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Reconfigurable computing (RC) is emerging as a promising area for embedded computing, where
complex systems must balance performance, flexibility, cost, and power. The difficulty associated
with RC development suggests improved strategic planning and analysis techniques can save sig-
nificant development time and effort. This article presents a new abstract modeling language and
environment, the RC Modeling Language (RCML), to facilitate efficient design-space exploration
of RC systems at the estimation modeling level, i.e. before building a functional implementation.
Two integrated analysis tools and case studies, one analytical and one simulative, are presented
illustrating relatively accurate automated analysis of systems modeled in RCML.

Categories and Subject Descriptors: C.4 [Performance of Systems|: Modeling Techniques;
1.6.5 [Model Development|: Modeling Methodologies; C.0 [General]: System Architectures

General Terms: Modeling
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1. INTRODUCTION

Embedded systems continue to face ever-growing demands in terms of performance,
power, size, flexibility, and cost. The demands for greater flexibility in embed-
ded systems favor the use of programmable processing devices that can support
multiple applications. At the same time, it is becoming more difficult to realize in-
creased performance on traditional microprocessors through higher clock speeds and
instruction-level parallelism alone, which typically come at the expense of increased
power consumption. In the face of these challenges, modern embedded systems are
increasingly designed with heterogeneous architectures that feature higher levels of
component parallelism. Reconfigurable computing (RC) is poised to become an im-
portant and viable paradigm for embedded and high-performance computing under
these circumstances, enabling designers to fully exploit the performance potential
and parallelism of underlying hardware resources in reconfigurable-logic devices
such as FPGAs in a highly adaptive manner. Heterogeneous systems including
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Fig. 1: Abstraction Pyramid Comparing Levels of Modeling for Hardware Applications
(adapted from [Kienhuis et al. 2002])

microprocessors, application-specific integrated circuits (ASICs), and FPGAs can
provide the benefits of performance and efficiency required during times where it is
becoming increasingly critical to manage the size and power consumption of embed-
ded systems. But despite the gains in performance and efficiency over traditional
systems that RC can provide, RC application development and system design can
be a prohibitively long and difficult process, hindering its further growth and usage.

The abstraction pyramid for system-level design, originally presented in Kienhuis
et al. [2002] and illustrated in Fig. 1, summarizes the levels of abstraction designers
can use to model their hardware systems, and the tradeoffs between each level. At
the top of the abstraction pyramid, a back-of-the-envelope model is a set of simple
mathematical relationships used to approximate basic performance metrics of the
system. Estimation models are a more sophisticated and accurate alternative to
back-of-the-envelope models, using more complex model inputs and calculations
to predict system performance. While both of the previous two models are used
to quickly predict and approximate key performance metrics, neither describe the
full functional behavior or timing of a system. In contrast, an abstract executable
model describes the functional behavior of the system, without information that
describes the system behavior in terms of timing. A cycle-accurate model describes
the functional behavior and timing of an architecture, as a multiple of clock cycles.
Finally, a synthesizable model is one that contains enough behavior and timing
details such that the model can be realized in silicon.

At each level of abstraction, designers can perform design-space exploration and
analyze alternative designs. As more detailed models are used, more effort is needed
to build a full model and a narrower region of the design-space can be explored,
raising the risk of creating a model whose associated design space does not include a
solution that meets all design constraints. In this case, considerable effort is wasted
developing a design that will eventually be discarded. Early design-space explo-
ration can help ensure that the proposed design will meet design constraints before
intensive coding of a functional implementation has begun. Back-of-the-envelope
models offer the highest level of abstraction, but often do not feature enough de-
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tail to meaningfully represent candidate designs. Therefore, an abstract estimation
model is needed at the beginning of the development process allowing systems to
be modeled and analyzed quickly and meaningfully before moving towards a more
detailed implementation. Designers can repeatedly analyze and alter the abstract
model based on feedback from analysis tools, which can save considerable time and
cost in overall development by reducing wasted effort in later stages of development.

This article introduces and presents a new language and environment tailored
for estimation modeling of RC systems and applications, called the Reconfigurable
Computing Modeling Language (RCML). RCML is designed to allow users to ef-
ficiently model RC systems in the early stages of RC development. The RCML
framework enables users to separately model the algorithm and the execution plat-
form architecture under study, providing specific constructs for defining parallelism,
communication patterns, and other common aspects in RC applications. A com-
plete system model is then created by mapping an application and platform model
together. This process allows individual models to be reused for any number of
mappings, supporting efficient iterative design-space exploration early in the devel-
opment process.

RCML differs from most existing modeling environments because it is tailored
to operate at the estimation-model level of abstraction. Existing modeling envi-
ronments often used in embedded system design such as Ptolemy and Simulink,
and high-level language compilers such as Impulse-C, typically use an abstract exe-
cutable model as the user’s entry point for specifying a design and moving towards
a final implementation. Such tools require users to define and code a functional
implementation in order to drive a full simulation or other analysis. Instead, RCML
is intended to allow users to quickly model their systems before coding a functional
implementation, using abstract constructs and attributes to define component be-
havior. Models built with RCML can then be used to bridge to functional speci-
fication environments such as Ptolemy and Impulse-C, complementing these tools
in the overall development process. In other words, an environment such as RCML
can be used to raise the initial level of abstraction that designers may use when
beginning embedded system design. For these reasons, RCML is more similar to
high-level modeling languages such as the Unified Modeling Language (UML) and
the Architecture Analysis & Description Language (AADL), allowing models to be
easily converted between these languages.

RCML is designed to feed any number of analysis tools for prediction and anal-
ysis to fully enable efficient design-space exploration. In addition to introducing
the RCML language and environment, this article focuses on the integration of two
analysis tools within the RCML environment for automated performance predic-
tion: an analytic methodology called the RC Amenability Test (RAT) [Holland
et al. 2009] and a script-based simulation framework for RC [Reardon et al. 2009).
Case studies presented in this article using a pair of image-processing applications
show that, using RCML models that required only several minutes to create, the
automated RAT tool was able to produce performance predictions within 0.6% to
6.2% of the actual execution time for a single-device application, while the simu-
lation environment produced performance predictions within 2.3% to 7.4% of the
actual execution time for a multi-device application. Future tools can also be de-
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veloped to further extend the usefulness of RCML. For example, tools to perform
code generation and automated implementation from an RCML model would reduce
the effort needed to move from RCML to a high-level or cycle-accurate executable
model of the design.

