
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2010-03-10

Synchronization Voter Insertion Algorithms for
FPGA Designs Using Triple Modular Redundancy
Jonathan Mark Johnson
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Johnson, Jonathan Mark, "Synchronization Voter Insertion Algorithms for FPGA Designs Using Triple Modular Redundancy" (2010).
All Theses and Dissertations. 2068.
https://scholarsarchive.byu.edu/etd/2068

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F2068&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F2068&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F2068&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F2068&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F2068&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsarchive.byu.edu%2Fetd%2F2068&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/2068?utm_source=scholarsarchive.byu.edu%2Fetd%2F2068&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

Synchronization Voter Insertion Algorithms for FPGA

Designs Using Triple Modular Redundancy

Jonathan M. Johnson

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Michael J. Wirthlin, Chair
Brad L. Hutchings
Brent E. Nelson

Department of Electrical and Computer Engineering

Brigham Young University

April 2010

Copyright © 2010 Jonathan M. Johnson

All Rights Reserved

ABSTRACT

Synchronization Voter Insertion Algorithms for FPGA

Designs Using Triple Modular Redundancy

Jonathan M. Johnson

Department of Electrical and Computer Engineering

Master of Science

Triple Modular Redundancy (TMR) is a common reliability technique for mitigating sin-
gle event upsets (SEUs) in FPGA designs operating in radiation environments. For FPGA systems
that employ configuration scrubbing, majority voters are needed in all feedback paths to ensure
proper synchronization between the TMR replicates. Synchronization voters, however, consume
additional resources and impact system timing. This work introduces and contrasts seven algo-
rithms for inserting synchronization voters while automatically performing TMR. The area cost
and timing impact of each algorithm on a number of circuit benchmarks is reported. The work
demonstrates that one of the algorithms provides the best overall timing performance results with
an average 8.5% increase in critical path length over a triplicated design without voters and a 29.6%
area increase. Another algorithm provides far better area results (an average 3.4% area increase
over a triplicated design without voters) at a slightly higher timing cost (an average 14.9% increase
in critical path length over a triplicated design without voters). In addition, this work demonstrates
that restricting synchronization voter locations to flip-flop output nets is an effective heuristic for
minimizing the timing performance impact of synchronization voter insertion.

Keywords: triple modular redundancy, FPGA, voters, reliability, synchronization, feedback edge
set

ACKNOWLEDGMENTS

It is my pleasure to thank those who have helped me and made this thesis possible. I owe

many thanks to my advisor, Dr. Michael Wirthlin, for the hours he has spent guiding my research

and writing, and for his encouragement to finish this work. I would also like to thank the other

members of my graduate committee, Dr. Brent Nelson and Dr. Brad Huthings, for their support

and for the knowledge and experience they have helped me obtain.

My family also deserves thanks for supporting me and encouraging me along the way. My

parents have been a constant source of strength to help me finish this work. I also owe thanks to

my brother Eric for lighting the way before me, and to my other siblings Michelle and Jeffrey for

being supportive of my education and research.

Michael Caffrey, Paul Graham, Heather Quinn, and Keith Morgan at Los Alamos National

Laboratory also deserve many thanks for their guidance, advice, and the experience they helped

me gain. I am very grateful for their role in helping my development as an engineer.

Finally, I would like to thank all of my fellow students who contributed in the form of

advice, suggestions, and observations, including Brian Pratt, Nathan Rollins, Chris Lavin, Derrick

Gibelyou, Will Howes, and Yubo Li. Their support has made this work possible.

This work was supported by the I/UCRC Program of the National Science Foundation

under Grant No. 0801876 and by the Rocky Mountain NASA Space Grant Consortium.

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . viii

Chapter 1 Introduction . 1

Chapter 2 Background . 5
2.1 Radiation Effects in FPGAs . 5
2.2 Mitigation Techniques . 7
2.3 Automated TMR . 10
2.4 Conclusion . 11

Chapter 3 TMR Voter Insertion . 13
3.1 Reducing Voters . 13
3.2 TMR Partitioning Voters . 14
3.3 Clock Domain Crossing Voters . 17
3.4 Synchronization Voters . 20
3.5 Illegal Voter Locations . 22
3.6 Voter Insertion . 23
3.7 Conclusion . 24

Chapter 4 Synchronization Voter Insertion Algorithms 27
4.1 Simple Algorithms . 28
4.2 Algorithms Based on SCC Decomposition . 29
4.3 Conclusion . 39

Chapter 5 Experimental Results . 41
5.1 Benchmark Designs . 41
5.2 Procedure . 43
5.3 Timing Results . 44
5.4 Area Results . 46
5.5 Analysis . 48
5.6 Algorithm Execution Time . 50
5.7 Conclusion . 50

Chapter 6 Conclusion . 55

REFERENCES . 57

APPENDIX

iv

Appendix A Obtaining and Using the BYU-LANL Triple Modular Redundancy (BL-
TMR) Tool . 61

A.1 Obtaining the BL-TMR Tool . 61
A.2 Introduction . 61
A.3 Replication Toolflow . 61
A.4 JEdifBuild Options . 65
A.5 JEdifAnalyze . 72
A.6 JEdifNMRSelection . 75
A.7 JEdifVoterSelection . 86
A.8 JEdifNMR . 91
A.9 JEdifReplicationQuery . 94
A.10 Common Usage of JEdifNMRSelection . 95
A.11 Sample Makefile for TMR . 100
A.12 Special Notes . 101

v

LIST OF TABLES

2.1 Latch types in the Virtex XQVR300FPGA. Repeated from [17]. 6

5.1 Benchmark test designs with sizes and critical path lengths. 43
5.2 Critical path length induced by each voter insertion

algorithm using the Virtex architecture. 45
5.3 Critical path length induced by each voter insertion

algorithm using the Virtex-5 architecture. 45
5.4 Number of voters inserted by each voter insertion algorithm. 47
5.5 Number of slices induced by each voter insertion

algorithm using the Virtex architecture. 47
5.6 Number of slices induced by each voter insertion

algorithm using the Virtex-5 architecture. 48
5.7 Algorithm execution times. 53

vi

vii

LIST OF FIGURES

2.1 A Basic TMR Implementation. 7
2.2 Reliability comparison of three systems using λ = 0.001 and µ = 0.1. 9
2.3 TMR toolflow for FPGAs. 11

3.1 Reducing Voter . 14
3.2 Errors in multiple replicates of a single TMR partition 15
3.3 Non-overlapping failures masked when TMR partitions are used 16
3.4 An unpartitioned shift register . 17
3.5 A partitioned shift register . 18
3.6 Clock domain crossing synchronizer hazard . 19
3.7 A simple triplicated counter. 21
3.8 A triplicated counter protected by synchronization voters. 22
3.9 Two bits of a ripple-carry adder using FPGA primitives, carry chain, and dedicated

arithmetic hardware. 23
3.10 The net after Module A is cut with triplicated voters. 24

4.1 Voters Before Every Flip-Flop insertion algorithm. 29
4.2 Voters After Every Flip-Flop insertion algorithm. 30
4.3 SCCs can be dissolved by removing edges. 32
4.4 Graph representation of a circuit that includes flip-flops involved in feedback. . . . 37

5.1 Area/timing performance space of the voter insertion algorithms. 49
5.2 FPGA slice layout of three versions of the LFSRs design, color coded by TMR

replicate. 51
5.3 A circuit structure illustrating why putting voters before and after flip-flops changes

the total voter count. 52

A.1 The BL-TMR Tool Flow. 62

viii

ix

CHAPTER 1. INTRODUCTION

SRAM-based FPGAs are an attractive alternative to ASICs for space-based computing

missions because their in-orbit reconfigurability enables them to perform various tasks at different

stages of a mission. They are often used to implement custom designs that attain application

specific performance that would not be possible with software reconfigurable only alternatives.

In addition, the use of FPGAs can reduce the overall non-recurring engineering costs involved in

devloping a space-based application [1–4].

FPGAs are, however, susceptible to radiation effects in space environments [5]. Radiation

induced single event upsets (SEUs) are the major concern for SRAM-based FPGAs used in high

radiation environments. An SEU occurs when one of the internal memory cells in an FPGA is upset

by a high energy particle. An SRAM-based FPGA contains a large number of internal memory

cells, including its configuration memory. This memory controls the FPGA’s routing, logic, user

flip-flops, internal block memory, and other aspects of the device. The functionality of an FPGA

is dependent on the integrity of its configuration memory, and FPGA configuration memories are

large targets for single event upsets (SEUs). Mitigation strategies must be employed in order to

use SRAM-based FPGAs reliably in environments where SEUs can be encountered.

Several mitigation strategies have been developed for systems that use FPGAs in high radi-

ation environments. The most common strategy is a combination of Triple Modular Redundancy

(TMR) [5] and configuration memory scrubbing [6]. The basic concept of TMR is to triplicate a

circuit design so that the resulting design consists of three redundant copies of the original, with

majority voters inserted at strategic locations to mask errors in any single copy of the circuit. TMR

masks failures as they occur. Configuration memory scrubbing continuously configures an FPGA

with a golden bitstream stored in a protected memory in order to prevent the buildup of multiple

coincident SEUs that could overcome the redundancy of TMR. The effectiveness of this strategy

has been demonstrated using both fault-injection and radiation experiments [7–9].

1

Inserting majority voters is an important step in automated TMR. Majority voters are used

to mask errors in any one of the three TMR replicates, and to enable resynchronization of the

circuit state after configuration scrubbing [10]. Voters are inserted within all feedback paths to

ensure that state within logic feedback is updated when the bitstream scrubbing process repairs

circuit resources. Identifying good locations for these voters, however, is a difficult problem. Poor

synchronization voter locations lead to large area overhead and a significant increase in critical

path timing.

Previous work in the area of TMR voter insertion has focused primarily on the reliability

impact of voters and has been conducted predominantly with theoretical or manual TMR imple-

mentations. For example, Gurzi [11] investigated theoretically optimal partition sizes and voter

placement in triplicated logic networks for maximizing overall reliability given a particular voter

reliability. He showed that equal partition sizes provide the highest reliability, and that the best

number of partitions to use depends upon voter reliability, but his work is not specific to FPGA

implementations of TMR. In [12], Kastensmidt et al. showed that partitioning a triplicated FPGA

circuit with extra voters can reduce the sensitivity of the circuit to domain crossing events (DCEs),

which occur when a single event upset affects the FPGA routing network in such a way that more

than one of the TMR replicates is compromised. Manually applied TMR was used to demonstrate

this result. In [13], Pratt used an automated algorithm to show that using extra voters to partition a

triplicated circuit can be effective at reducing the sensitivity of the circuit to multiple independent

upsets (MIUs) within a single scrubbing cycle.

The focus of this work is on the creation and analysis of seven algorithms that automatically

select appropriate locations for synchronization voters in triplicated FPGA circuits. In addition to

addressing the reliability impact of voter insertion, this work investigates the timing performance

and area impact of the voter insertion algorithms on FPGA implementations of automatically ap-

plied TMR. It is shown that certain algorithms are better for minimizing the impact of TMR on

timing performance while others are more useful for minimizing the area of the resulting circuit.

It will also be shown that restricting voters to locations directly after flip-flops is a good heuristic

for preserving the timing performance of triplicated FPGA designs.

Although commercial tools for performing automated TMR and inserting synchronization

voters exist [14], this is the first published work that demonstrates how to perform automated

2

synchronization voter insertion. Correctly inserting synchronization voters is one of the most dif-

ficult parts of implementing TMR because all feedback paths must be intersected with at least one

voter, and performing manual voter insertion can be impractical for complex designs. All of the

algorithms presented in this work are available as part of an open source tool created at Brigham

Young University that is capable of performing automated TMR on FPGA designs. Information

on obtaining and using this tool is available in Appendix A.

This work will first present a background of reliability issues for space-based systems that

incorpate SRAM-based FPGAs in Chapter 2. Mitigation techniques will be discussed, including

the commonly used technique of combining TMR and configuration memory scrubbing. Next,

typical voter insertion issues will be discussed in Chapter 3. Then in Chapter 4, seven algorithms

for determining synchronization voter locations in triplicated FPGA designs will be presented.

In Chapter 5, experiments that were conducted to compare and evaluate these algorithms will be

outlined and the results will be analyzed. The work concludes in Chapter 6.

