
lation of the Cartesian coordinates of the LIDAR targets based upon the travel
time of the laser beam (i.e., range ρ), angle of the scan (θ ), GPS (Global Posi-
tioning System) coordinates of the airplane (Xac, Yac, Z ac), and aircraft attitude
(roll φr, pitch φp, and yaw φy). For this case study, the laser continuously pro-
vides target range information at a rate of 33kHz while the GPS coordinates
only update at 1Hz and the aircraft attitude at 5Hz. Interpolation is used to
map each LIDAR return with a specific GPS coordinate and aircraft attitude.

For this algorithm, coordinate calculation is constructed as one pipeline on
a single node of a Cray XD1 system consisting of a Xilinx XC2VP50 user FPGA
connected to a host Opteron processor via the RapidArray interconnect. The
algorithm is comprised of six steps for each LIDAR return. First, interpolation
of the GPS coordinates and aircraft attitude is performed for the particular
return value. Second, the unit vector between the laser source and the target
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Table VIII. Input Parameters of LIDAR

Dataset Parameters

Nelements, input (elements) 33000
Nelements, output (elements) 33000
Nbytes/element (bytes/element) 8

Communication Parameters (Cray)

throughputideal (MB/s) 1600
αwrite 0 < α < 1 0.5
αread 0 < α < 1 0.5

Computation Parameters

Nops/element (ops/element) 1
throughputproc (ops/cycle) 1
fclock (MHz) 100/125/150

Software Parameters

tso f t (sec) 0.011
Niter (iterations) 1

is computed from the scan angle. The third and fourth steps generate three
rotation matrices to align the aircraft attitude with the GPS coordinate and
apply the matrices to the unit vector, respectively. Fifth, a range vector is
produced by scaling the rotated unit vector by the target’s range. Sixth, the
range vector is translated into the coordinate space relative to the aircraft
GPS position. Equation (12) summarizes the mathematical computations of
the steps where S and C abbreviate to sine and cosine operations, respectively.





X

Y

Z



 =





ρ(CφyCφrSθ − CφySφrCφpSθ − SφySφrSθ )) + Xac

ρ(SφyCφrSθ − SφySφrCφpCθ − CφySφrCθ )) + Yac

ρ(−SφrSθ − CφrCφpCθ ) + Z ac



 . (12)

Table VIII summarizes the RAT input parameters of the algorithm for coor-
dinate calculation. The input date size of 33,000 elements is based on one sec-
ond of LIDAR returns (i.e., the time between GPS updates). A corresponding
number of GPS coordinates is returned by the calculations. The X , Y , and Z

dimensions of the LIDAR returns and GPS coordinates each use a 16-bit fixed-
point format. A total of 48 bits is sent using the 64-bit (8-byte) RapidArray in-
terconnect. This channel has a documented theoretical throughput of 1.6GB/s
per direction but microbenchmarking indicates only half the rate is achievable
for these data transfers. Because the computation is pipelined, the number
of operations per element is synonymous with the number of elements. The
pipeline can process one operation (i.e., element) per cycle. The exact depth of
the pipeline is not known a priori but the extra latency is presumed negligible
when compared to the size of the dataset. A range of clock frequencies is ex-
amined to predict the scope of the overall speedup. The software baseline was
written in C and executed on a 2.4GHz Opteron processor, the host CPU for the
Cray XD1 node. Only one iteration (i.e., GPS interval) is required for this case
study and VHDL is used to implement the parallel algorithm in hardware.

Table IX compares the RAT performance predictions with the actual
125MHz experimental results. The structure of the particular Cray SRAM
interface overlaps computation and DMA transfers back to the CPU (i.e., tread).

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 4, Article 22, Pub. date: January 2009.



22: 22 · B. Holland et al.

Table IX. Performance Parameters of LIDAR (Cray)

Predicted Predicted Predicted Actual

fclk (MHz) 100 125 150 125
tcomm (sec) 6.60E-4 6.60E-4 6.60E-4 5.65E-4
tcomp (sec) 3.30E-4 2.64E-4 2.20E-4 2.25E-4
utilcommSB

33% 29% 25% 28%
utilcompSB

67% 71% 75% 72%
tRCSB

(sec) 9.90E-4 9.24E-4 8.80E-4 7.90E-4
speedup 11.0 11.8 12.4 13.8

Table X. Resource Usage of LIDAR (XC2VP50)