The remainder of this article is organized as follows. In Section 2, background
and related research is presented. Next, an overview of RCML is provided in Sec-
tion 3. Section 4 discusses two automated analysis tools integrated with RCML.
In Section 5, a pair of case studies are presented to illustrate the effectiveness of
design-space exploration through RCML using both analysis tools. Finally, conclu-
sions and future work are summarized in Section 6.

2. BACKGROUND AND RELATED RESEARCH

Previous abstract modeling languages have been used in the computing field for
years to help software and system designers plan their complex projects, and RCML
shares many concepts with a pair of similar abstract modeling languages used in
computing. The Architecture Analysis & Design Language (AADL) from the So-
ciety of Automotive Engineers (SAE) is a textual and graphical language designed
for specifying software, hardware and system components of complex real-time and
embedded systems [SAE 2004; Feiler et al. 2006]. AADL models are collections of
pre-defined components which are further characterized through properties, inter-
faces, and networks of subcomponents. Most AADL components can be classified
as either software, execution platform, or composite components. AADL supports
language extensions through property sets and specific notations within core com-
ponents that new analysis tools can interpret. While AADL incorporates many
useful concepts that are leveraged within RCML, it lacks convenient constructs for
parallelism and algorithm exploration that are important for early RC design-space
exploration. Instead, AADL is typically used in areas such as avionics for repre-
senting a complex embedded system with a large number of interacting software
processes and devices. As a result, existing analysis tools developed for AADL focus
on analyzing the dependability [Rugina et al. 2006], memory [Singhoff et al. 2005],
and real-time scheduling requirements [Sokolsky et al. 2006] of the system. AADL
is also commonly used to automatically generate an implementation of the modeled
system. RCML models can potentially be used for automated implementation as
well, especially when the tasks in the algorithm model can be linked to cores in
an existing core library. While such capabilities are critical in allowing users to
transition to less abstract models of their RC system, automated implementation
from RCML models will be the subject of future work and thus is beyond the scope
of this article.

An even more popular modeling language within the computing field is the Uni-
fied Modeling Language (UML) [UML Revision Task Force 2001]. UML is widely
used throughout the software-development industry as a language for planning and
designing object-oriented, software-intensive projects. The UML specification de-
fines 13 types of diagrams that each provide a partial view of the underlying meta-
model, allowing users to interact with the diagram type(s) best suited for describing
their problem. UML profiles such as SysML [Object Management Group 2008] and
MARTE [Object Management Group 2009] have been created to support model-
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ing complex and real-time embedded systems in UML, respectively. Like AADL,
MARTE and SysML define extensive modeling specifications with software, hard-
ware, and system constructs for modeling complex systems with a large number
of interacting software processes and devices. Since these profiles are designed to
support large modeling projects through many development stages, they may not
be ideally suited for singular algorithm exploration. Furthermore, using a UML
profile such as MARTE may require the user to learn and understand several dif-
ferent classes of UML models in additional to many fundamental UML concepts and
profile-specific semantics, which may be discouraging for an application designer on
a smaller system. In contrast, RCML is meant to provide the user a simpler and
intuitive environment to abstractly model and analyze their proposed RC system.

Several modeling environments have been developed for building and evaluating
functional models of heterogeneous and RC systems. Ptolemy is a well-known mod-
eling framework for simulating and prototyping heterogeneous systems supporting
multiple models of computation (MoC) [Buck et al. 1994]. Ptolemy studies the sup-
port of heterogeneous system design through the use of hierarchical heterogeneity
[Eker et al. 2003]. Hierarchical heterogeneous models are divided into local sub-
models which share a common MoC. Each locally homogeneous submodel can then
be treated as a single component in a model network with components featuring
potentially several MoCs whose interfaces and interactions are automated through
Ptolemy. As with most existing model-based development environments for em-
bedded system design, Ptolemy provides users with an abstract executable model
as an entry point in the development process. The RCML environment is intended
to complement such tools by providing a framework to perform early design-space
exploration at a higher level of abstraction, before specifying a functional model.

Unlike Ptolemy, Metropolis and Artemis are two examples of model-based frame-
works that provide support for separately and independently modeling the func-
tionality and architecture of an embedded system. Metropolis is a platform-based
design environment based on a metamodel with formal execution semantics [Balarin
et al. 2003]. The Metropolis metamodel can be used to specify the function (using
existing or new MoCs), architecture, and mapping of the system. The Metropolis
framework also includes tools for verification, simulation and synthesis of designs
created with Metropolis, and has been extended for analysis and characterization
of FPGA-based systems [Densmore et al. 2006].

The Artemis framework provides high-level modeling and simulation methods
and tools for system-level performance evaluation and exploration of heterogeneous
and reconfigurable embedded multimedia systems [Pimentel 2005; Pimentel et al.
2001]. Artemis describes a systematic approach to explore embedded system archi-
tectures at multiple levels of abstraction, following popular embedded design con-
cepts such as ”separation of concerns” [Keutzer et al. 2000] and the Y-chart design
methodology [Kienhuis et al. 2002]. The Artemis workbench includes a system-level
modeling and simulation environment known as Sesame [Pimentel et al. 2006]. In
both Artemis and Sesame, applications are described as a Kahn Process Network
(KPN) [Kahn 1974] at the highest level of abstraction, while architecture models are
implemented from a library generic building blocks using either Pearl or SystemC.
As the architecture is described in more detail, the abstract application model is
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refined into a more detailed dataflow graph through trace transformations [Liev-
erse et al. 2001]. While Sesame and Metropolis have been shown to be effective
approaches to heterogeneous embedded system design, they are not particularly
suited for estimation modeling of RC systems. For example, a KPN assumes par-
allel processes communicate using unbounded FIFO channels, but effective use of
limited buffering resources on RC devices is often critical to maximize performance.
In addition, complex communication patterns and data parallelism are not conve-
niently expressed using their basic constructs, but could easily be generated and
constructed from an existing RCML model which is intended to function at a higher
level of abstraction than Artemis and Metropolis support.