3

4

CHAPTER 2. BACKGROUND

This chapter will summarize radiation effects issues in FPGAs that make techniques such as

TMR necessary in FPGA designs for space-based missions. The primary effect that is considered

by this work is the single event upset (SEU). This chapter will also discuss common reliability

techniques used in systems that use FPGAs in radiation environments. The most commonly used

and well understood method is to use TMR in conjunction with a technique called configuration

memory scrubbing.

2.1 Radiation Effects in FPGAs

There are several radiation effects that can occur in FPGAs and other CMOS devices. The

main effects include total ionizing dose (TID) effects, single event latchups (SELs), and single

event upsets (SEUs). TID effects are the changes in electrical parameters of a device due to

radiation-induced charge [15]. These effects occur due to exposure to ionizing radiation over

time. A single event latchup (SEL) occurs when a charged particle induces a high current state that

causes transistor latchup. Such an event can cause permanent device damage. At the very least,

it requires power cycling the device to return it to a normal operating state. A single event upset

(SEU) occurs when a charged particle strikes an SRAM cell, causing the state of the memory cell

to change.

Some FPGA manufacturers guarantee the TID life of their devices as well as SEL immu-

nity. For example, the QPro Virtex-II family of radiation-hardened FPGAs is guaranteed by Xilinx

to have a TID life of 200K Rad(Si) and is guaranteed to be latchup immune up to a linear energy

transfer (LET) of at least 160 MeV-cm2/mg [16]. All SRAM-based FPGAs, however, are suscep-

tible to single event upsets (SEUs). SEUs are problematic for FPGAs because their configuration

memories contain millions of memory cells, which makes them a large target for SEUs.

5

The functionality of an SRAM FPGA is dependent on the contents of its configuration

memory. FPGAs are typically made up of highly configurable logic blocks containing lookup

tables (LUTs) that define logic functions and registers used for sequential logic. A reconfigurable

routing network connects the logic blocks in an FPGA in order to implement complex designs.

The contents of LUTs, the functionality of registers, and the routing network connections are all

stored in SRAM cells in an FPGA’s configuration memory. The functionality of an FPGA changes

when the contents of its configuration memory change.

An SEU in an FPGA’s configuration memory often affects only a single memory cell, but

multiple bit upsets (MBUs) can also occur when a charged particle strikes adjacent memory cells.

Even a single bit flip can have significant consequences on FPGA functionality. For example, a

single bit flip within the memory that controls a LUT changes the logic function implemented by

the LUT (this could, for example, cause next state logic in a state machine to be corrupted, causing

the state machine to transition into an invalid state; or it could cause output logic to send incorrect

results to circuit outputs). A single bit flip could also change a subset of the connections in the

FPGA’s routing network.

FPGA Block RAMs (BRAMS) and user flip-flops are also sensitive to SEUs. BRAMs are

often used as memories or FIFOs in FPGA designs. User flip-flops are the registers in the FPGA

that are instantiated in a design for use in state machines, counters, and other sequential logic

structures. BRAM and user flip-flop upsets can cause a design to enter invalid states. Although

these kinds of upsets are important, the configuration memory (including routing configuration)

has a much larger cross section and is more likely to receive SEUs (see Table 2.1).

Table 2.1: Latch types in the Virtex XQVR300FPGA. Repeated from [17].

Latch Type Function No. Bits
CLB Configuration Logic Blocks 6,144
IOB Programmable IO Blocks 948
LUT Look Up Tables 98,304

BRAM Block RAM 65,536
Routing & Other Bits 1,579,860

6

2.2 Mitigation Techniques

Many mitigation techniques have been considered for use in FPGAs (i.e. quadded logic,

temporal redundancy, error correcting state machine encodings, etc.), but none have been shown to

provide greater reliability than triple modular redundancy (TMR) [18]. TMR is the most commonly

used and well understood mitigation technique for space-based missions that incorporate FPGAs,

and it is most effective when used in conjunction with a technique called configuration memory

scrubbing.

2.2.1 Triple Modular Redundancy

TMR is a well known fault mitigation technique originally proposed by Von Neumann in

1956 [19]. TMR uses redundant hardware to mask circuit faults. A circuit protected by TMR in its

most basic form has three redundant copies of the original circuit and a majority voter. A fault in

any one of the three replicates of the original circuit does not produce an error at the output because

the majority voter selects the correct output from the other two replicates. Triplicated voters are

often used to avoid a single point of failure (see Figure 2.1).

module A0

module A1

module A2

voter

voter

voter

Figure 2.1: A Basic TMR Implementation.

TMR is used extensively to mitigate against radiation induced SEUs in SRAM-based FPGA

systems. It has been shown through fault-injection and radiation experiments [7–9] to provide sig-

nificant improvements in reliability. However, TMR also has significant area and timing perfor-

mance costs. In an FPGA, TMR increases the size of a circuit by at least 3X and by as much as

6X [20]. FPGA circuits can also suffer a significant decrease in timing performance when TMR is

7

applied, as will be seen in Chapter 5. Sometimes, a variant of TMR called partial TMR is used to

partially triplicate an FPGA circuit when there are insufficient resources on the FPGA to triplicate

the whole circuit. When partial TMR is used, triplication can be applied selectively by priority so

that the most important parts of the circuit are mitigated [21].

2.2.2 Configuration Memory Scrubbing

Although TMR protects a circuit from single SEUs, it can fail when multiple independent

SEUs occur in such a way that two or more of the TMR replicates are affected. When the outputs

of two or more of the TMR replicates are in error, majority voters select the incorrect output.

Configuration memory scrubbing is a technique that is used to prevent the buildup of multiple

independent SEUs.

Configuration memory scrubbing is used in conjuction with TMR to prevent the accumula-

tion of multiple independent SEUs from overcoming the redundancy of TMR [22]. The technique

works by continuously reading back the contents of the FPGA’s configuration memory and repair-

ing any errors that are found. The amount of time it takes to read and repair the entire configuration

memory is called a scrub cycle and is dependent on the size of the FPGA and the implementation of

the scrubber. In general, some external hardware is required, such as a protected memory for con-

figuration data storage. A variety of FPGA configuration memory scrubber implementations are

possible [23, 24]. When TMR and configuration scrubbing are used together, the effects of errors

are masked by TMR as they occur and the errors are corrected as soon as possible by scrubbing.

2.2.3 Reliability Modelling

Reliability modelling techniques can be used to show the effectiveness of TMR and scrub-

bing. The reliability over time of a non-redundant system, a system using TMR without scrubbing,

and a system using TMR with configuration memory scrubbing are compared in Figure 2.2. The

reliability of the non-reduntant system is computed as the probability that the system will still be

operational at time t given the failure rate λ , and is

R1(t) = e−λ t .

8

The reliability of the TMR system without scrubbing is modelled using a simple combinatorial

modelling technique. The reliability as derived in [25] is

R2(t) = 3e−2λ t−2e−3λ t .

The TMR system that uses scrubbing requires the more complex Markov modelling technique. Its
reliability is derived in [26] as

R3(t) =
(µ +5λ)sinh(1

2 t
√

µ2 +10λ µ +λ 2)e−
1
2 (µ+5λ)t√

µ2 +10λ µ +λ 2
+ cosh(

1
2

t
√

µ2 +10λ µ +λ 2)e−
1
2 (µ+5λ)t ,

where µ is the repair rate of the scrubbing system. The plots in Figure 2.2 are based on the failure

rate λ = 0.001 and the repair rate µ = 0.1, which were chosen to represent a typical space-based

computing environment.

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time (t)

R
(t)

Non−redundant system
TMR without scrubbing
TMR with scrubbing

Figure 2.2: Reliability comparison of three systems using λ = 0.001 and µ = 0.1.

9

As seen in the figure, a non-redundant system is generally less reliable than a TMR system

without repair (i.e. without configuration memory scrubbing) for short mission times. A TMR

system with scrubbing is much more reliable than both a non-redundant system and a TMR system

without repair. It is interesting to note that for longer mission times the non-redundant system ap-

pears more reliable than the TMR system without scrubbing. This is because once the redundancy

of TMR has become overcome by multiple unrepaired upsets, the added area of the redundancy

and voters actually becomes a reliability weakness.

2.3 Automated TMR

Although TMR is often applied to designs manually, the process is straightforward enough

to be implemented by an automated CAD tool. Existing tools for applying TMR to FPGA designs

include the Xilinx XTMR tool [5, 14] and the BYU/Los Alamos National Laboratory BL-TMR

tool [21]. Using an automated tool can provide several advantages over implementing TMR by

hand. For example, inserting voters in the proper places manually is a tedious and error prone

process. Using an automated TMR tool allows the mitigation technique to be applied much more

quickly.

The process of automated TMR begins with creating three identical copies of the original

circuit. First, each component instance is triplicated. Next, each net is triplicated. The nets are

then connected such that the connectivity of each of the three replicates matches the connectivity

of the original circuit. This is the straightforward part of TMR. Inserting majority voters to mask

errors is a more complex process and is the focus of the algorithms presented in this work.

The voter insertion algorithms presented in this work operate within the context of the BL-

TMR tool which is capable of applying automated TMR and several other mitigation techniques

to FPGA circuits. The tool operates on circuits represented at the post-synthesis netlist level. In

this representation, circuits consist of instances of FPGA primitives such as LUTs, flip-flops, and

dedicated hardware, and nets that define the connectivity between the primitives. The result of

applying TMR using the voter insertion algorithms presented in this work is a new netlist that

contains a triplicated version of the original netlist with voters inserted at appropriate locations.

After automated TMR, the triplicated netlist follows the traditional FPGA process of technology

mapping, placement, and routing, as shown in Figure 2.3.

10

TMR and
Voter Insertion

Technology
Mapping

Place &
Route

RTL
Synthesis

EDIF netlist Vendor proprietary
format

HDL
Source

Figure 2.3: TMR toolflow for FPGAs.

2.4 Conclusion

FPGAs are susceptible to various radiation effects when used in space-based computing

applications. The primary effect addressed by this work is the single event upset (SEU). A com-

bination of TMR and configuration memory scrubbing is used to mitigate the effects of SEUs in

FPGA circuits used in radiation environments. This technique has been shown both in theory and

practice to provide a significant reliability improvement. TMR is a technique that is often ap-

plied manually, but becomes much easier and less time consuming to use when applied using an

automated CAD tool. The voter insertion algorithms presented in this work are implemented as

part of such a tool and make the automated application of TMR and insertion of voters a practical

alternative to slow and tedious manual TMR implementations.

11

12

CHAPTER 3. TMR VOTER INSERTION

Voter insertion is one of the most important steps in applying TMR to a circuit design. It

is also the most complex step as voters are inserted in various locations for different reasons, and

because of the wiring necessary to insert the voters. This chapter introduces the four main types of

voters used in FPGA implementations of TMR. It also describes in general terms how locations for

voter insertion are identified. In addition, it describes the process of inserting voters once suitable

locations have been identified.

Various reliability concerns motivate voter insertion at different circuit locations. We refer

to voters by names that indicate their purpose in a circuit. Voter categories typically used in FPGA

implementations of TMR for reliable operation in space-based missions include the following:

reducing voters, partitioning voters, clock domain crossing voters, and synchronization voters.

Each of these voter categories will be described in detail in the sections that follow.

3.1 Reducing Voters

A reducing voter reduces outputs from the three TMR replicates to a single output. It is a

simple majority voter that is generally implemented as a LUT3 primitive. The most common use

of reducing voters is at circuit outputs. For example, when reducing voters are not used at circuit

outputs, the FPGA outputs are triplicated which requires the use of external voting (and 3 times as

many outputs). These requirements can be eliminated by using reducing voters to obtain a single

set of untriplicated circuit outputs. Reducing voters are sometimes made necessary when the target

FPGA has insufficient I/O resources to allow full triplication of the outputs. In these situations, a

reducing voter is used at each circuit output to reduce the outputs from the three TMR replicates

to a single output, as shown in Figure 3.1.

Reducing voters are also useful in partial TMR configurations. When partial TMR is used,

there are circuit locations where data must flow from a triplicated partition to a non-triplicated

13

reducing
voter

D Q

D Q

D Q

logic

logic

logic

x0

y0

x1

y1

x2

y2

FPGA Output

Figure 3.1: Reducing Voter

partition. Reducing voters are used at these locations to provide a single input to the non-triplicated

partition.