FPGA Resource Utilization

BRAMs 12%
18x18 Multipliers 5%
Slices 45%

Consequently, the total RC execution time was directly measurable but the
individual computation and communication times for the actual result were
estimated from the total execution time based on the expected latency of the
computation. Two general conclusions were that both the computation and
communication times were overestimated by RAT but that the utilization ra-
tios were still fairly consistent with expectations. Unlike the previous case
studies, the total speedup was underestimated by 16%. This discrepancy in
speedup was primarily due to the difference in communication times. The ac-
tual computation pipeline is believed to correspond closely with the high-level
algorithm. The communication and comptution times of 565µs and 225µs are
likely comparable to the system overhead and measurement error causing not-
icable discrepancies and the unusual behavior of a pessimistic prediction even
with the generalized analytic model. Though extra performance as compared
to RAT projections may be an unexpected benefit for the algorithm, the goal of
the methodology is precise prediction that considers all major factors to perfor-
mance. Adjustments to the model for more accurate prediction of short commu-
nication and computation may be necessary. Table X highlights the availability
of unused resources to expand the parallel computation but the benefit will be
marginal because of the communication-bound algorithm.

5.3 Traveling Salesman Problem

The traveling salesman problem (TSP) [Tschoke et al. 1995] is a particular
version of the NP-complete Hamiltonian path problem that locates the mini-
mum length path through an undirected, weighted graph in which each vertex
(i.e., city) is visited exactly once. (Other derivations of the Hamiltonian path
problem include the snake-in-the-box, knight’s tour, and the Lovász conjec-
ture.) For this algorithm, any city may be the starting point and all cities are
connected to every other city creating N! potential Hamiltonian paths, where
N is the number of cities. To accelerate the time to converge on a solution,
heuristics are sometimes employed to systematically search a subset of the
solution space. However, the algorithm for this case study performs an ex-
haustive search on all paths in the graph. The specific algorithm formulation
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Table XI. Input Parameters of TSP

Dataset Parameters

Nelements, input (elements) 81
Nelements, output (elements) 1
Nbytes/element (bytes/element) 8

Communication Parameters (SRC)

throughputideal (MB/s) 1400
αwrite 0 < α < 1 0.03
αread 0 < α < 1 0.03

Computation Parameters

Nops/element (ops/element) 4782969
throughputproc (ops/cycle) 9
fclock (MHz) 100

Software Parameters

tso ft (sec) 2.22
Niter (iterations) 1

has significant ramifications not only on the hardware performance but also
on the prediction accuracy.

The case study targets SRC Computer’s SRC-6 FPGA platform. Within the
SRC-6, the algorithm uses one of the Xilinx XC2V6000 user FPGAs in a single
MAP-B unit. The FPGA is connected to a host processor via the vendor’s SNAP
(memory DIMM slot) interconnect. Nine depth-first traversals of the graph
occur simultaneously on a single FPGA starting from each of the nine differ-
ent cities. Techniques such as branch and bound are not used because each
step of the search would be dependent on the previous steps, thus preventing
any pipelining. Instead, the algorithm starts with selecting N arbitrary cities
(and their N−1 edges) all at once and is then followed by determination of path
validity and length (i.e., if all cities were visited exactly once, report the total
distance traveled). The individual steps are not interrelated and the examina-
tion of possible paths can be pipelined. However, unlike the branch-and-bound
technique which backtracks in the middle of paths to avoid revisiting cities,
the hardware pipeline operates on full N-length paths, even those invalid
because of repeated cities. Extra computation is required but substantially
more parallelism is exploitable.

Table XI lists the input parameters of the RAT performance prediction for
TSP. The interconnect parameters model the proprietary SNAP interconnect
of the SRC-6 system. The small fraction of throughput, α, represents the over-
head associated with the extremely minimal communication in the algorithm,
only N × N input elements. This information contains the distances between
every pair of cities. The only output for this system is the minimal path length
and this communication time is assumed to be negligible. Elements are 8
bytes, the width of the MAP-B’s SRAM, but only 4 bytes (32 bits) per ele-
ment are used to represent distances in fixed point. The information is not
byte-packed for communication and consequently the other 32 bits are wasted.
For this case study, the computational workload is exponentially related to the
number of elements. While N2 distances are need to compute path lengths,
NN total paths must be examined. For consistency with the other case studies,
the number of operations per element is set to NN−2 (i.e., 97 = 4782969), which
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Table XII. Performance Parameters of TSP (SRC)

Predicted Actual

fclk (MHz) 100 100
tcomm (sec) 1.54E-5 1.57E-5
tcomp (sec) 4.31E-1 4.30E-1
utilcommSB