A hierarchical model-based framework for FPGA development in RC is pre-
sented by Mohanty and Prasanna [2007] which includes support for evaluation
of design alternatives early in the development process. The framework integrates
a high-level performance estimator (HiPerE) and a design-space exploration tool
(DESERT) for efficient evaluation of candidate mappings against user-specified per-
formance requirements onto System-on-Chip (SoC) architectures described using
the Generic Model (GenM) [Mohanty et al. 2002]. While the framework in Mo-
hanty and Prasanna [2007] overlaps in some degree with this research, there are
several key differences. First, the framework in Mohanty and Prasanna [2007] is
intended to serve as a development environment, unlike RCML which is a modeling
environment designed for estimation-level modeling of RC systems. Furthermore,
RCML includes a larger number of pre-defined specialized constructs for modeling
RC applications and platforms, intended to further improve productivity. Finally,
HiPerE is only designed to evaluate architectures that can be described by GenM,
which is designed for SoC architectures. RCML is designed to model and analyze
a broader set of high-performance RC architectures.

RCML can be used to provide input to numerous complementary techniques for
predicting and analyzing RC systems. A number of analytical [Smith and Peter-
son 2002; Steffen 2007] and simulative [Enzler et al. 2005; Fu and Compton 2006]
techniques have been proposed to predict the performance of RC applications. An-
alytic and simulative approaches each have their own strengths and weaknesses
when it comes to prediction and analysis of computing systems. Therefore, this ar-
ticle presents one analytical and one simulative technique that are each integrated
within the RCML environment to enable automated performance prediction.

The RC Amenability Test (RAT) defines a set of analytic equations for predict-
ing the potential speedup of a particular FPGA core design [Holland et al. 2009).
Simple and reasonably accurate throughput analysis is the primary focus of the
RAT methodology, which uses a series of straightforward equations to predict ap-
plication performance based upon known parameters and values estimated from the
proposed design, though the framework considers numerical precision and resource
utilization as well. Due to RAT’s focus on overall performance modeling of appli-
cations running on an FPGA platform, an automated RAT-based analysis tool is
integrated with RCML to enable nearly instantaneous performance prediction of
RC systems modeled within the RCML environment.

The RC Simulation Environment (RCSE) is a trace-based simulation framework
for performing fast and accurate simulations of RC systems [Reardon et al. 2009).
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Fig. 2: Overview of RCML Methodology

RCSE is an RC-centric adaptation of the Fast and Accurate Simulation Environ-
ment (FASE) [Grobelny et al. 2007] which seeks to balance speed and fidelity in
simulating HPC systems. Applications in RCSE are characterized and abstracted
into a script, which are processed by a discrete-event model of the platform during
simulation. The scripts abstract away many computational details of the appli-
cation, allowing simulations to execute more quickly than with traditional cycle-
accurate simulations. An automated tool that targets RCSE has been developed
in order to provide more detailed and accurate performance prediction results than
analytic models typically provide, and still provide results in a relatively timely
manner to support efficient early design-space exploration.

3. RCML OVERVIEW

RCML is an estimation-level language and environment for abstractly modeling
the structure and behavior of RC systems before moving to implementation code.
The framework of RCML is illustrated in Fig. 2. There are three different types of
models within RCML’s framework, following the Y-chart methodology common in
embedded design [Kienhuis et al. 2002]. First, an algorithm model in RCML is a
platform-independent, RC-specialized task graph describing the algorithm’s task-
level parallelism and communication. Second, an architecture model is a component
diagram that describes the makeup and capabilities of the execution platform. Fi-
nally, a system model consists of an algorithm model mapped onto an architecture
model, providing a complete representation of the system that can be used for anal-
ysis. By defining separate models for applications and platforms, these individual
models can be developed independently and reused among any number of system
mappings. The following subsections provide details pertaining to each type of
model in RCML.

Additional information is added to an RCML model by defining custom attributes
for a model or individual element. Each attribute consists of a name and value spec-
ified by the user, and any number of attributes can be defined for an RCML model
or individual model element. Attributes allow users to freely embed behavioral in-
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formation throughout their model, which can be used by external tools for analysis,
code generation, and additional documentation. The following subsections provide
a few examples of how attributes are used and their importance in RCML.

3.1 Algorithm Modeling

An algorithm model in RCML is a collection of blocks and RC-specialized constructs
that easily allows a designer to represent the structure, data flow, and parallelism in
an RC application prior to specifying implementation code. The algorithm model
is implemented as a task graph, where nodes (i.e. blocks) correspond to parallel
tasks, and edges represent communication and dependencies. A summary of the
primary constructs in RCML algorithm models is presented in Table I. Algorithm
constructs in RCML can be divided into two groups, function blocks and data
blocks. Data blocks are used to represent the major entities of data that will be
produced, consumed, and processed by the algorithm. Each data block is made up
of a specified number of data elements. A data element can be as simple as a single
primitive type, such as an integer or float, or a composition of primitive types. Two
types of data blocks are currently defined in RCML, data sets (a single, finite group
of data) and data streams (an infinite, continuous data entity). The data blocks
are designed to make it easy for users to explore how system performance changes
as the scale or size of their problem is varied. Since the transfer size over a link
and the computation amount of a function block can be linked to the number of
elements in a data block, changes to a data block can propagate throughout the
model to facilitate quick and efficient design-space exploration.

An algorithm in RCML is modeled as a collection of tasks, in which each task
is represented by a function block. There are currently two basic types of function
blocks defined in RCML, data-driven and control-driven. Execution in data-driven
blocks is triggered by the receipt of data on specified input data connections. The
amount of data needed to trigger a block’s execution can be defined by the user,
for cases where multiple pieces of data are needed before a task can begin. Control-
driven blocks are executed when the relevant control signals entering that block
have been triggered. A repetitive function block is a task defined to iteratively
execute a specified number of times upon each triggering, such as a basic loop.
The number of repetitions for a function block can either be a static number or
linked to the size of a data block (e.g. a function block may be defined to iterate
once for each data element in a data set). Attributes can be used to further define
the computational requirements of the function block, e.g. processing latencies,
hardware resource requirements, etc.