TMR can also be mixed with duplication with compare (DWC), an error detection tech-

nique which uses duplication instead of triplication. In such a configuration, there are circuit

locations where data must flow from a triplicated circuit partition to a duplicated partition. At such

locations, two reducing voters are used in parallel to reduce outputs from the three TMR replicates

to two inputs for the duplicated partition.

3.2 TMR Partitioning Voters

Partitioning voters are used to increase the reliability of a circuit by creating multiple TMR

partitions within the design. In a typical TMR system, errors that occur in the configuration mem-

ory are discovered and corrected by scrubbing. In a circuit that has voters only at the outputs,

errors are masked as long as they occur in only one of the three TMR replicates at a time. If mul-

tiple independent upsets occur fast enough such that they accumulate in more than one replicate

before being corrected by scrubbing, the redundancy of TMR is overcome. In such a state, TMR

voters can receive erroneous signal values on two out of three inputs, making it possible for errors

to propagate through the voters to circuit outputs. This is shown in Figure 3.2. In this example,

upsets occur in both moduleA0 and moduleB0. This causes each of the three voters to receive erro-

14

neous values on two out of three inputs, which means that the voters select the incorrect values to

propagate.

moduleA0 votermoduleB0

moduleA1 votermoduleB1

moduleA2 votermoduleB2

correct signal value

erroneous signal value

single event upset

Figure 3.2: Errors in multiple replicates of a single TMR partition

The vulnerability of TMR to multiple independent upsets in separate replicates can be

mitigated to a degree by subdividing a circuit into multiple partitions separated with triplicated

voters [13]. The added partitions allow the circuit to tolerate more multiple independent upsets. In

a TMR system with multiple partitions, each partition can tolerate errors in only one of the TMR

replicates. Multiple independent upsets that occur in separate TMR replicates but are separated

by partition boundaries (a set of triplicated voters) are called concurrent non-overlapping failures,

and they are successfully masked by TMR voters. For example, in Figure 3.3, the same upsets

occur as in the previous example, but this time they are in separate partitions because of the added

partitioning voters. In the first set of voters, each voter receives only one bad input (each from

moduleA0). Each of these voters propagates the correct values received on the other two inputs.

Likewise, in the second set of voters, each receives a single bad input from moduleB1. Each

propagates the correct values received on the other two inputs.

The probability of multiple independent upsets being in separate partitions increases with

the number of partitions in a TMR circuit. The reliability of a circuit can be improved by subdivid-

15

ing it into smaller and smaller partitions up to the point where the reliability gains from partitioning

are overridden by the unreliability of the voters being inserted between the partitions. The optimal

placement of partitioning voters for reliability is a difficult issue that is beyond the scope of this

work, but it is discussed further in [11] and [12].

votermoduleA0 votermoduleB0

votermoduleA1 votermoduleB1

votermoduleA2 votermoduleB2

correct signal value

erroneous signal value

single event upset

Figure 3.3: Non-overlapping failures masked when TMR partitions are used

Partitioning voters also have a secondary benefit. They decrease the amount of time po-

tentially required to resynchronize the registers of TMR replicates after becoming unsynchronized

due to an SEU. When an error affects sequential logic, erroneous values can be propagated through

several registers in the affected replicate. When the configuration memory is corrected, it can take

several clock cycles for the correct signal values to propagate through all of the affected regis-

ters. By using partitioning voters to break up sequential logic, the number of registers that can be

affected by a single SEU, and thus the number of clock cycles required for resynchronization, is

reduced. This is important because during the time the TMR replicates remain unsynchronized,

any additional SEUs in the two yet unaffected replicates would overcome the redundancy of TMR,

allowing functional errors to propagate through voters.

As an example, consider the shift register in Figure 3.4. When an SEU affects the indicated

location, incorrect signal values propagate through the remainder of the shift register of the affected

16

replicate. The replicates remain unsynchronized until the configuration memory is corrected via

scrubbing and correct values propagate to the end of the shift register. Until this happens, the

voters at the end of the shift register mask errors so that they do not reach the rest of the circuit.

However, until the registers become resynchronized, the circuit is left vulnerable; additional SEUs

in the shift registers of the other two replicates could overcome the redundancy of TMR.

voter voterD Q D Q D Q D Q D Q D Q D Q D Q

voter voter

voter voter

D Q D Q D Q D Q D Q D Q D Q D Q

D Q D Q D Q D Q D Q D Q D Q D Q

Figure 3.4: An unpartitioned shift register

The time during which the circuit is vulnerable in this manner can be reduced by partition-

ing the shift register as shown in Figure 3.5. With the shift register partitioned in this manner, only

four flip-flops can be affected by an SEU at the indicated location instead of eight. This cuts the

time it could potentially take for resynchronization in half.

3.3 Clock Domain Crossing Voters

Special consideration is required when applying TMR to circuits with multiple clock do-

mains because the clock domain crossing synchronizers usually present in such circuits pose a

TMR synchronization hazard. Extra voters are needed to mitigate this hazard. This section will

describe the issues related to this hazard.

In a circuit with multiple clock domains, clock domain crossing synchronizers are used to

reduce metastability effects when a signal from one clock domain enters a second clock domain.

17

D Q D Q D Q D Q D Q D Q D Q D Qvoter votervoter

D Q D Q D Q D Q D Q D Q D Q D Qvoter votervoter

D Q D Q D Q D Q D Q D Q D Q D Qvoter votervoter

Figure 3.5: A partitioned shift register

A typical clock domain crossing synchronizer consists of a small number of consecutive flip-

flops to reduce the probability of a metastable value propagating through the entire synchronizer.

Although synchronizers bring the probability of metastable events to an acceptably low value, there

can still be sampling uncertainty because a signal arriving from the sending clock domain appears

asynchronous to the receiving domain and may cause setup or hold time violations.

The sampling uncertainty inherent in clock domain crossing synchronizers is normally not

an issue, but becomes an issue when TMR is used. This is because sampling uncertainty causes

the possibility that the outputs of three synchronizers in separate TMR replicates do not propagate

outputs from the sending clock domain during the same cycle [27]. Three possibilities can occur:

1. The three synchronizers propagate outputs from the sending clock domain during the same

clock cycle,

2. Two of the three synchronizers propagate outputs from the sending clock domain one clock

cycle after the other synchronizer, and

3. One of the three synchronizers propagates its output from the sending clock domain one

clock cycle after the other two synchronizers.

Figure 3.6 illustrates the third possibility. In the figure, sigA0, sigA1, and sigA2 arrive at the

receiving clock domain’s synchronizers at a time that causes a setup time violation. This causes

the uncertainty seen in the waveforms of sigB0, sigB1, and sigB2, which in turn causes sigC1 to

go high one whole clock cycle after sigC0 and sigC2.

18

moduleA0 D Q D Q moduleB0

clkA

clkB

sigA0 sigC0

moduleA1 D Q D Q moduleB1

clkA

clkB

sigA1 sigC1

moduleA2 D Q D Q moduleB2

clkA

clkB

sigA2 sigC2

voter

sigA 0

sigB1

sigB2

sigB

2sigA

1sigA

0sigA

sigB2

sigB0

sigB1

sigC1

2sigC

sigC0

clkA

clkB

Sampling Uncertainty

Figure 3.6: Clock domain crossing synchronizer hazard

TMR voters at circuit outputs can mask errors created by a single replicate being unsyn-

chronized with the other two, but such a situation leaves the circuit vulnerable to further errors.

With the redundancy created by TMR already being used to correct TMR synchronization errors

caused by clock domain synchronizer sampling uncertainty, any SEU in one of the two synchro-

nized replicates could completely overcome the redundancy of TMR, allowing errors to propagate

through voters. In fact, this situation leaves the circuit less reliable than if TMR hadn’t been used

at all.

19

Several strategies for mitigating TMR circuits that have clock domain crossing synchro-

nizers are being investigated. These strategies involve strategically placing additional TMR voters

in order to resynchronize TMR domains after clock domain crossing synchronizer outputs. Li

demostrates two such strategies in [27].

3.4 Synchronization Voters

The final type of voter is the synchronization voter. Synchronization voters are necessary

when configuration memory scrubbing is used with TMR designs that include sequential logic with

feedback (almost all designs). The purpose of synchronization voters is to restore correct registered

state after FPGA logic problems are repaired by configuration scrubbing. For example, when an

SEU affects logic, incorrect signal values may propagate to registers in one of the replicates of the

circuit. If the registers are involved in a feedback loop, incorrect values may persist in the loop even

after the SEU is corrected by configuration scrubbing. This motivates the use of synchronization

voters placed within sequential logic feedback loops. Their purpose is to restore correct registered

state within feedback loops of a single TMR replicate by using the values from the other two

replicates.

The importance of synchronization voters is demonstrated by the example of the simple

triplicated counter in Figure 3.7(a). Three copies of a register and accumulator logic are instan-

tiated to provide fault tolerance for any single circuit failure. Voters are placed at the outputs to

select the majority result should a failure occur. The synchronization problem that occurs with this

circuit is demonstrated by the waveform of Figure 3.7(b).

In this example, a configuration fault forces the clock enable of the third TMR replicate into

a stuck-at-0 condition. Because of this fault, the counter does not increment; it remains in the same

count state until the clock enable is repaired by scrubbing. Once the counter has been repaired by

a configuration scrubbing process, it continues its count sequence from the state in which it was

stuck. Although repaired and operating properly, the counter is out of sequence with the other two

counters. While the TMR voter circuitry properly ignores the incorrect count value, the reliability

of the circuit is reduced because the counters are not synchronized. That is, any additional faults in

the other TMR replicates would cause the redundancy of TMR to be overcome, allowing the error

20

registers

accumulator
logic

voters

voters

voters

x0[7:0]

registers

accumulator
logic

x1[7:0]

registers

accumulator
logic

x2[7:0]

(a) Simple counter with voters outside the
feedback loop.

7 8 9 A B C D

7 8 9 A B C D

7 8 8 8 8 9 A

x0[7:0]

x1[7:0]

x2[7:0]

clock enable
stuck @ 0

clock enable
repair

(b) A simple counter is susceptible to TMR synchro-
nization problems when SEUs occur within the feed-
back loop, even after scrubbing has corrected the
configuration memory.

Figure 3.7: A simple triplicated counter.

to propagate to the rest of the circuit. In this state, the circuit is less reliable than if TMR had not

been used at all (because of the extra area added by the TMR replicates).

Synchronization voters are voters placed within the feedback of a circuit to provide resyn-

chronization after a fault occurs. Figure 3.8(a) demonstrates the proper use of synchronization

voters by placing the voters within the feedback loop. Using the voters within the feedback en-

sures that the proper input value is provided to all of the counters no matter where the fault lies.

The benefits of this technique are illustrated in the counter failure waveform of Figure 3.8(b).

As described in the prior example, the third TMR replicate experiences a stuck-at-0 fault on its

clock enable input. While this fault is present, the third counter retains the same value and falls

out of sequence with the other counters. The voter circuitry masks this faulty value and provides

a correct value on the feedback path. Once the configuration fault is repaired by online scrubbing,

the proper value is loaded into the third counter and it becomes resynchronized with the other

counters. With all three counters synchronized and repaired, the circuit will reliably operate in the

presence of another configuration fault.

The placement of synchronization voters is a difficult issue to resolve automatically. There

are two constraints that govern the placement of synchronization voters. The first is that all design

feedback must be intersected by synchronization voters. The second constraint is that there are

21

registers

accumulator
logic

voters

voters

voters

x0[7:0]

registers

accumulator
logic

x1[7:0]

registers

accumulator
logic

x2[7:0]

(a) Simple counter with voters inside the
feedback loop.

7 8 9 A B C D

7 8 9 A B C D

7 8 8 8 8 C D

x0[7:0]

x1[7:0]

x2[7:0]

clock enable
stuck @ 0

clock enable
repair

(b) Synchronization voters protect the counter from
TMR synchronization problems when scrubbing
SEUs.

Figure 3.8: A triplicated counter protected by synchronization voters.

certain nets in a netlist representation of a circuit that cannot have voters placed on them because

of the FPGA architecture. Within the space left by these two constraints there are many possible

synchronization voter configurations. Finding a valid configuration is simple, but determining the

best configuration is difficult because the locations of the synchronization voters affect the timing,

area, and reliability of the resulting circuit. Heuristic algorithms that attempt to determine good

synchronization voter insertion locations are discussed in the next chapter.