0.004% 0.003%
utilcompSB

99.996% 86.2%
tRCSB

(sec) 4.31E-1 4.99E-1
speedup 5.16 4.45

Table XIII. Resource Usage of TSP (XC2V6000)

FPGA Resource Utilization

BRAMs 56%
18x18 Multipliers 0%
Slices 73%

makes the RAT prediction computationally equivalent to the view of NN path
elements (for computation only) with one operation each. Since nine cities are
examined in this case study using nine kernels, a total of nine potential paths
are examined per clock cycle. The clock frequency of the MAP-B unit is fixed
at 100 MHz and only one input/compute/output iteration is required for this
algorithm. The C software baseline was executed on a 3.2GHz Xeon processor.
The parallel algorithm is constructed in SRC’s Carte C, a high-level language
(HLL) for FPGA design.

The results of the hardware design are compared against the performance
predictions in Table XII. The percent error in the predicted communication
time was less than 2% due to microbenchmarking on the SRC-6 specifically
to replicate the short communication transfers. The cycle-accurate timers of
the SRC-6 system meant this discrepancy was not a measurement error but
instead a function of the modeling and parameterization of the SNAP inter-
connect throughput. However, the actual communication time is only 16µs
(versus 430ms for computation) and consequently its impact on speedup is neg-
ligible for this case study. The predicted and actual computation times were
nearly identical due to deterministic, pipelined structure. For the SRC-6 sys-
tem, the individual communication and computation times were measured on
the FPGA via a vendor-provided counter function. Both operations are FPGA-
controlled and initiated by a single function call which could not be separated
from the perspective of the host microprocessor. However, the total RC exe-
cution as measured by the wall-clock time of the CPU is approximately 0.07
seconds longer than the sum of the computation and communication times
measured on the FPGA. Consequently, extra system overhead not considered
by RAT caused the actual speedup value to be 14% less than expected. The
utilizations for the actual design reflect this overhead with only 86% of RC ex-
ecution time comprising communication or computation. The discrepancy in
total execution is large because the overhead is significant relative to the short
time (less than 0.5s). If the overhead had been factored into the prediction,
the total estimation error would be under 1%. Additionally, resource utiliza-
tion is summarized in Table XIII. No multiplers are required for this type of
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searching but the heavy usage of logic elements limits further scalability of the
algorithm on a single FPGA of this size.

5.4 Molecular Dynamics

Molecular Dynamics (MD) is the numerical simulation of the physical
interactions of atoms and molecules over a given time interval. Based on
Newton’s second law of motion, the acceleration (and subsequent velocity and
position) of the atoms and molecules are calculated at each time step based on
the particles’ masses and the relevant subatomic forces. For this case study,
the molecular dynamics simulation is primarily focused on the interaction of
certain inert liquids such as neon or argon. These atoms do not form covalent
bonds and consequently the subatomic interaction is limited to the Lennard-
Jones potential (i.e., the attraction of distant particles by van der Waals force
and the repulsion of close particles based on the Pauli exclusion principle)
[Allen and Tildesley 1987]. Large-scale molecular dynamics simulators such as
AMBER [Pearlman et al. 1995] and NAMD [Nelson et al. 1996] use these same
classical physics principles but can calculate not only Lennard-Jones potential
but also the nonbonded electrostatic energies and the forces of covalent bonds,
their angles, and torsions making them applicable to not only inert atoms but
also complex molecules such as proteins.

The parallel algorithm used for this case study was adapted from code
provided by Oak Ridge National Labs (ORNL) and targets the XtremeData
XD1000 FPGA platform. The most challenging aspect of performance predic-
tion for MD is accurately measuring the number of operations per molecular
interaction and the computational throughput. This particular algorithm’s ex-
ecution time is dependent on the locality of the molecules, which is a function
of the dataset values. Sufficiently distant molecules are assumed to have negli-
gible interaction and therefore require less computational effort. Attempts are
made to mitigate the data-driven behavior through pipelined computations.
However, the complexity of the algorithm and potential for suboptimal behav-
ior during mapping requires some algorithm parameters to be estimated.