Although an RC designer could potentially represent an algorithm as a pure
task graph, it is important in RC to be able to concisely express common types
of parallelism. For this reason, RCML includes two specialized parallel constructs.
The first parallel construct is the process line, a special function block used to
express deep functional parallelism in an algorithm. A process line consists of
a sequence of separate tasks that data must pass through, each of which may
execute concurrently on different pieces of data (typically realized as a pipeline in
hardware circuits). RCML process lines are customized by defining the number of
stages in the line along with function blocks to characterize each stage. The second
parallel construct RCML provides are replicated function blocks, used to concisely
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Table I.  Algorithm Model Constructs
Name Description Icon

Data Block A block representing a finite (data set)
or continuous (data stream) group of
data processed by the algorithm

Basic Function Algorithm task triggered either by in- _,D,

Block coming data (data-driven) or control
signals (control-driven)

Repetitive Algorithm task whose execution is re-

Function Block peated a specified number of times

Process Line Task sequence that can execute concur- O:ED

Function Block rently to support deep parallelism

Replicated A task that is physically replicated to @

Function Block support wide parallelism

Buffer A location where data elements can be D:I]
stored in a queue

Conditional A decision block that chooses one of <>

Branch multiple outputs to trigger

express wide data parallelism in an algorithm. Replicated function blocks represent
tasks that can be physically replicated, each able to concurrently perform the same
task on different data. Wide functional parallelism, where different tasks operate
concurrently on the same (or different) data, is naturally expressed as parallel paths
in the task graph. These parallel constructs facilitate design-space exploration by
allowing users to easily change the amount of parallelism the system features, in
order to efficiently study the effects of varying levels and types of parallelism on
system performance.

The communication and dependencies between tasks are defined by connections.
A connection can carry an arbitrary size of undefined data, elements of a data
block, or a control signal, all defined using built-in parameters for each connection.
Each connection also has a priority, which defines the ordering (if any) between
multiple outgoing connections leaving the same function block. Additionally, a
communication pattern must be specified for any connection involving replicated
function blocks. Each pattern defined in RCML mimics a standard function in the
Message Passing Interface (MPI) [Walker 1994], even though the connection may
or may not result in inter-node communication. Some of the supported patterns
include broadcast and scatter for one-to-many connections, gather for many-to-one
connections, and all-to-all for many-to-many connections. Due to the discrete-event
dataflow semantics of data-driven function blocks, synchronization constructs are
often unnecessary for building an algorithm model (i.e. all connections between
blocks represent dependencies in a dataflow model, therefore tasks naturally will
only execute after all dependencies are satisfied). For select cases where explicit
synchronization is needed or desired, a barrier is also available to force multiple
tasks to synchronize before continuing. A barrier is placed on multiple connections,
and the barrier can be set to be enforced either immediately before or after a set
of transfers occur on all of the connections.
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Fig. 3: Example RCML Algorithm Model of a Matrix Multiply

In addition to the basic constructs for defining data and tasks in an algorithm,
a pair of miscellaneous algorithm constructs are currently supported in RCML.
The first and most important miscellaneous construct is the buffer. Buffers are
used to model locations in the algorithm where data elements may be stored in a
queue. Buffers are a critical component of many embedded and RC applications.
Each buffer in the algorithm must be mapped to a memory instance in the system
mapping stage. Buffers do not affect the functionality of the algorithm and thus are
not necessary to build a representative algorithm model, but are used to provide
finer implementation details used during analysis and code generation after system
mapping. A conditional branch construct is also provided, which models a segment
of the algorithm that will follow one of multiple outgoing paths depending upon the
evaluation of the condition. The conditional branch can also provide an alternative
way to model loops in addition to an repetitive function block.

An example of a simple RCML algorithm model for performing a matrix multi-
plication is presented in Fig. 3. There are three data sets listed for this algorithm
along the bottom of the diagram, each one representing a matrix with 100 x 100
integers taking part in the multiplication. Even though no visible connections are
depicted between the data sets and the rest of the algorithm model, the data sets
are linked to various elements of the task graph, which will be discussed later in
this paragraph. The task graph begins with a task (labeled Fetch Inputs) which
retrieves the two input matrices. The retrieval of the two matrices is assumed
during the execution of the Fetch Inputs task since the output connections from
Fetch Inputs are the first to transfer elements of those data sets. The following
task (labeled Calec Dot Products) then performs the multiplications and additions
to compute the elements of the resulting product matrix in a pipelined process.
In this matrix-multiply algorithm, the Broadcast connection from Fetch Inputs to
Calc Dot Products first sends the entire data set Matrix A to each instance of Calc
Dot Products. The number and type of data elements transmitted across each
connection are not shown, but are specified as attributes inside each connection.
For example, selecting the Broadcast connection would show attributes that specify
that all of Matrix A is being transmitted over that connection. After the broadcast
is complete, the columns of Matrix B are scattered between each kernel via the
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Scatter connection between the same two blocks. The ordering of the two transfers
between Fetch Inputs and Calc Dot Products is depicted by the numeric labels
next to the beginning of each connection leaving the Fetch Inputs task (the prior-
ity labels are omitted when a connection is the only one leaving a function block
and thus no ordering needs to be defined). The Calc Dot Products task will then
perform its task once for every column of elements (i.e. 100 integers) of Matrix
B that it receives, as specified along the top of the Calc Dot Products function
block. Since each of the 100 columns of matrix B may be processed in parallel,
100 instances of the Calc Dot Products task are specified (depicted by the ¢ = 100
label just above the task). Like any RCML task, the Calc Dot Products task may
be hierarchical and contain submodels used to describe its computational structure
in more detail, as more parallelism can be exploited within each execution of Calc
Dot Products. After each instance of Calc Dot Products completes all of its iter-
ations, the corresponding number of data elements for Matrix C, which represents
the result of the matrix multiplication, are sent to the Merge Results task via the
Gather connection.