3.5 Illegal Voter Locations

One of the constraints that governs voter insertion is that there are certain nets in a netlist

representation of a circuit that cannot be cut by voters because of the FPGA architecture. Figure 3.9

illustrates an example of this issue. The figure shows two bits of a simple ripple-carry adder

implemented using the dedicated carry chain and arithmetic hardware found in the Virtex FPGA

family. The adder in the figure is implemented using logic cells in two different slices. Net A in

the figure cannot be cut by voters because this net is implemented by a dedicated route connection

within a logic slice. Since there is no reconfigurable routing between a MULT AND primitive

and a MUXCY primitive, a MULT AND cannot drive a voter and a MUXCY cannot receive its

input directly from a voter. We refer to locations such as net A as illegal cut locations. Other

22

illegal cut locations include nets between MUXCY and XORCY primitives, nets between internal

multiplexors that are used to create wider LUTs or multiplexors (i.e. MUXF5, MUXF6, MUXF7,

MUXF8), and some nets connecting cascaded DSP48 primitives. Voter insertion algorithms must

not create netlists that have voters inserted at illegal cut locations.

In addition to illegal cut locations, there are other locations where inserting voters is legal,

but results in an undesirable implementation. For example, net B in Figure 3.9 is implemented

using fast dedicated carry chain routing. Adding a voter on this net is legal but will break the

high-speed carry chain logic. To add a voter, the output of the MUXCY primitive in the lower slice

must be routed to a different slice where the voting is performed. The output of this voter would

then need to be routed into the CIN input of the upper MUXCY, breaking the high-speed carry

chain. In addition to avoiding illegal cut locations, the voter insertion algorithms presented in this

work avoid dedicated carry chain routing nets in order to preserve timing performance as much as

possible.

MULT_AND

MUXCY

XORCYLUTA1

B1

Cin

Cout

S1

f=A B

MULT_AND

MUXCY

XORCYLUTA2

B2

Cin

Cout

S2

f=A B

A

B

Figure 3.9: Two bits of a ripple-carry adder using FPGA primitives, carry chain, and dedicated
arithmetic hardware.

3.6 Voter Insertion

Once voter insertion locations have been determined, the actual insertion of voters into the

circuit is a straightforward process. The location of voters in a TMR design is specified in terms

23

of nets from the original, unmitigated design. When inserting a voter at a net location, the net is

split into two pieces and a voter is inserted in the middle. The source of the original net becomes

the source of the voter and the sinks of the original net are driven by the voter. This voter insertion

occurs in the context of TMR where there are three copies of the source and three copies of each

instance. Inserting a voter on a net in the original design involves replacing the three copies of the

net in the TMR design with voter nets as described in the following process:

1. Instantiate three voters to perform triple voting on the given net,

2. Identify the three copies of the source of the net and connect these sources to the inputs of

each of the three voters, and

3. Connect the output of each voter to the corresponding sinks of the net.

We refer to the process of inserting voters on a net as cutting a net with voters, since the original

net is replaced by two sets of triplicated nets: one feeding into the voters and one exiting from

them. Figure 3.10 illustrates the basic triplication and voter insertion process.

module A module B

module B0

module B1

module B2

module A0 voter

module A1 voter

module A2 voter

Triplication and
Voter Insertion

Figure 3.10: The net after Module A is cut with triplicated voters.

3.7 Conclusion

Voters are used in TMR designs for various purposes, including reducing triplicated outputs

to a single output, creating multiple TMR partitions, mitigating clock domain synchronization cir-

cuitry, and protecting the synchronization of the TMR replicates within sequential logic feedback.

24

The synchronization voters are difficult to place optimally because there are many possible con-

figurations, and the voter locations have a significant impact on the area and timing performance

of the resulting circuit. In addition, there are certain locations in a circuit where voters cannot or

should not be place due to FPGA architectural constraints. Once voter insertion locations have

been determined, the process of inserting the voters is straightforward and easy to implement in an

automated CAD tool.

25

26

CHAPTER 4. SYNCHRONIZATION VOTER INSERTION ALGORITHMS

Synchronization voters are essential in FPGA circuits that use TMR because they ensure

that the internal state of the TMR replicates are synchronized after configuration scrubbing. Al-

though adding synchronization voters in a design manually is a difficult and error prone process,

most implementations of TMR are done by hand. The process of selecting synchronization voter

locations and inserting the voters into a circuit can be automated by CAD tools. This chapter

will introduce several algorithms that can enable CAD tools to automatically select locations for

synchronization voters. All of the algorithms in this chapter are implemented as part of the open

source BL-TMR tool. Information on obtaining this tool is available in Appendix A.

Synchronization voter insertion algorithms must determine a set of nets within a design that

cuts all feedback in the design. Voters are placed on each of these nets to ensure that synchroniza-

tion voting occurs within the feedback structures of a design (see Figure 3.8(a)). Determining a set

of voter locations that satisfy this constraint is an instance of the feedback edge set (FES) problem.

Determining a minimum set of voter insertion locations to satisfy the constraint is an instance of

the minimum (FES) problem, which is NP-hard [28].

While polynomial time approximation algorithms exist for the minimum FES problem [29,

30], the minimum set of voter insertion locations is not necessarily the best solution for FPGA

implementations of TMR. In order to preserve performance, care must be taken to avoid voter

insertion locations that would negatively impact timing performance. In addition, existing FES

algorithms cannot be applied directly because FPGAs have illegal cut locations. Each of the al-

gorithms in this section solves the FES problem for voter insertion in a way that avoids illegal cut

locations (see Figure 3.9 and related discussion).

The goal of the algorithms presented in this chapter is to minimize the area and timing

performance impact of synchronization voter insertion by selecting good locations for the voters

and using as few voters as possible. Poorly placed voters can adversely affect both the area and

27

timing performance of a design. For example, when multiple voters are placed within a single

timing path (we consider a timing path to be any path from one flip-flop to another), the critical

path of the design may be increased more than is necessary. In addition, the locations chosen to

intersect the feedback loops of a design affect the total number of voters required. Many of the

algorithms in this chapter employ heuristics based on FPGA architecture that attempt to minimize

circuit area and timing impact.

This chapter will first present two very simple voter insertion algorithms that solve the

problem in a local manner. These will be followed by five algorithms based on strongly connected

component (SCC) decomposition that attempt to meet the constraints while using fewer voters

and applying timing-based heuristics. The run-time complexity of each algorithm will be given in

terms of |V | (the number of nodes in the circuit graph) and |E| (the number of edges in the circuit

graph).

4.1 Simple Algorithms

The algorithms in this section are considered simple because they require only a very simple

analysis of the circuit. Although they are simple, they both manage to correctly intersect all of the

feedback in a design with voters. In addition, both of these algorithms prevent multiple voters from

being placed in a single timing path. One weakness of these algorithms is that they often insert

many more voters than are strictly necessary.

4.1.1 Voters Before Every Flip-Flop

The Voters Before Every Flip-Flop algorithm places a voter before the data input of every

flip-flop in a circuit. For example, the two flip-flops in the circuit of Figure 4.1(a) would be

triplicated with voters after each flip-flop as shown in Figure 4.1(b). The algorithm is guaranteed

to intersect every cycle with a voter because in standard synchronous circuits, each cycle must have

at least one flip-flop. This approach does not insert voters within asynchronous feedback loops.

Synchronization of asynchronous feedback loops is beyond the scope of this work. The algorithm

also ensures that at most one voter can be placed in a single timing path. This is because a timing

path extends from one flip-flop to another flip-flop, and voters are placed only directly before flip-

28

flops. This reduces the timing impact of the algorithm on the resulting circuit. The algorithm runs

in O(|V |) time (each node in the circuit is traversed to find all of the flip-flops).

D Q D Qlogic

(a) Original circuit before TMR.

voter D Q D Qlogic

voter D Q D Qlogic

voter

voter

voter

voterD Q D Qlogic

(b) The triplicated circuit has voters before
each flip-flop.

Figure 4.1: Voters Before Every Flip-Flop insertion algorithm.

4.1.2 Voters After Every Flip-Flop

The Voters After Every Flip-Flop algorithm places a voter after the output of each flip-flop

in a circuit. For example, the two flip-flops in the circuit of Figure 4.2(a) would be triplicated with

voters after each flip-flop as shown in Figure 4.2(b). Like the previous algorithm, it is guaranteed to

intersect every cycle with a voter, and it inserts at most one voter in a single timing path (reducing

the timing impact of the algorithm on the resulting circuit). This algorithm also executes in O(|V |)

time.

4.2 Algorithms Based on SCC Decomposition

While the simple algorithms in the previous section satisfy the constraints of synchroniza-

tion voter insertion, they often insert many more voters than are actually needed. The algorithms

that follow are designed to insert fewer voters. They work progressively by indentifying feedback,

inserting voters in the feedback, and stopping when there is no feedback left uncut. By inserting

29

D Q D Qlogic

(a) Original circuit before TMR.

D Q D Qlogic

D Q D Qlogic

voter

voter

voterD Q D Qlogic

voter

voter

voter

(b) The triplicated circuit has voters after
each flip-flop.

Figure 4.2: Voters After Every Flip-Flop insertion algorithm.

fewer voters, these algorithms have the potential to produce circuits with better timing performance

and area.

The following five algorithms use analysis of strongly connected components (SCCs) to

determine a more efficent voter configuration that cuts all feedback. The SCCs of a graph are

the maximal subgraphs in which there is a path from each node to every other node [31]. SCC

decomposition is the process of finding all of the SCCs in a graph. The definition of an SCC leads

to the following corollaries:

• Each SCC contains at least one cycle,

• No cycle spans more than one SCC,

• There are no cycles outside of the SCCs of a graph,

• Nodes not involved in any cycles will not be found in any SCC.

These corollaries suggest that decomposing a graph into SCCs can be a way of simplifying the

problem of determining where to place synchronization voters. Since any cycle involves nodes

only in a single SCC, each SCC can be treated as a subproblem of the overall synchronization

voter insertion problem. Furthermore, graph edges not involved in any of a graph’s SCCs need not

be considered for synchronization voter insertion.

30

In order to use SCC decomposition to determine where to insert synchronization voters,

the algorithms in this section first generate a directed graph representation of a circuit. Each

component instantiation in the circuit netlist becomes a node in the graph. Each net in the netlist

becomes a set of edges. For every net in the netlist, the sources and sinks are iterated in a nested

fashion and a graph edge is created from each source to every sink. In this manner, the netlist

hypergraph representation is converted to a simple directed graph representation.

Once a graph representation of the circuit has been created, the algorithms break up the

SCCs of the graph into smaller and smaller SCCs by systematically removing edges until all SCCs

are dissolved and there are no cycles left in the graph. Edges are removed from the graph represen-

tation of the circuit only. Once all of the SCCs are dissolved, voters are inserted in the actual circuit

at the locations where edges were removed from the graph representation of the circuit. The pro-

cess of breaking up SCCs by removing edges is illustrated with the example graph in Figure 4.3(a).

This graph contains two SCCs: {{2,3,4,5,6,7,8}, {9,10,11}}. The removal of edge (6,3) would

break the first SCC into two smaller SCCs, resulting in the SCC decomposition: {{2,3,4,5},

{6,7,8}, {9,10,11}}. Removing edge (10,11) would dissolve the third SCC into a feed forward

component, giving the SCC decomposition:{{2,3,4,5}, {6,7,8}}. Additionaly removing edges

(2,3) and (7,8) would completely dissolve all of the SCCs in the graph, resulting in the graph

shown in Figure 4.3(b). Note that the resulting graph has no feedback loops. Thus, placing syn-

chronization voters in the actual circuit at each of the four locations where edges were removed in

the graph representation would break all feedback and ensure proper TMR synchronization.

The algorithms that follow require repeated use of SCC decomposition (several iterations

of edge removals are performed and the SCCs are analyzed after each iteration in order to deter-

mine what SCCs remain). Several algorithms for SCC decomposition exist, including Kosaraju’s

algorithm [32] and Tarjan’s algorithm [33], both of which run in O(|V |+ |E|) time.

The SCC decomposition-based algorithms all have the same basic structure which is sum-

marized with pseudocode in Algorithm 1. The basic structure of the algorithms uses a stack-based

method for processing all of the SCCs. To begin, an SCC decomposition of the circuit graph is

computed, and all of the SCCs are pushed onto a stack (S). The algorithm iterates over the SCCs in

the stack until the stack is empty. During each iteration of the while loop, a single SCC is popped

off of the stack for processing. Edges are removed from the SCC to break up the SCC into smaller

31

2 3 6

7 8 11

9 10

5 4

1

12

(a) Before removing edges.