Table XIV summarizes the input parameters for the RAT analysis of the
MD design. The data size of 16,384 molecules (i.e., elements) was chosen be-
cause it is a small but still scientifically interesting problem. Each element
requires 36 bytes, 4 bytes each for position, velocity, and acceleration in each
of the X, Y, and Z spatial directions. The interconnect parameters model an
XtremeData XD1000 platform containing a Altera Stratix-II EP2S180 user
FPGA connected to an Opteron processor over the HyperTransport fabric. The
theoretical interconnect throughput is 1.6GB/s but only a fraction of the chan-
nel can be used for transferring data to the on-board SRAM as needed for the
algorithm. The number of operations per element, approximately 16,400 inter-
actions per molecule times 10 operations each, is estimated due to the length
of the pipeline and data-driven behavior. Unlike the previous case studies, the
computational throughput cannot be reliably measured due to the complex and
nondeterministic algorithm structure. As discussed in Section 3.1, the num-
ber of operations per cycle is treated as a “tuning” parameter to compute the
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Table XIV. Input Parameters of MD

Dataset Parameters

Nelements, input (elements) 16384
Nelements, output (elements) 16384
Nbytes/element (bytes/element) 36

Communication Parameters (XtremeData)

throughputideal (MB/s) 1600
αwrite 0 < α < 1 0.28
αread 0 < α < 1 0.28

Computation Parameters

Nops/element (ops/element) 164000
throughputproc (ops/cycle) 50
fclock (MHz) 75/100/150

Software Parameters

tso ft (sec) 5.76
Niter (iterations) 1

Table XV. Performance Parameters of MD (XtremeData)

Predicted Predicted Predicted Actual

fclk (MHz) 75 100 150 100
tcomm (sec) 8.77E-4 8.77E-4 8.77E-4 1.39E-3
tcomp (sec) 7.17E-1 5.37E-1 3.58E-1 8.79E-1
utilcommSB

0.1% 0.2% 0.2% 0.2%
utilcompSB

99.9% 99.8% 99.8% 99.8%
tRCSB

(sec) 7.19E-1 5.38E-1 3.59E-1 8.80E-1
speedup 8.0 10.7 16.0 6.6

throughput necessary to achieve the desired speedup based on the estimate
of Nops/element. Though 50 is the quantitative value computed by the equations
to achieve the desired overall speedup of approximately 10, this value serves
qualitatively as an indicator that substantial data parallelism and functional
pipelining must be achieved in order to realize the desired speedup. The same
range of clock frequencies was used as in PDF estimation. The serial software
baseline was executed on a 2.2 GHz Opteron processor, the host processor of
the XD1000 system. The entire dataset is processed in a single iteration and
the algorithm is constructed in Impulse C, a cross-platform HLL for FPGAs.

Table XV outlines the predicted and actual results of the MD. Note that
these results are unique to this specific algorithm and that different struc-
tures, target languages, and platforms will have varying prediction accuracy.
The difference in predicted and actual communication time is 37%. The er-
ror itself is associated with the overhead of multiple I/O transfers between the
CPU and on-board SRAM memory modeled as a single block of communication.
While more accurate estimations are the goal of RAT, any further precision
improvements for this parameter are inconsequential given the low communi-
cation utilization. Computation dominated the overall RC execution time and
the actual time is 39% higher than the predicted value due to the data-driven
operations and suboptimal pipelining performance. The total number of opera-
tions was higher than expected, coupled with relatively modest parallelism for
the problem size. Consequently, the speedup error was also 39%, significantly
less than desired. However, this case study is useful because the qualitative
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Table XVI. Resource Usage of MD (EP2S180)

FPGA Resource Utilization

BRAMs 24%
9-bit DSPs 100%
ALUTs 73%

Table XVII. Summary of Results

1-D PDF 2-D PDF LIDAR TSP MD

Predicted Comm. (s) 2.47E-5 1.01E-2 6.60E-4 1.54E-5 8.77E-4
Actual Comm. (s) 2.50E-5 1.06E-2 5.65E-4 1.57E-4 1.39E-3
Comm. Error 1% 5% 17% 2% 37%

Predicted Comp. (s) 1.31E-4 4.19E-2 2.64E-4 4.31E-1 5.37E-1
Actual Comp. (s) 1.39E-4 4.46E-2 2.25E-4 4.30E-1 8.79E-1
Comp. Error 6% 6% 17% 0.2% 39%

Predicted Speedup 6.5 7.6 11.8 5.2 10.7
Actual Speedup 7.8 7.2 13.8 4.5 6.6
Speedup Error 16% 6% 16% 14% 39%

need for significant parallelism is correctly predicted even though the algo-
rithm cannot be fully analyzed at design time. As Table XVI illustrates, a large
percentage of the combinatorial logic and all dedicated multiply-accumulators
(DSPs) were required for the algorithm.