As previously stated, an RCML algorithm model is designed to represent the
structure, data flow, and parallelism in an RC application for performing early
design-space exploration, and thus only an abstract description of the algorithm
behavior is needed. For example, the Fetch Inputs function block in the matrix-
multiply algorithm model does not specify how the algorithm splits up the Matrix B
data set along columns to be divided among kernels in Calc Dot Products. Instead,
the model only specifies that the Fetch Inputs task is splitting the Matrix B data
set and distributing the data among instances of Calc Dot Products. Similarly, the
Merge Results task does not specify how the final product Matrix C is assembled
and stored, only that the task will not execute until all of the results have been
gathered from the Calc Dot Product kernels before forming and sending out the
Matrix C data set that represents the product of the multiplication. This is a key
advantage of using an estimation modeling environment such as RCML, as more
detailed behavior is often unnecessary to accurately estimate application perfor-
mance and perform design-space exploration. Nevertheless, in some cases users will
want to model parts of their algorithms with more detail, specifically with cores
designed to be implemented on reconfigurable devices. Future work will investigate
incorporating alternative modeling frameworks, such as the CMD framework pro-
posed by Wang et al. [2009], into the RCML environment to support estimation
modeling of reconfigurable cores at lower levels of abstraction.

3.2 Architecture Modeling

Independent of algorithm models, architecture models attempt to capture the struc-
ture and capabilities of the execution platform under study. Currently, RCML pro-
vides several generic component types used to construct architecture models. A
designer may add any number of attributes for each component to create a more
detailed architecture model, whose information can be used by external tools for
analysis. The classes and graphical representations of architecture components
closely follow the set of architecture component classes defined in AADL, with the
notable addition of the reconfigurable processor. The reconfigurable processor class
can be used to represent any RC device, from an FPGA to a coarse-grained recon-
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Table II.  Architecture Model Constructs
Name Description Icon
Fixed A fixed processing element, such as
Processor an ASIC or microprocessor
Reconfigurable A processing element that supports
Processor reconfiguration, such as an FPGA

Memory Block

An instance of memory or storage
in the system

Cache Block

A specialized memory block for
multi-level caches

= 0E 10080

Interconnect A system or network bus for data

Bus transfers

Interconnect A network switch for data transfers

Switch

Middleware A middleware package used by plat-
form component(s)

Source/Sink Generic devices, such as a sensor

Device (source) or display (sink)

Node A container that may be replicated

Container to model scalable architectures

figurable device. Reconfigurable processors in RCML are assumed to be capable of
concurrently executing all tasks presently configured on the device independent of
the processing load of other tasks, assuming enough hardware resources are avail-
able for all tasks. Furthermore, an explicit reconfiguration of the reconfigurable
processor is needed to execute a task that is not presently configured on the de-
vice. While a fixed processor (where hardware reconfiguration is not supported,
such as a microprocessor) is often capable of concurrent execution of multiple tasks
via threads, the performance for each task is dependent upon the load from other
concurrent threads and the number of cores in the processor. The network switch,
memory cache, and middleware classes are additional architectural components in
RCML that do not have a direct equivalent in AADL, but are typically modeled by
manipulating an instance of a related AADL class. A summary of the RCML archi-
tecture constructs is presented in Table II. Architecture blocks can also be grouped
together to form a node using the node container, which can then be replicated in
order to easily model scalable platforms.

Each of the generic architecture constructs can be further refined to represent
a specific instance of that class by defining custom attributes. For example, the
attributes for a network switch can be used to define the speed, width, protocol,
and the type of switching backplane of the switch. With this approach, the network
switch class can represent a particular instance of a HyperTransport, Ethernet, or
other interconnect switch. Memory blocks could be refined to represent memory
types from SRAM to external disks by defining attributes for their size, speeds, and
protocol. Memory blocks may also be embedded within a processor or device block
to represent an internal memory for the host block. Not only does this approach
support a very flexible and robust modeling environment capable of modeling many
types of architectures, users can efficiently perform design-space exploration by
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F
.

Fig. 4: Example RCML Architecture Model of FPGA Cluster

changing architectural attributes of interest. For example, studying the effect of
using a future generation of FPGAs can be approximated by increasing the number
of resources defined for a reconfigurable processor. Architectural scalability studies
can often be easily performed by simply changing the number of nodes for a node
container.

Fig. 4 shows an example of an RCML architecture model used to represent a clus-
ter of FPGA-enhanced embedded compute nodes. Each node contains a PowerPC
microprocessor with multi-level cache attached to it, and an FPGA card containing
a Xilinx Virtex-4 SX55 FPGA and SRAM memory block. The microprocessor and
FPGA are connected by a PCI bus. The node elements all reside within a node
container, and 16 instances of the node are specified to realize the full cluster. Each
node is connected to a Gigabit Ethernet switch to model full connectivity between
nodes. Finally, two middleware components are defined in this model. Other ar-
chitecture components can link to middleware instances by declaring middleware
associations in their attributes. Since it may be common for a middleware package
to reside on a large number of component instances, no visual connection is de-
picted in the figure. Instead, the information is accessed by viewing the attributes
of an individual components, which show all of the middleware instances that the
component is associated with. In the example in Fig. 4, the MPI_MW middleware
component is linked to the PowerPC microprocessor in each node (via attributes
not depicted in the figure) and is used to characterize additional delays introduced
by the MPI communication layer and protocols used for inter-node transfers. The
RC_MW component is linked to the PowerPC and the Virtex-4 FPGA in each
node, and is used to characterize additional communication delays introduced by
the middleware associated with the FPGA board. Parameters defining the sizes and
speeds of the various devices are embedded as attributes in the individual compo-
nents, and are accessible through interfaces that appear along the bottom of the
RCML tool screenshot in Fig. 5 (it should be noted that the RCML model depicted
in Fig. 5 is an example of an algorithm model, but the interfaces for defining and
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editing attributes are generally the same within the tool when editing any type of
RCML model).

3.3 System Modeling and Mapping

An RCML system model combines an algorithm model and architecture model,
representing a complete view of the RC system under study. System models are
supplemented with additional information that defines how the algorithm and ar-
chitecture are mapped together. RCML supports multiple levels of mappings, so
the user can choose whether to quickly define a basic mapping of the algorithm
onto the architecture, or whether to specify a more complete and detailed mapping
using additional optional mapping procedures.