2 3 6

7 8 11

9 10

5 4

1

12

(b) After dissolving the SCCs by removing selected edges.

Figure 4.3: SCCs can be dissolved by removing edges.

SCCs or single nodes. Any remaining SCCs that result are pushed onto the SCC stack for process-

ing in the next iteration. This process continues until all of the SCCs have been broken into feed

forward components. The edge set used to break the feedback of the SCCs indicates the locations

of the synchronization voters.

The algorithms that use this structure differ in the manner in which they select edges to

remove to dissolve the SCCs into feed forward components. Different edge selection strategies are

used to identify feedback edge cutsets that result in, for example, a faster circuit or a fewer number

of voters.

4.2.1 Basic SCC Decomposition Algorithm

The Basic SCC Decomposition Algorithm is the simplest SCC decomposition based algo-

rithm implemented in this work. The algorithm uses temporary information obtained during the

SCC decomposition to completely cut the SCC in a single step. This approach computes SCC

decompositions using Kosaraju’s algorithm which uses two depth-first searches (DFS). The DFS

back edges computed during Kosaraju’s algorithm are used to remove all cycles in the SCC in

one pass (removing all DFS back edges from an SCC removes all feedback)1 This algorithm runs

quickly on average, but typically induces poor timing performance in the resulting circuit. The
1In some cases, this approach selects edges that correspond to illegal cut locations. When this happens, only the

legal voter location edges are removed, an SCC decomposition is recomputed (new SCCs being pushed onto the stack),
and the algorithm continues to the next iteration. In the rare case that none of the DFS back edges correspond to legal

32

Algorithm 1 Basic Structure of SCC Decomposition Algorithms
Initialize List L
Initialize Stack S
SCCs← ComputeSCCDecomposition(graph)
for scc in SCCs do

S.push(scc)
end for
while S is not empty do

scc← S.pop()
Algorithm specific edge removal
Add removed edges to List L
newSCCs← ComputeSCCDecomposition(scc.nodes())
for newSCC in newSCCs do

S.push(newSCC)
end for

end while
Insert voters on nets corresponding to edges in L

runtime complexity is O(|V |2 + |V ||E|), but this is a conservative upper bound. In the best case

(when no illegal cuts are encountered), the complexity is O(|V ||E|+ |V |+ |E|). Pseudocode for

the algorithm is given in Algorithm 2.

4.2.2 Highest Fanout SCC Decomposition Algorithm

The Highest Fanout SCC Decomposition Algorithm uses a heuristic intended to minimize

the number of voters used to intersect the cycles of a circuit. The heuristic is based on the intuitive

suggestion that a significant amount of feedback can be cut by inserting voters on a single net

with high fan-out. Nets with high fan-out are likely to be part of multiple cycles that can all be

cut at a single point. At each iteration of the SCC processing while loop, the SCC in question is

analyzed to find the node with the highest legal cut fanout. The legal cut output edges from this

node are then removed from the graph. In this manner, edge removal is prioritized with high fanout

nets. The algorithm runs in O(|V |2|E|) time, but this is a conservative upper bound. The |V |2 term

comes from the fact that each time an SCC is processed by the while loop, each of its nodes must

be examined to find the node with the highest fan-out. In practice, the number of times the SCC

voter locations, no edges are removed. The DFS search order is rotated (resulting in a different set of DFS back edges),
and the algorithm continues to the next iteration.

33

Algorithm 2 Basic SCC Decomposition Algorithm
Initialize List L
Initialize Stack S
SCCs← ComputeSCCDecomposition(graph)
for scc in SCCs do

S.push(scc)
end for
while S is not empty do

scc← S.pop()
if all of scc.backEdges() correspond to legal voter locations then

Remove scc.backEdges() from graph
Add scc.backEdges() to L

else if some of scc.backEdges() correspond to legal voter locations then
Remove legal edges in scc.backEdges() from graph
Add legal edges in scc.backEdges() to L

else if none of scc.backEdges() correspond to legal voter locations then
Rotate the DFS search order of the graph

end if
if not all back edges were removed then

newSCCs← ComputeSCCDecomposition(scc.nodes())
for newSCC in newSCCs do

S.push(newSCC)
end for

end if
end while
Insert voters on nets corresponding to edges in L

processing loop executes is far fewer than |V |, and the number of nodes in each SCC is generally

far fewer than |V |. Pseudocode for the algorithm is given in Algorithm 3.

4.2.3 Highest Flip-Flop Fanout SCC Decomposition Algorithm

The Highest Flip-Flop Fanout SCC Decomposition Algorithm is similar to the previous

algorithm but identifies high fanout nets that originate from flip-flops. This algorithm has two

priorities: inserting a small number of voters and reducing the negative impacts of voter insertion

on timing performance. When more than one set of voters is inserted in a single timing path (i.e.

a path from one register to the next), the voters negatively affect timing performance more than

is necessary. For each SCC processed by this algorithm, the flip-flop with the highest legal cut

fanout in the SCC is determined. The legal cut output edges from this node are removed. Since a

34

Algorithm 3 Highest Fanout SCC Decomposition Algorithm
Initialize List L
Initialize Stack S
SCCs← ComputeSCCDecomposition(graph)
for scc in SCCs do

S.push(scc)
end for
while S is not empty do

scc← S.pop()
highestLegalFanout← 0
highestFanoutNode← null
for node in scc.nodes() do

f anout← ComputeLegalCutFanout(node)
if f anout > highestLegalFanout then

highestLegalFanout← f anout
highestFanoutNode← node

end if
end for
Remove output edges of highestFanoutNode from graph
Add removed edges to List L
newSCCs← ComputeSCCDecomposition(scc.nodes())
for newSCC in newSCCs do

S.push(newSCC)
end for

end while
Insert voters on nets corresponding to edges in L

timing path consists of the logic from one flip-flop to the next, inserting voters only directly after

flip-flop outputs ensures that at most one voter will be inserted per timing path. The runtime of this

algorithm is the same as the previous algorithm, O(|V |2|E|). As with the previous algorithm, this

is a conservative upper bound. Pseudocode is given in Algorithm 4. The timing benefits of using

this algorithm are demonstrated in the Results chapter.

For an example of the Highest Flip-Flop Fanout SCC Decomposition Algorithm, consider

Figure 4.4. The figure is a graph representation of a circuit that includes flip-flops that are involved

in feedback. The flip-flop nodes in the graph are indicated with gray shading. The initial SCC

decomposition performed by the algorithm gives the SCCs {{1,2,4,3},{5,7,6}}. The algorithm

pushes these SCCs onto a stack and begins processing them with the while loop. The first SCC

popped off of the stack is {5,7,6}. Its only flip-flop node, node 7, is chosen to have its data output

35

Algorithm 4 Highest Fanout SCC Decomposition Algorithm
Initialize List L
Initialize Stack S
SCCs← ComputeSCCDecomposition(graph)
for scc in SCCs do

S.push(scc)
end for
while S is not empty do

scc← S.pop()
highestLegalFanout← 0
highestFanoutFFNode← null
for node in scc.flipFlopNodes() do

f anout← ComputeLegalCutFanout(node)
if f anout > highestLegalFanout then

highestLegalFanout← f anout
highestFanoutFFNode← node

end if
end for
Remove output edges of highestFanoutFFNode from graph
Add removed edges to List L
newSCCs← ComputeSCCDecomposition(scc.nodes())
for newSCC in newSCCs do

S.push(newSCC)
end for

end while
Insert voters on nets corresponding to edges in L

net removed from the graph. In this case, the output net from node 7 is represented by a single

edge, (7,6). Edge (7,6) is removed from the graph and an SCC decomposition of the subgraph

induced by the nodes {5,7,6} is computed. Since the feedback has been removed, no SCCs are

found in the subgraph and the while loop continues to the next iteration.

The next iteration pops the SCC {1,2,4,3} off of the stack. In this SCC, node 3 is the

flip-flop node with the highest fan-out, so it is chosen to have its data output net removed from the

graph. Its output net is represented by edges (3,1), (3,2), and (3,5). These edges are removed

from the graph (note, however, that this results in only a single voter insertion location) and an

SCC decomposition of the subgraph induced by nodes {1,2,4,3} is performed. The result of the

decomposition is a single remaining SCC: {2,4}. This SCC is pushed onto the stack and the while

loop continues to the next iteration.

36

In the next iteration, the SCC {2,4} is popped off of the stack. Since node 4 is its only

flip-flop node, its data output net edges are removed ((4,2) and (4,6)). An SCC decomposition

of the subgraph induced by {2,4} is performed and no SCCs are found. At this point the stack is

empty and all of the SCCs have been broken up into feed forward only components. The edges

removed by the algorithm result in voters being placed directly after each of nodes 3, 4, and 7.

This is sufficient to correctly mitigate the circuit’s feedback.

2

3

6

7

4

51

Figure 4.4: Graph representation of a circuit that includes flip-flops involved in feedback.

4.2.4 Highest Fan-in Flip-Flop Input SCC Decomposition Algorithm

The Highest Fan-in Flip-Flop Input algorithm uses a heuristic similar to the high fan-out

heuristic. It is based on the hypothesis that just as inserting voters after flip-flops with high fan-out

can reduce the total number of voters needed to cut all feedback, inserting voters before flip-flops

with high fan-in could have a similar effect. In this algorithm, flip-flop fan-in is defined as the

number of nets that directly or indirectly feed into the data input of a flip-flop going up to five

levels backwards as computed by a depth-limited DFS traversal. For each SCC being processed,

this algorithm finds the flip-flop in the SCC with the highest fan-in that also has a data input edge

that is a legal voter location and removes its data input edge. The run time of this algorithm is

O(|V |3 + 2|V |2|E|+ |V ||E|2), but this is a conservative upper bound. The extra |V | factor in the

dominant term (over the |V |2 of the previous two algorithms) comes from the fact that for each flip-

flop node found in each SCC, a depth-limited DFS must be performed to determine the fan-in of

37

the flip-flop. In practice, the number of nodes traversed in each of these searches is far fewer than

|V | because the DFS search is limited to five levels going backwards from the flip-flip. Pseudocode

is given in Algorithm 5.

Algorithm 5 Highest Fan-in Flip-Flop Input SCC Decomposition
Initialize List L
Initialize Stack S
SCCs← ComputeSCCDecomposition(graph)
for scc in SCCs do

S.push(scc)
end for
while S is not empty do

scc← S.pop()
highestFanin← 0
highestFaninNode← null
for node in scc.flipFlopNodes() do

f anin← Compute5LevelFanin(node)
if f anin > highestFanin and node.dataInputEdge() is a legal voter location then

highestFanin← f anin
highestFaninNode← node

end if
end for
Remove data input edge of highestFaninNode from graph
Add removed edge to List L
newSCCs← ComputeSCCDecomposition(scc.nodes())
for newSCC in newSCCs do

S.push(newSCC)
end for

end while
Insert voters on nets corresponding to edges in L

4.2.5 Highest Fan-in Flip-Flop Output SCC Decomposition Algorithm

This algorithm is very similar to the preceding algorithm and has the same objectives. It

is different only in that it inserts voters directly after flip-flops with high fan-in instead of directly

before. For each SCC being processed, the algorithm finds the flip-flop in the SCC with the highest

fan-in and a legal voter location output edge and removes the data output edge. The runtime is the

same as that of the previous algorithm, O(|V |3 +2|V |2|E|+ |V ||E|2). For the same reasons as the

38

previous algorithm, this is a conservative upper bound on the complexity. Pseudocode is given in

Algorithm 6.

Algorithm 6 Highest Fan-in Flip-Flop Output SCC Decomposition
Initialize List L
Initialize Stack S
SCCs← computeSCCDecomposition(graph)
for scc in SCCs do

S.push(scc)
end for
while S is not empty do

scc← S.pop()
highestFanin← 0
highestFaninNode← null
for node in scc.flipFlopNodes() do

f anin← Compute5LevelFanin(node)
if f anin > highestFanin and node.dataOutputEdge() is a legal voter location then

highestFanin← f anin
highestFaninNode← node

end if
end for
Remove data output edge of highestFaninNode from graph
Add removed edge to List L
newSCCs← ComputeSCCDecomposition(scc.nodes())
for newSCC in newSCCs do

S.push(newSCC)
end for

end while
Insert voters on nets corresponding to edges in L

4.3 Conclusion

All of the algorithms in this chapter meet the constraint of inserting voters that intersect all

cycles in a circuit while avoiding nets that cannot have voters placed on them due to architectural

constraints. Each of the algorithms does so with different priorities. The strengths and weaknesses

of each algorithm will become evident in the results presented in the next chapter. All of the

algorithms are implemented as part of the open source BL-TMR tool. Information on obtaining

this tool is available in Appendix A.