5.5 Summary of Case Studies

Table XVII outlines the predicted values, actual results, and error percentages
for the communication time, computation time, and speedup. The magnitudes
of the predicted and actual values are listed to compare the absolute impact of
the relative error percentages. For example, molecular dynamics has compa-
rable communication and computation error percentages but the magnitudes
are different with communication having virtually no impact on total speedup.

For these case studies, communication had the lowest average error among
the modeled times. The larger errors for LIDAR and MD were caused by minor
discrepancies in the final communication setup versus the RAT analysis of the
algorithm. These error percentages are acceptable for RAT because they still
yield valid quantitative insight about the algorithm behavior. The cost of more
precise prediction must be balanced with the impact of the communication
time on performance. Again, the largest communication error, found in MD,
did not significantly affect the speedup, because the communication was less
than 1% of the overall execution time.

Even with the more complicated task of architecture and platform para-
meterization, the average prediction error for computation was only slightly
higher than communication. PDF and TSP had low computation errors com-
plementing the low communication errors. LIDAR had double-digit error,
which was due to perceivable system overheads in the short 0.2ms computa-
tion time. The one outlier was the MD application. The difficulty of mitigating
the data-driven computations was compounded by unknowns in the final algo-
rithm mapping by the HLL tool. As with the communication predictions for
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MD, the error was significant but RAT still provided a useful insight about
what order of magnitude speedup should be achievable.

The prediction errors in the overall speedup were higher on average than
the individual computation or communication times. Particularly with 1-D
PDF, LIDAR, and TSP, overheads not part of the RAT computation and com-
munication models were noticeable portions of the short RC execution times,
70ms, 0.2ms and 430ms, respectively. The 2-D PDF estimation was long
enough to mitigate system overheads. The overall performance of molecular
dynamics matched the computation time due to 99% utilization. While min-
imizing the prediction error was an important issue, rapidly achieving a rea-
sonable projection was the ultimate goal.

The data summarized in Table XVII highlights the focus of RAT on perfor-
mance approximation. Refinements to the RAT model for short communication
and computation times, platform-specific overheads, and multiple data trans-
fers per iteration are potentially useful and can help improve the overall accu-
racy of the performance estimations. Extra analysis during parameterization
can also improve RAT predictions. While future research will involve some re-
visions to the model, the current errors in the 5% to 15% range have proven
sufficient for the intent of RAT.

6. CONCLUSIONS

The promise of reconfigurable computing for achieving speedup and power sav-
ings versus traditional computing paradigms is expanding interest in FPGAs.
Among the challenges for improving development of parallel algorithms for
FPGAs, the lack of methods for strategic design is a key obstacle to efficient
usage of RC devices. Better formulation methodologies are needed to explore
algorithms, architectures and mappings to reduce FPGA development time
and cost. Consequently, RAT is created as a simple and effective methodology
for investigating the performance potential of the mapping of a given parallel
algorithm for a given FPGA platform architecture. The methodology employs
an analytic model to analyze FPGA designs prior to actual development. RAT
is meant to work with empirical knowledge of RC devices to create more effi-
cient and effective means for design-space exploration.

In this article, RAT demonstrated reasonable accuracy with predicting com-
munication time, computation time, and speedup with the five case studies.
Detailed microbenchmarking prior to the RAT analyses allowed for an aver-
age error of 12% (with individual errors as low as 1%) for the communication
times of algorithms. For the deterministic case studies (i.e., all except MD),
computation error peaked at 17%. Each algorithm’s inclusion of pipelining al-
lowed computational throughputs to be accurately projected even though the
high-level parallel algorithms were not yet mapped to hardware. The total RC
execution time had an average error of 18% for the case studies, slightly higher
than the individual communication and computation components. Large sys-
tem overhead versus short execution time was the main cause. Overall, the
methodology performed well for the diverse collection of algorithm complexi-
ties, hardware languages, FPGA platforms, and total execution times. RAT
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was designed to handled these issues in single CPU and FPGA systems where
communication and computation are governed by the number of data elements.

Future work in the area of performance prediction will focus on balancing
the scale and fidelity of the RAT methodology. The continuing trend toward
designing scalable, explicitly parallel algorithms necessitates an expanded
analytic model encompassing multi-FPGA platforms. Incorporating lessons
learned from the current RAT methodology will help improve performance
estimation for the current single-FPGA and future multi-FPGA models.
Additionally, scaling the fidelity of algorithm and platform models with
respect to the algorithm structure and behavior can increase model precision
as necessary. A key issue is knowing when to move from the RAT methodology
to a higher-fidelity, higher-cost model.
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