The basic mapping in RCML requires that each function block in the algorithm
model is mapped to a processing element in the architecture model. Each non-
hierarchical function block can only be mapped to a single processing element,
unless the function block is replicated in which case each instance may be mapped
individually. Each stage of a process line may also be independently mapped to
different processing elements. In addition to the spatial mapping that is required for
all tasks, tasks executing on an RC device must be mapped temporally as well, since
dynamic reconfiguration can be used during runtime to change the tasks supported
by the device. Thus, a reconfigurable core manager is also provided to allow users
to explicitly define groups of tasks that will reside concurrently on an RC device at
any point in time. The information from the core manager is used by analysis tools
to determine the necessary reconfiguration events and their associated impact on
system performance.

In many cases, users will want to define additional information regarding how
their application is mapped onto the execution platform. For these cases, optional
mapping procedures are supported to define additional mapping information. For
example, users can map data blocks in the algorithm to memory blocks in the
architecture. For each data block, a starting and final memory location can be
defined. If a data block is not mapped to a memory block for its starting (final)
location, it is assumed that the data is created (consumed) at the location of the
first (last) function block that communicates elements in the data block. Also,
each input data port on a function block may be mapped to a memory location,
allowing intermediate memory locations for an application’s data during execution
to be defined. This mapping can be used, for example, to define whether data sent
to an FPGA is initially written to onboard SRAM or BRAM upon receipt. In the
absence of this mapping information, analysis tools are forced to make assumptions
regarding where data resides during intermediate portions of the application, which
can lead to less accurate prediction results.

3.4 RCML Editor

A graphical tool for creating and editing RCML models has been developed in
Eclipse. The RCML editor in Eclipse allows users to drag and drop RCML com-
ponents onto the model’s canvas and directly edit selected components through
graphical interfaces and dialogs. A screenshot of the matrix-multiply algorithm
model example from Section 3.1 in the Eclipse-based RCML Editor is shown in
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Fig. 5: Screenshot of RCML Model Editor in Eclipse

Fig. 5. Additional examples of RCML models built using the Eclipse RCML tool
are presented in Section 5.

4. INTEGRATED ANALYSIS TOOLS

In order for RCML to support early design-space exploration, methods to predict
and analyze the behavior and quality of the modeled design are required. Without
such techniques, it will be difficult for designers to judge whether their initial sys-
tem design is expected to meet project specifications and thus avoid wasting time
on unnecessary design iterations. Existing prediction and analysis methods can be
integrated within the RCML environment to provide tools for automated analysis
of RCML models. In this section, two such tools are presented based on analysis
methodologies introduced in Section 2. The first tool performs an analytical per-
formance prediction based on the RAT methodology. The second tool generates
application scripts and parameter files to automate simulations in the trace-driven
RCSE simulation framework. Both prediction tools use a common model parser
which traverses the RCML algorithm model within a system model, constructing a
list of partial paths through the task graph that are used by the analysis tools.

4.1 Automated RAT Analysis Tool

RAT [Holland et al. 2009] is a methodology for predicting the performance of a
specific algorithm on a specific FPGA platform prior to detailed implementation.
Key algorithm and architectural features are parameterized and used to compute
the communication and computation times and ultimately the system performance.
The RAT automated analysis tool provides an infrastructure for analyzing and gath-
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ering the necessary parameters from the RCML models to compute the analytical
performance predictions.

Before RCML, RAT parameters were manually gathered from a “pencil and pa-
per” plan for the algorithm. Users can now explore and plan their intended al-
gorithm within RCML and affix the performance characteristics as attributes of
the model blocks. Using RCML, constructing algorithm and architecture models
for use with RAT becomes intuitive but still must follow the basic structural and
behavioral conventions of RCML. Information must be provided in a format simi-
lar to the existing manual RAT analysis. For example, computational throughput,
number of elements, and number of computation per element must be provided
within the corresponding function blocks.

Automated RAT analysis via RCML begins with the model parser for the algo-
rithm model. Based on the path information provided by the parser, the RAT tool
can estimate the performance of each function block (i.e. task). If a block receives
data from another block mapped to a different device, the communication time is
considered. The overall system performance is an agglomeration of the individual
communication and computation times adjusted based on the algorithm path.

One key advantage of automated RAT analysis versus manual calculation is the
speed and efficiency of prediction, especially as algorithms increase in complexity
and are quickly revised by the designer. More importantly, RCML enables rapid
exploration of different algorithms, which is useful when RAT predictions for one
particular algorithm do not meet design constraints.

4.2 Automated RCSE Analysis Tool

In some cases, analytic prediction techniques are not sufficient for the designer’s
needs, and a more accurate analysis technique is desired. In such cases, simulation
tools are used extensively to provide more detailed and reliable analyses. As dis-
cussed in Section 2, the RCSE framework [Reardon et al. 2009] uses discrete-event
models of RC systems stimulated by application scripts which define the behavior
of the application in terms of key events (e.g. communication transfers, blocks of
computation, etc.). The individual components that make up the discrete-event
platform models are highly generic and use parameter files to describe their per-
formance. The tool presented here automatically generates application scripts for
the RCSE framework from an RCML system model. Additionally, this tool also
creates parameter files for each component in the RCML architecture model that
is used by the equivalent component within the simulation environment.

In order to generate a complete application script, each function block must
contain attributes to describe the computational demands of the task. Attribute
sets that enable a RAT analysis for the system are typically sufficient for the sim-
ulation tool. Alternatively, users may define attributes for the number of clock
cycles required by tasks mapped to RC devices, or the number of instructions and
memory/cache accesses performed by tasks mapped to microprocessors.

A separate application script is needed for each participating processor in the
system. Therefore, the tool creates a script for each processor with one or more
function blocks mapped to it. Each function block mapped to a fixed processor
generates a computation entry in the mapped processor’s script, while each RC core
defined in the system mapping creates a function call to the RC device preceded
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by a core configuration command. Linked function blocks mapped onto different
processing elements will generate communication events in the scripts. A script
command for intra-node communication is inserted into the corresponding script(s)
when two processing elements in the same node are involved. Otherwise, an MPI
function call which matches the connection’s communication pattern is placed into
the script of each participating processor.