39

40

CHAPTER 5. EXPERIMENTAL RESULTS

This chapter will present the results of experiments that were designed to compare the al-

gorithms presented in the preceding chapter in terms of their impact on the timing performance

and area of a circuit when applying TMR. It is well known that applying TMR to an FPGA design

generally causes poorer timing performance and increases the size of the circuit by at least 3X.

A poor voter insertion approach can induce a size increase of well over 3X. The purpose of these

experiments is to determine whether some voter insertion strategies are better than others at pre-

serving the timing performance of a circuit and reducing the amount of extra area added by voters

when applying TMR.

5.1 Benchmark Designs

A suite of 15 circuit benchmarks including both real-world and synthetic designs was used

in the experiments. All of the test designs include some amount of feedback, as synchronization

voters are unnecessary in feed forward only designs. The designs were synthesized from VHDL

source using Synplify Pro 8.8 synthesis software. The experiments in this chapter were performed

on both the Xilinx Virtex and the Xilinx Virtex-5 FPGA architectures (using the xcv1000-fg680-5

part and the xc5vlx110-ff1153-3 part). The benchmark designs are summarized in Table 5.1 with

their sizes (in terms of FPGA slices) and critical path lengths for both architectures1.

The blowfish design is a blowfish encrypter. Blowfish is a symmetric block cipher that

can be used as a drop-in replacement for other encryption algorithms such as DES. This particular

implementation uses a 32-bit key and operates using a feedback loop that greatly reduces the need

for parallel encryption circuitry. The large amount of feedback in this design makes it a good

candidate for voter insertion experiments.

1The Virtex-4 architecture was used for the ssra core benchmark instead of the Virtex architecture because the
triplicated design was too large to fit in any of the Virtex parts. Also, the QPSK design was not included in the
Virtex-5 experiments due to implementation difficulties.

41

The DES3 design implements a triple DES encrypter. Triple DES is a block cipher used in

cryptography applications. It uses three keys and works by first encrypting data using the first key,

decrypting the data with the second key, and finally encrypting the data with the third key. This

design was chosen because it is a computationally intensive real world application.

The QPSK design is a quadrature phase-shift keying (QPSK) demodulator. QPSK is a

digital modulation scheme used in communications applications in which data is encoded using

the phase of the carrier signal. This design contains a fair amount of feedback and is another

computationally intensive real world application.

The free6502 design is an FPGA implementation of a simple 8-bit microprocessor that is

binary compatible with the 6502 processor. This design is a typical real world FPGA application.

The T80 design is a CPU core that supports the Z80, 8080, and gameboy instruction sets.

It is another good example of a real world FPGA application.

The MACFIR design implements a multiply accumulate (MAC) unit using a feedback loop.

A MAC unit performs a sum-of-products operation that is useful for computing a convolution sum.

Such a design can be used to implement a FIR (finite impulse response) filter for signal processing

applications.

The serial divide design is a serial divider that takes a 16-bit dividend and an 8-bit divisor

and produces a 16-bit quotient. The feedback necessary for the serial implementation makes it a

good candidate for voter insertion experiments.

The planet, s1488, s1494, s298, and tbk designs are state machine designs from the 1993

International Logic Synthesis Workshop benchmarks. The tbk design has the fewest number of

states (32) and the s298 design has the largest number of states (218).

The Synthetic design is a design that was crafted to contain both feedback and feed forward

logic. It consists of a linear feedback shift register (LFSR) whose output is combined with an

input signal using a multiplier and an adder tree. While it is not a typical real world application,

it is useful because it contains feedback (making synchronization voters necessary) and uses a

large portion of the resources available on the target FPGA device. This is interesting because it

results in routing congestion which makes it more difficult for the place and route software to find

a routing that meets timing constraints.

42

The LFSRs design is another synthetic design that consists of a large LFSR replicated ten

times. It is interesting because it contains a large amount of feedback, and the feedback inherent in

an LFSR is of a fairly complex nature, meaning that there are many possible synchronization voter

configurations for cutting the feedback.

The ssra core design is a DSP kernel designed by researchers at Los Alamos National

Laboratory. It includes a polyphase filter bank as well as FFT and magnitude operations.

Table 5.1: Benchmark test designs with sizes and critical path lengths.

Virtex Virtex-5
D

es
ig

n
Si

ze
(S

lic
es

)

C
ri

tic
al

Pa
th

L
en

gt
h

D
es

ig
n

Si
ze

(S
lic

es
)

C
ri

tic
al

Pa
th

L
en

gt
h

blowfish 3416 28.3 ns 355 7.1 ns
des3 658 11.1 ns 430 3.9 ns
qpsk 1041 80.0 ns - -
free6502 484 29.6 ns 244 8.1 ns
T80 931 27.8 ns 463 7.4 ns
macfir 658 14.4 ns 341 5.2 ns
serial divide 40 9.2 ns 32 3.4 ns
planet 144 10.9 ns 72 2.3 ns
s1488 145 9.9 ns 82 2.2 ns
s1494 148 10.4 ns 73 2.2 ns
s298 517 15.8 ns 233 4.0 ns
tbk 155 10.3 ns 76 2.6 ns
synthetic 3061 9.9 ns 1470 2.9 ns
lfsrs 1195 9.0 ns 526 3.3 ns
ssra core 5393* 6.1 ns* 2785 3.9 ns

5.2 Procedure

The experiments involved applying TMR to each of the test designs using each synchro-

nization voter insertion algorithm. The toolflow used to apply TMR and determine the timing

performance and area of each design is shown in Figure 2.3. The BL-TMR tool was used to apply

TMR (see Appendix A). The toolflow executes only up to the place and route phase, since at this

point the timing performance and area of the resulting circuit can be determined. The number of

43

voters inserted by each algorithm was recorded in addition to the number of logic slices consumed

by the resulting design. The critical path length and area of each design after having TMR ap-

plied with each voter insertion algorithm were recorded and compared to the critical path length

and area of the original, untriplicated design. In addition, the critical path length and area of each

design after having TMR applied with each voter insertion algorithm were also compared to a ver-

sion of each design that was triplicated without inserting any synchronization voters. Critical path

lengths were determined by repeating the place and route process with successively tighter timing

constraints until the place and route tool failed to generate a configuration capable of meeting the

constraint. Timing constraints were adjusted in 0.1 ns intervals. In this manner, the tightest possi-

ble critical path length achievable by the place and route tool was determined for each iteration of

each design, including the original untriplicated version.

The experiments were performed on both the Virtex and the Virtex-5 architectures. The

Virtex architecture is based on 4-input look up tables while the Virtex-5 architecture is a more

modern FPGA architecture based on 6-input look up tables. The results for the two architectures

were compared in order to determine whether the effectiveness of the algorithms varies with the

FPGA architecture used.

5.3 Timing Results

The critical path length of each algorithm’s version of the designs are given in Table 5.2

for the Virtex architecture and in Table 5.3 for the Virtex-5 architecture. The mean values for the

critical path are calculated over only 14 of the benchmark designs for the Virtex architecture2. The

best algorithm’s result for each row in the tables is given in bold. A percent increase in critical path

length is also given for each design over both the original version and a triplicated version without

synchronization voters. The percentages were calculated using the mean critical path length rows

of the tables.

The results in Table 5.2 and Table 5.3 show that for the test designs in question, the algo-

rithm that produced the best timing results overall is the Voters After Every Flip-Flop algorithm,
2The blowfish design was excluded from the mean calculations because it did not produce a full row of data. Two

of the voter insertion algorithms inserted more voters in this design than could be mapped to the target device. These
entries are marked with asterisks in the table.

44

Table 5.2: Critical path length induced by each voter insertion
algorithm using the Virtex architecture.

O
ri

gi
na

l
(U

nt
ri

pl
ic

at
ed

)

T
M

R
w

/o
ut

vo
te

rs

Vo
te

rs
B

ef
or

e
E

ve
ry

FF

Vo
te

rs
A

ft
er

E
ve

ry
FF

B
as

ic
SC

C
D

ec
om

po
si

tio
n

H
ig

he
st

Fa
n-

ou
t

H
ig

he
st

FF
Fa

n-
ou

t

H
ig

he
st

Fa
n-

in
FF

In
pu

t

H
ig

he
st

Fa
n-

in
FF

O
ut

pu
t

blowfish 28.3 ns 27.2 ns 35.1 ns * 43.4 ns 36.5 ns 31.7 ns 35.2 ns *
des3 11.1 ns 11.0 ns 13.5 ns 13.6 ns 17.0 ns 15.0 ns 13.6 ns 13.7 ns 13.5 ns
qpsk 80.0 ns 83.7 ns 85.4 ns 85.4 ns 129.3 ns 89.8 ns 83.9 ns 84.8 ns 83.9 ns
free6502 29.6 ns 30.9 ns 37.5 ns 31.5 ns 43.3 ns 39.6 ns 33.1 ns 36.2 ns 32.5 ns
T80 27.8 ns 29.2 ns 33.3 ns 32.4 ns 47.4 ns 36.1 ns 33.7 ns 32.7 ns 34.1 ns
macfir 14.4 ns 16.9 ns 18.6 ns 14.2 ns 19.4 ns 19.4 ns 19.5 ns 17.2 ns 19.5 ns
serial divide 9.2 ns 9.5 ns 14.6 ns 11.6 ns 15.5 ns 13.9 ns 12.2 ns 14.8 ns 12.2 ns
planet 10.9 ns 10.8 ns 13.2 ns 12.5 ns 15.0 ns 12.6 ns 12.6 ns 13.2 ns 12.6 ns
s1488 9.9 ns 10.3 ns 12.6 ns 12.3 ns 14.8 ns 12.0 ns 12.0 ns 12.8 ns 12.0 ns
s1494 10.4 ns 10.7 ns 12.8 ns 12.4 ns 14.8 ns 12.2 ns 12.2 ns 12.8 ns 12.2 ns
s298 15.8 ns 16.2 ns 19.8 ns 19.4 ns 24.7 ns 19.5 ns 19.1 ns 20.1 ns 20.1 ns
tbk 10.3 ns 10.6 ns 13.6 ns 13.1 ns 16.9 ns 12.9 ns 12.9 ns 13.8 ns 12.9 ns
synthetic 9.9 ns 10.0 ns 15.9 ns 13.9 ns 10.0 ns 10.2 ns 10.4 ns 10.1 ns 10.1 ns
lfsrs 9.0 ns 10.8 ns 13.6 ns 13.9 ns 12.9 ns 13.9 ns 12.7 ns 13.5 ns 12.9 ns
ssra core 6.1 ns 6.5 ns 7.2 ns 7.2 ns 9.2 ns 7.0 ns 7.2 ns 7.0 ns 6.9 ns

Mean critical path length 18.17 ns 19.08 ns 22.26 ns 20.96 ns 27.87 ns 22.44 ns 21.08 ns 21.62 ns 21.10 ns
% Increase over
original - 5.0% 22.5% 15.3% 53.4% 24.5% 16.0% 19.0% 16.1%

% Increase over TMR
w/out voters

- - 16.7% 9.8% 46.1% 17.6% 10.5% 13.3% 10.6%

Table 5.3: Critical path length induced by each voter insertion
algorithm using the Virtex-5 architecture.