Alternatively, automatic generation of parameter files is straightforward. For
each architecture block, the block’s attributes are compared against a list of pre-
defined attributes for that component class, and the values for matching attributes
are recorded. The parameter files and application scripts represent all inputs needed
to drive a simulative analysis of the system in RCSE.

5. CASE STUDIES

By integrating the automated analysis tools introduced in Section 4, RCML now
provides an environment for abstract modeling and evaluation of preliminary de-
signs of RC systems. In this section, case studies are conducted to demonstrate
and validate the effectiveness of the RCML environment and the two integrated
automated prediction tools in enabling early design-space exploration. First, the
automated RAT tool is used in Section 5.1 to provide an analytic performance pre-
diction for an image filtering application. Next, Section 5.2 presents a case study
in which the multi-node performance of a hyperspectral imaging application is pre-
dicted through simulations in RCSE driven by inputs automatically generated from
an RCML model. Both of the case studies presented in this section illustrate how
estimation-level models of RC systems can be effectively built and analyzed using
the RCML environment, which can provide substantial gains in overall productivity.

5.1 Automated RAT Case Study

For this case study, the target application is an image filter consisting of a 3 x 3
discrete 2-D convolution of an image segment (i.e. a pixel and its 8 neighbors)
with a user-specified filter. The RCML algorithm diagram for the image filter,
constructed in the Eclipse RCML editor, is shown in Fig. 6. The primary kernel
in this algorithm is the pipelined computation for the image filter which uses the
input stream of pixel values and user-provided filter values to produce a stream
of filtered pixels. The input image, defined by the data set labeled Input Image,
is preprocessed and segmented into three streams at the Image Segmentation task
prior to the image filter computation. The Input Image data set is transferred over
the connection between the Preprocessing and Image Segmentation tasks (this is
not depicted in the model’s figure). Although nine data elements are required per
pixel computation, the data is buffered using shift registers so that only three new
data values are required per pipeline input. Only three new pixels are required
for each new pipeline iteration because (except for pixels on the border of the
image) a horizontally or vertically adjacent pixel will share six pixels used in the
2-D convolution with the current pixel. Each of the three input streams, defined by
the data stream labeled Input Stream, is mapped to one of the input connections
feeding the Image Filter pipeline task (not depicted). The Image Filter pipeline is
then set to execute every time a new pixel is available on each of the three input
connections (not depicted). An input data set of 65,536 pixels is illustrated in
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Fig. 6: RCML Algorithm Model of Image Filtering Application used in RAT Case Study

the Input Image data set in Fig. 6, representing a 256 x 256 image arranged and
replicated for the image filtering computation. However, several image sizes are
used to validate the model and are specified by simply changing the number of
data elements in the Input Image and Filtered Image data sets. The Formatting
and Postprocessing tasks, represented by function blocks with the same names,
assemble the filtered pixel stream into a contiguous data block that represents the
final filtered image. The assembly of the Filtered Image is specified to occur during
the Formatting task since the output connection for that task is the first to transfer
elements from the Filtered Image data set.

The experimental platform used in this case study is an SRC-7 system featuring
one MAP-H FPGA node connected to a 3.0GHz dual-core Xeon processor via the
proprietary SNAP interconnect (Fig. 7). Each MAP-H node consists of two Altera
Stratix EP2S180 FPGAs, one primary and one secondary, with eight dual-ported
SRAM banks. The secondary FPGA is unused for this application. Although the
target MAP-H system used for this case study is installed in a ground-based system,
the models (and subsequent implementation code) also apply to embedded-system
versions produced by SRC. The algorithm and architecture models are annotated
with RAT parameters as defined in Holland et al. [2009], but are not depicted in
Fig. 7. These parameters include the data set sizes, the computational requirements
and throughput of the image filter algorithm, the SNAP interconnect throughput,
and the FPGA clock frequency. The algorithm and architecture models are mapped
together to form the system model for the application. The image segmentation,
filtering, and formatting tasks are performed on the FPGA while the preprocessing
and postprocessing are mapped on the Xeon microprocessor.

The results of the RAT performance prediction as compared to the subsequent
hardware implementation for the end-to-end runtime of the application are sum-
marized in Table III. The validity of the analytical inputs and models is confirmed
by the low error which further decreases with increasing image size. The largest
source of error for this application (and other algorithms with a similar mapping
on the SRC-7 platform) is the latency of computation and communication. The
application implementation is automatically pipelined using the Carte compiler and
the exact pipeline depth is not known a priori. This unaccounted latency is most
significant when the problem size is relatively small. Similarly, the communication
latency will impact the performance of short data transfers. More detailed algo-
rithm layout and communication microbenchmarking can further reduce prediction
errors at the expense of greater design effort during RCML-level abstract modeling.
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Fig. 7: RCML Architecture Model of SRC Platform used in RAT Case Study

Table III.  Analytical Validation Results

Image Size Analytical Experimental Error
Prediction Runtime

256x256 5.24E-03s 5.58E-03s 6.11%

512x512 2.10E-02s 2.14E-02s 2.15%

1024x1024 8.39E-02s 8.47E-02s 0.92%

2048x2048 3.36E-01s 3.38E-01s 0.62%

5.2 Automated RCSE Case Study

The application used in this case study is a parameterizable benchmark which per-
forms target detection and classification on a hyperspectral image (HSI) [Chang
et al. 2004]. The RCML algorithm diagram for HSI, built using the Eclipse RCML
editor, is shown in Fig. 8. The HSI algorithm used in this article is the same as the
implementation described in Jacobs et al. [2008], which can be divided into three
primary stages: calculation of the auto-correlation sample matrix (ACSM), weight
vector calculation (WVC), and target classification (TC). The input data processed
by this application is a 3-dimensional image, represented by the ACSM Input data
set in Fig. 8, which is used to help determine the total amount of computation
performed by the ACSM Calculation and Target Classification tasks. The ACSM
Input data set is transferred over the Scatter connection between the PreProcessing
and ACSM Calculation tasks (not depicted), thus each instance of ACSM Calcu-
lation receives a fraction of the total number of elements of ACSM Input. In the
ACSM stage, which consists of the PreProcessing, ACSM Calculation, and Average
ACSM Sums tasks in Fig. 8, the cross-product of each pixel vector is calculated and
the results are summed together. The resulting sum, first produced by the ACSM
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Fig. 8: RCML Algorithm Model of HSI Application used in RCSE Case Study