O
ri

gi
na

l
(U

nt
ri

pl
ic

at
ed

)

T
M

R
w

/o
ut

vo
te

rs

Vo
te

rs
B

ef
or

e
E

ve
ry

FF

Vo
te

rs
A

ft
er

E
ve

ry
FF

B
as

ic
SC

C
D

ec
om

po
si

tio
n

H
ig

he
st

Fa
n-

ou
t

H
ig

he
st

FF
Fa

n-
ou

t

H
ig

he
st

Fa
n-

in
FF

In
pu

t

H
ig

he
st

Fa
n-

in
FF

O
ut

pu
t

blowfish 7.1 ns 7.8 ns 8.9 ns 7.0 ns 9.2 ns 7.6 ns 8.4 ns 8.6 ns 8.0 ns
des3 3.9 ns 3.1 ns 3.8 ns 3.9 ns 4.4 ns 4.2 ns 3.8 ns 3.8 ns 3.8 ns
free6502 8.1 ns 9.5 ns 10.9 ns 8.5 ns 12.1 ns 10.6 ns 10.0 ns 10.3 ns 10.3 ns
T80 7.4 ns 8.1 ns 8.9 ns 8.4 ns 12.2 ns 9.6 ns 8.7 ns 8.5 ns 8.7 ns
macfir 5.2 ns 5.5 ns 5.9 ns 5.0 ns 6.2 ns 6.1 ns 6.1 ns 5.6 ns 6.1 ns
serial divide 3.4 ns 3.5 ns 4.2 ns 3.5 ns 4.4 ns 3.8 ns 3.6 ns 4.3 ns 3.6 ns
planet 2.3 ns 2.4 ns 3.0 ns 3.1 ns 3.8 ns 3.1 ns 3.1 ns 3.0 ns 3.1 ns
s1488 2.2 ns 2.2 ns 2.9 ns 2.9 ns 3.4 ns 2.8 ns 2.8 ns 2.9 ns 2.8 ns
s1494 2.2 ns 2.3 ns 2.9 ns 3.0 ns 3.4 ns 3.0 ns 3.0 ns 2.9 ns 3.0 ns
s298 4.0 ns 3.9 ns 5.1 ns 4.8 ns 6.4 ns 4.8 ns 4.7 ns 5.0 ns 4.9 ns
tbk 2.6 ns 2.7 ns 3.4 ns 3.5 ns 4.4 ns 3.4 ns 3.4 ns 3.4 ns 3.4 ns
synthetic 2.9 ns 3.1 ns 3.8 ns 3.8 ns 3.0 ns 5.4 ns 3.2 ns 4.5 ns 3.0 ns
lfsrs 3.3 ns 3.6 ns 4.1 ns 4.2 ns 3.8 ns 4.1 ns 3.5 ns 4.2 ns 3.5 ns
ssra core 3.9 ns 4.0 ns 5.0 ns 4.5 ns 6.0 ns 4.6 ns 4.6 ns 4.9 ns 4.4 ns

Mean critical path length 4.18 ns 4.41 ns 5.20 ns 4.72 ns 5.91 ns 5.22 ns 4.92 ns 5.14 ns 4.90 ns
% Increase over
original - 5.5% 24.4% 13.0% 41.4% 25.0% 17.8% 22.9% 17.3%

% Increase over TMR
w/out voters

- - 18.0% 7.1% 34.0% 18.5% 11.7% 16.5% 11.2%

45

which increased the critical path length of the design while adding TMR by only 15.3% over the

original design in the Virtex architecture and by only 13.0% in the Virtex-5 architecture. The High-

est Flip-Flop Fanout and Highest Fan-in Flip-Flop Output algorithms also provided very good

timing results. It is interesting to note that these three algorithms are the only three that restrict

voter placement to locations directly after flip-flops. All of the other algorithms provided notably

poorer timing results. The average critical path length increase over a triplicated design without

voters for the three algorithms that restrict voter placement to locations directly after flip-flops is

only 10.3% for the Virtex architecture and 10.0% for the Virtex-5 architecure. The average for the

algorithms that do not restrict voter placement to locations directly after flip-flops is 23.4% for the

Virtex architecture and 21.8% for the Virtex-5 architecture. These results suggest that the heuristic

of placing voters directy after flip-flops in order to insert at most a single set of voters in any timing

path is an effective method of reducing the timing impact of synchronization voter insertion.

5.4 Area Results

The results that pertain to circuit area are given in Table 5.4, Table ??, and Table 5.5. Ta-

ble 5.4 gives the number of voters inserted by each algorithm in each design as well as the mean for

each algorithm. Table 5.5 and Table 5.6 give the number of slices used by each algorithm’s version

of each design and the mean number of slices for each algorithm using the Virtex and the Virtex-5

architectures, respectively. As with the timing results, the means for the Virtex architecture are

computed over only 14 of the designs3

The data in Table 5.5 and Table 5.6 indicate that the algorithms that use SCC decompo-

sition to insert voters only until all of the feedback has been intersected induced comparable and

reasonable area increases (an average 263.4% increase for the Virtex architecture and an average

267.6% increase for the Virtex-5 architecture). The Voters Before Every Flip-Flop and Voters After

Every Flip-Flop algorithms, on the other hand, both induced much higher area increases (an aver-

age 376.6% increase for the Virtex architecture and an average 400.4% increase for the Virtex-5

architecture). This is because these two algorithms insert many more voters than the algorithms

based on SCC decomposition.
3The blowfish design was again excluded from the mean calculations so that the means can be compared fairly

with the critical path length means.

46

Table 5.4: Number of voters inserted by each voter insertion algorithm.

Vo
te

rs
B

ef
or

e
E

ve
ry

FF

Vo
te

rs
A

ft
er

E
ve

ry
FF

B
as

ic
SC

C
D

ec
om

po
si

tio
n

H
ig

he
st

Fa
n-

ou
t

H
ig

he
st

FF
Fa

n-
ou

t

H
ig

he
st

Fa
n-

in
FF

In
pu

t

H
ig

he
st

Fa
n-

in
FF

O
ut

pu
t

blowfish 2172 8820* 2448 954 777 1359 7158*
des3 321 449 574 435 353 285 407
qpsk 1743 1752 1377 165 96 117 111
free6502 387 465 402 237 264 246 267
T80 732 828 1794 573 483 546 645
macfir 4341 4224 219 219 219 219 219
serial divide 255 156 114 66 60 159 60
planet 18 21 123 18 18 18 18
s1488 18 21 99 18 18 18 18
s1494 18 21 93 18 18 18 18
s298 93 96 564 87 84 87 87
tbk 198 201 300 186 186 186 186
synthetic 13874 13877 722 290 326 290 290
lfsrs 5400 5400 600 360 450 450 450
ssra core 26853 30270 873 684 636 636 696

Mean number of
voters

3875.1 4127.2 561.0 239.7 229.4 233.9 248.0

Table 5.5: Number of slices induced by each voter insertion
algorithm using the Virtex architecture.

O
ri

gi
na

l
(U

nt
ri

pl
ic

at
ed

)

T
M

R
w

/o
ut

vo
te

rs

Vo
te

rs
B

ef
or

e
E

ve
ry

FF

Vo
te

rs
A

ft
er

E
ve

ry
FF

B
as

ic
SC

C
D

ec
om

po
si

tio
n

H
ig

he
st

Fa
n-

ou
t

H
ig

he
st

FF
Fa

n-
ou

t

H
ig

he
st

Fa
n-

in
FF

In
pu

t

H
ig

he
st

Fa
n-

in
FF

O
ut

pu
t

blowfish 3416 10293 11255 * 11515 10742 10462 10836 *
des3 658 2056 2251 2312 2387 2295 2242 2221 2281
qpsk 1041 3186 4146 3901 4034 3268 3207 3240 3207
free6502 484 1485 1656 1738 1702 1604 1615 1574 1616
T80 931 2831 3168 3304 3744 3111 3079 3075 3193
macfir 658 2445 6235 3761 2571 2571 2566 2663 2566
serial divide 40 129 300 209 198 166 164 235 164
planet 144 435 447 443 497 441 441 447 441
s1488 145 438 449 446 491 444 444 449 444
s1494 148 447 453 458 489 456 456 453 456
s298 517 1551 1614 1594 1849 1600 1593 1609 1601
tbk 155 501 595 612 658 603 603 591 603
synthetic 3061 12286 12286 12286 12286 12286 12286 12286 12286
lfsrs 1195 7429 6585 6468 7673 7658 7578 7797 7578
ssra core 5393 18651 33132 28033 18899 18793 18745 18995 18865

Mean number of slices 1040.7 3847.9 5236.9 4683.2 4105.6 3949.7 3929.9 3973.9 3950.1
% Increase over
original - 269.7% 403.2% 350.0% 294.5% 279.5% 277.6% 281.8% 279.6%

% Increase over TMR
w/out voters

- - 36.1% 21.7% 6.7% 2.6% 2.1% 3.3% 2.7%

47

Table 5.6: Number of slices induced by each voter insertion
algorithm using the Virtex-5 architecture.

O
ri

gi
na

l
(U

nt
ri

pl
ic

at
ed

)

T
M

R
w

/o
ut

vo
te

rs

Vo
te

rs
B

ef
or

e
E

ve
ry

FF

Vo
te

rs
A

ft
er

E
ve

ry
FF

B
as

ic
SC

C
D

ec
om

po
si

tio
n

H
ig

he
st

Fa
n-

ou
t

H
ig

he
st

FF
Fa

n-
ou

t

H
ig

he
st

Fa
n-

in
FF

In
pu

t

H
ig

he
st

Fa
n-

in
FF

O
ut

pu
t

blowfish 355 1083 1361 1435 1208 1030 1098 1111 1137
des3 430 1242 1097 1135 1366 1223 1197 1105 1203
free6502 244 791 998 1006 787 785 1006 955 990
T80 463 1504 1672 1718 2157 1603 1520 1606 1722
macfir 341 1270 2866 2056 1267 1272 1213 1342 1213
serial divide 32 103 214 123 145 118 107 150 107
planet 72 202 210 198 229 197 197 210 197
s1488 82 204 199 197 211 187 187 199 187
s1494 73 188 197 201 202 189 189 197 189
s298 233 666 750 702 905 685 719 704 699
tbk 76 222 276 277 333 301 301 345 301
synthetic 1470 5669 8917 8183 5912 5227 5953 5323 6543
lfsrs 526 1726 3020 3070 1959 2446 2558 2572 2558
ssra core 2785 10252 15578 14219 10240 10421 10541 10194 9538

Mean number of slices 513.0 1794.4 2668.2 2465.7 1922.9 1834.6 1913.3 1858.1 1898.9
% Increase over
original - 249.8% 420.1% 380.6% 274.8% 257.6% 273.0% 262.2% 270.1%

% Increase over TMR
w/out voters

- - 48.7% 37.4% 7.2% 2.2% 6.6% 3.5% 5.8%

5.5 Analysis

The results of these experiments are demonstrated more clearly in terms of the area/timing

performance space in Figure 5.1(a) and Figure 5.1(b). The figures plot the mean percent increase in

area (X axis) and critical path length (Y axis) induced by each algorithm for the Virtex and Virtex-5

architectures. As expected, the SCC decomposition algorithms are on the left side of the plot for

both architectures, indicating that they induced less of an area increase. Also, the algorithms that

restrict voter placement locations to flip-flop outputs are the three lowest algorithms on each plot,

indicating that they provide the best timing performance.

One interesting result from these experiments is observed in the number of voters and slices

used by the LFSRs design in the Virtex architecture. The original design uses 1,195 slices. When

TMR is applied without voters, the size of the design increases by about 6.2X to 7,429 slices. Then,

when the Voters Before Every Flip-Flop and the Voters After Every Flip-Flop algorithms are used,

each inserts 5,400 voters into the design. However, the algorithms result in an area reduction of

11.4% and 13.0%, respectively, from the number of slices used in the triplicated version without

voters. This result is somewhat counterintuitive because the voters are implemented as LUT3

primitives which use resources in the FPGA slices. It appears, however, that the insertion of

voters in this particular case prompts the mapping tool to pack more logic into each slice. In

48

Area Increase

C
rit

ic
al

 P
at

h
Le

ng
th

 In
cr

ea
se

200% 300% 400% 500%
10%

20%

30%

40%

50%

60%

Highest FF Fan-out

Voters Before Every FF
Voters After Every FF
Basic SCC Decomposition
Highest Fan-out

Highest FF Fan-in Input
Highest FF Fan-in Output

(a) Virtex architecture area/timing results.

Area Increase

C
rit

ic
al

 P
at

h
Le

ng
th

 In
cr

ea
se

Highest FF Fan-out

Voters Before Every FF
Voters After Every FF
Basic SCC Decomposition
Highest Fan-out

Highest FF Fan-in Input
Highest FF Fan-in Output

200% 300% 400% 500%
10%

20%

30%

40%

50%

(b) Virtex-5 architecture area/timing results.