Calculation task and then transferred to the next two tasks (not depicted) is rep-
resented by the ACSM Output data set. The pipelined cross-product calculation in
ACSM is represented as an RCML process line (labeled ACSM calculation), which
can be duplicated and performed in parallel as many times as hardware resources
will support since each pixel vector may be processed independently. Following the
serial WVC stage, the TC stage involves comparing each pixel vector against the
spectral signature of each target class. Each pixel vector can again be processed
concurrently and the comparisons against each target may be pipelined in hard-
ware, as reflected in the duplicated process line labeled Target Classification. While
two of the three stages can be processed on the FPGA (ACSM and TC), the FPGA
is used to accelerate the ACSM Calculation task only in this case study, while the
remaining stages are mapped to microprocessors. The input image size (defined
by the data set labeled ACSM Input) is assumed to be 512 x 512 pixels with 1024
spectral bands and 8 target classifications, unless otherwise noted. The image size
is edited by simply changing the number of data elements in each data set of the
RCML algorithm model.

The experimental platform used in this case study is a 4-node cluster of Linux
servers. Each node is equipped with dual 1.42GHz PowerPC G4 processors, 1GB
of PC2700 system memory, and an Alpha Data ADM-XRC-4 FPGA board which
consists of a Xilinx Virtex4-SX55 FPGA along with 16MB of SRAM split across
four banks. A 32-bit PCI bus running at 33MHz connects the FPGA board to
the remainder of the node. All of the nodes are connected via a Gigabit Ethernet
switch. The RCML architecture diagram for this system was originally shown in
Fig. 4 and described in Section 3.2. The RCML model for this platform is scaled up
to 16 nodes to demonstrate analysis of hypothetical systems that are not physically
available. The RCML algorithm and architecture models are annotated with the
performance parameters presented in Jacobs et al. [2008], adjusted as necessary for
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Table IV. Simulative Validation Results

System Size # Bands Simulative Experimental Error
Prediction Runtime

2 Nodes 256 8.26s 7.98s 3.4%

2 Nodes 1024 84.72s 78.47s 7.4%

4 Nodes 256 6.49s 6.71s 3.3%

4 Nodes 1024 60.26s 58.86s 2.3%

the 512 x 512 image data. The two RCML models presented in this section are
mapped together to create the system model analyzed in the following case study.
The only changes made to the RCML model between simulative experiments is the
basic mapping information based on the number of nodes used, and the data set
sizes to reflect changes to the size of the input image.

The first simulative experiments are used to validate the accuracy of the simula-
tion inputs and models. Table IV summarizes results from experiments comparing
simulative projections of HSI performance against experimental results presented
in Jacobs et al. [2008]. Simulative results from three of the four validation ex-
periments yield predictions that are within 4% of the experimental runtime. The
remaining validation experiment yields an error of 7.4%, still within a range that
can provide useful insight to designers during early design-space exploration. These
experiments demonstrate that accurate simulation inputs are generated by the tool.
Furthermore, the inputs are generated much more efficiently and reliably through
an automated tool, otherwise users would be required to reproduce scripts manually
for each simulative experiment. Thus, having an environment and tool to automate
these tasks greatly increases the productivity of simulative analysis.

The second simulative experiment analyzes the scalability of HSI on larger sys-
tems by scaling the platform in the RCML model up to 16 nodes to demonstrate
analysis of hypothetical systems that are not physically available to the designer.
Having validated the accuracy of the simulations for 2- and 4-node systems, we can
use the RCML model and simulation tools to project the performance of HSI on
larger systems. Fig. 9 shows the simulative projected performance of HSI as the
system size is scaled from two to 16 nodes for a 512 x 512 image with 256 and 1024
spectral bands. When scaling up to eight nodes with 1024 spectral bands, significant
reductions in runtime are projected due to parallelism that can be exploited during
the ACSM and TC stages. But Fig. 9 also shows that the runtime is minimally
reduced when scaling beyond 12 nodes. The penalties for communication and the
serialization of the weight computation stage limit the parallel efficiency of HSI on
larger system sizes. Furthermore, smaller relative gains in performance are observed
with 256 spectral bands, whose runs have a smaller computation-to-communication
ratio, thus gains from parallel execution are offset by communication overhead.

6. CONCLUSIONS

While RC devices such as FPGAs are becoming an important option for realiz-
ing highly efficient and flexible systems for high-performance and/or embedded
computing, the time and difficulty associated with developing applications for RC
systems are often prohibitive, making it difficult to exploit the potential gains in
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performance and power savings that RC can provide. To improve RC productivity,
better concepts and tools are needed which allow designers to plan and analyze
their designs coding a specific (and possibly fruitless) implementation.

In this article, a new abstract, hierarchical modeling language and environment
for representing RC systems was introduced, called RCML. The RCML framework
includes three types of models: algorithm models which represent applications as
RC-specialized task graphs, architecture models which represent execution plat-
forms as a collection of components, and system models which map together an
algorithm and architecture model. Constructs in RCML are tailored to allow RC
designers to quickly and concisely define their parallel algorithm and execution
platform at varying levels of abstraction. RCML also provides a foundation for au-
tomated performance prediction during initial development stages. T'wo such tools
for automated performance prediction of RCML models were introduced. Case
studies involving automated analysis of applications using both integrated analysis
tools illustrate how RCML enables efficient early design-space exploration of RC
systems.

Future work includes a number of expansions to the RCML environment and
tool, and the development of algorithms to automate task mapping and partition-
ing of RCML system models. Methods for code generation from RCML models
are also planned, to facilitate the transition from estimation-level RCML models to
more detailed, functional hardware models. Automated implementation presents a
challenge, given the large number of different FPGA languages and platforms avail-
able for users to target. Nevertheless, existing core libraries could easily be linked
to RCML blocks to enable automated implementation of circuits using existing IP
cores. Finally, a framework for lowering the level of modeling abstraction is being
studied and incorporated with RCML in order to model and accurately predict the
clock frequency, latency, and resource utilization of reconfigurable hardware circuit
designs [Wang et al. 2009].
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