Figure 5.1: Area/timing performance space of the voter insertion algorithms.

the version of the design without synchronization voters, only 7.1% of the occupied slices in the

FPGA are fully utilized (i.e. both of the logic cells in the slice are used). In the Voters Before

Every Flip-Flop version, 27.5% of the occupied slices are fully utilized, and in the Voters After

Every Flip-Flop version, 29.8% of the occupied slices are fully utilized. It is possible that the

increased logic packing when synchronization voters are inserted is related to the fact that inserting

synchronization voters causes the three TMR replicates to be spatially intermixed on the FPGA

because each voter requires an input from each TMR replicate. This effect is demonstrated in

49

Figure 5.5 which shows the layout of the FPGA with the slices color coded by TMR replicate for

the three versions of the LFSRs design in question.

Another result that at first appears unexpected is that the Voters Before Every Flip-Flop and

the Voters After Every Flip-Flop algorithms nearly always insert different numbers of voters. This

apparent discrepancy can be explained by the circuit structure in Figure 5.3(a). In this figure, two

flip-flops receive data from the same source. When the Voters Before Every Flip-Flop algorithm

is used, only a single set of voters is needed because of the input sharing (see Figure 5.3(b)).

However, when the Voters After Every Flip-Flop algorithm is used, a set of voters is required for

each flip-flop, as shown in Figure 5.3(c). When a circuit contains several instances of structures

similar to that of Figure 5.3(a), the resulting disparity between the number of voters inserted by the

Before Every Flip-Flop and After Every Flip-Flop algorithms can grow quite large. The difference

between the number of voters inserted by the Highest Fan-in Flip-Flop Input and Highest Fan-in

Flip-Flop Output algorithms can be explained in a similar manner.

Overall, the best combination of area and timing performance results is obtained by using

either the Highest Flip-Flop Fanout algorithm or the Highest Fan-in Flip-Flop Output algorithm.

Their timing results are nearly as good as those of the Voters After Every Flip-Flop algorithm, and

their area results are far better. However, when sheer timing performance is the only concern, the

Voters After Every Flip-Flop algorithm is the best choice in the average case.

5.6 Algorithm Execution Time

Table 5.7 reports the average run times of the seven algorithms. As noted previously, the

algorithmic complexities of the algorithms are very conservative upper bounds. Due to the na-

ture of standard digital logic circuits, we expect these algorithms to scale much better than their

complexities would imply. In practice, the feedback encountered in most digital circuits is simple

enough for the algorithms to manage in reasonable time.

5.7 Conclusion

The experimental results in this chapter indicate that the placement of synchronization

voters indeed has a significant effect on the area and timing performance of FPGA designs that

use TMR. There is a wide variation in both the timing performance and area usage induced by

50

(a) LFSRs design without synchronization voters.

(b) LFSRs design using the Before Every Flip-Flop algorithm.

(c) LFSRs design using the After Every Flip-Flop algorithm.

Figure 5.2: FPGA slice layout of three versions of the LFSRs design, color coded by TMR repli-
cate.

51

logic

logicD Q

D Q logic

(a) Untriplicated circuit
structure

logic

logicD Q

D Q logic

voter

logic

logicD Q

D Q logic

voter

logic

logicD Q

D Q logic

voter

(b) Voters Before Every Flip-Flop

logic

D Q

D Q

logic

D Q

D Q

logic

D Q

D Q

logic

logic

logic

logic

logic

logic

voter

voter

voter

voter

voter

voter

(c) Voters After Every Flip-Flop

Figure 5.3: A circuit structure illustrating why putting voters before and after flip-flops changes
the total voter count.

the algorithms. In the average case, there is no single voter insertion algorithm that provides the

best results for both timing and area. However, the Highest Flip-Flop Fan-out and Highest Fan-in

Flip-Flop Outout algorithms provide a good tradeoff between area and timing performance.

52

Table 5.7: Algorithm execution times.

Vo
te

rs
B

ef
or

e
E

ve
ry

FF

Vo
te

rs
A

ft
er

E
ve

ry
FF

B
as

ic
SC

C
D

ec
om

po
si

tio
n

H
ig

he
st

Fa
n-

ou
t

H
ig

he
st

FF
Fa

n-
ou

t

H
ig

he
st

Fa
n-

in
FF

In
pu

t

H
ig

he
st

Fa
n-

in
FF

O
ut

pu
t

blowfish 0.1 s 0.2 s 5.6 s 74.9 s 42.9 s 2322.0 s 1599.6 s
des3 0.5 s 0.5 s 0.5 s 0.9 s 0.6 s 3.1 s 3.9 s
qpsk 0.2 s 0.1 s 13.7 s 9.4 s 7.7 s 17.4 s 20.5 s
free6502 0.3 s 0.3 s 0.2 s 0.5 s 0.6 s 1.1 s 1.0 s
T80 0.9 s 0.1 s 3.9 s 4.6 s 3.8 s 49.4 s 44.2 s
macfir 0.1 s 0.1 s 2.6 s 1.4 s 0.8 s 3.4 s 3.4 s
serial divide 0.2 s 0.3 s 0.2 s 0.1 s 0.1 s 0.3 s 0.2 s
planet 0.5 s 0.5 s 0.7 s 0.8 s 0.1 s 0.2 s 0.2 s
s1488 0.4 s 0.5 s 0.6 s 0.8 s 0.1 s 0.2 s 0.1 s
s1494 0.6 s 0.7 s 0.6 s 0.9 s 0.2 s 0.2 s 0.2 s
s298 0.3 s 0.5 s 0.4 s 0.6 s 0.9 s 1.2 s 1.5 s
tbk 0.4 s 0.3 s 0.7 s 0.2 s 0.1 s 0.4 s 0.5 s
synthetic 0.2 s 0.5 s 5.8 s 6.9 s 4.1 s 10.0 s 9.2 s
lfsrs 0.3 s 0.4 s 2.3 s 3.7 s 2.4 s 9.8 s 9.6 s
ssra core 0.8 s 1.3 s 37.2 s 60.5 s 23.9 s 68.6 s 56.9 s

Mean execution
time

0.4 s 0.4 s 5.0 s 11.1 s 5.9 s 165.8 s 116.7 s

53

54

CHAPTER 6. CONCLUSION

The experimental results obtained in this work used 15 benchmark designs to test the 7 voter

insertion algorithms in terms of their impact on circuit area and timing performance. The results

indicate that in order to minimize the negative timing impact of TMR, voter insertion algorithms

should limit voter locations primarily to flip-flop output nets. The algorithms in this work that

follow this heuristic increase the critical path length of a design by only 15.8% on average (over

an untriplicated version) using the Virtex architecture and 16.0% using the Virtex-5 architecture,

compared to 29.6% using the Virtex architecture and 28.4% using the Virtex-5 architecture for

the other algorithms. The best overall algorithms (considering both area and timing performance

impacts) are the Highest Flip-Flop Fan-out and the Highest Fan-in Flip-Flop Outout algorithms.

The Voters After Every Flip-Flop algorithm can provide slightly better timing results at the cost

of increased area overhead due to a greater number of voters. Although the experimental results

have identified algorithms that perform the best on average in the timing performance and area

categories, anomalies sometimes occur in specific cases due to the random nature of the place and

route process. In cases where timing performance and area are critical factors in a space-based

mission, the best strategy is to try several different voter insertion algorithms in order to determine

the best results possible for the particular circuit and its constraints.

SRAM-based FPGAs can be very useful in space-based computing missions, but mitiga-

tion techniques are necessary. TMR used in conjuction with configuration memory scrubbing is

the most common technique for FPGAs, but requires synchronization voters for resynchronizing

the TMR replicates when faults are corrected. Synchronization voter insertion is tedious and er-

ror prone to perform manually, but using the algorithms presented in this work, it is possible to

apply TMR and insert synchronization voters using an automated CAD tool. The BL-TMR tool

(see Appendix A) is an example of such a tool. All of the algorithms presented in this work are

implemented as part of the BL-TMR tool.

55

There are several possible directions for future work in the area of voter insertion in the

context of FPGA implementations of TMR. One direction would be to conduct experiments simi-

lar to the experiments in this work using various FPGA architectures to determine how dependent

the voter insertion algorithms are on the peculiarities of different architectures. Also, there is room

to develop new algorithms based on the heuristics identified in this work. Perhaps existing approx-

imation algorithms for the minimum FES problem [29] could be rectified with FPGA architectures

to provide new synchronization voter insertion algorithms. Another possible direction for future

work could be to develop algorithms that automatically partition TMR circuits using partitioning

voters to increase tolerance of multiple independent upsets while minimizing the impact of the

partitioning voters on area and timing.

56

REFERENCES

[1] D. Ratter, “FPGAs on Mars,” Xilinx, Tech. Rep., August 2004, xCell Journal #50.

[2] M. Caffrey, M. Echave, C. Fite, T. Nelson, A. Salazar, and S. Storms, “A space-based recon-
figurable radio,” in Proceedings of the 5th Annual International Conference on Military and
Aerospace Programmable Logic Devices (MAPLD), September 2002, p. A2.

[3] A. S. Dawood, S. J. Visser, and J. A. Williams, “Reconfigurable FPGAs for real time image
processing in space,” in 14th International Conference on Digital Signal Processing (DSP
2002), vol. 2, 2002, pp. 711–717.

[4] J. Villasenor and B. Hutchings, “The flexibility of configurable computing: Providing the
hardware for data-intensive real-time processing,” IEEE Signal Processing Mag., pp. 67–84,
Sept. 1998.

[5] B. Bridgford, C. Carmichael, and C. W. Tseng, “Single-event upset mitigation selection
guide,” Xilinx Application Note XAPP987, vol. 1, 2008.

[6] C. Carmichael, E. Fuller, P. Blain, and M. Caffrey, “SEU mitigation techniques for Virtex
FPGAs in space applications,” in Proceedings of the Military and Aerospace Programmable
Logic Devices International Conference (MAPLD), Laurel, MD, September 1999.

[7] N. Rollins, M. Wirthlin, M. Caffrey, and P. Graham, “Evaluating TMR techniques in the
presence of single event upsets,” in Proceedings fo the 6th Annual International Conference
on Military and Aerospace Programmable Logic Devices (MAPLD). Washington, D.C.:
NASA Office of Logic Design, AIAA, September 2003, p. P63.

[8] F. Lima, C. Carmichael, J. Fabula, R. Padovani, and R. Reis, “A fault injection analysis of
Virtex FPGA TMR design methodology,” in Proceedings of the 6th European Conference on
Radiation and its Effects on Components and Systems (RADECS 2001), 2001.

[9] E. Fuller, M. Caffrey, A. Salazar, C. Carmichael, and J. Fabula, “Radiation testing update,
SEU mitigation, and availability analysis of the Virtex FPGA for space reconfigurable com-
puting,” in 3rd Annual Conference on Military and Aerospace Programmable Logic Devices
(MAPLD), 2000, p. P30.

[10] C. Carmichael, “Triple module redundancy design techniques for Virtex FPGAs,” Xilinx
Corporation, Tech. Rep., November 1, 2001, xAPP197 (v1.0).

[11] K. J. Gurzi, “Estimates for best placement of voters in a triplicated logic network,” Elec-
tronic Computers, IEEE Transactions on, vol. EC-14, no. 5, pp. 711–717, Oct. 1965,
10.1109/PGEC.1965.264211.

57

[12] F. Kastensmidt, L. Sterpone, L. Carro, and M. Reorda, “On the optimal design of triple
modular redundancy logic for SRAM-based FPGAs,” in Proceedings of the conference on
Design, Automation and Test in Europe-Volume 2. IEEE Computer Society Washington,
DC, USA, 2005, pp. 1290–1295.

[13] B. Pratt, M. Caffrey, D. Gibelyou, P. Graham, K. Morgan, and M. Wirthlin, “TMR with
more frequent voting for improved FPGA reliability,” in The International Conference on
Engineering of Reconfigurable Systems and Algorithms, July 2008.

[14] “Xilinx TMRTool,” Product Brief, Xilinx Corporation, 2006.

[15] “MIL-STD-883,” Method 1019.7, Ionizing Radiation (Total Dose) Test Procedure, 2006.

[16] Xilinx, “Qpro Virtex-II 1.5V radiation-hardened QML platform FPGAs,” Xilinx, Inc., San
Jose, CA, Datasheet DS124, December 2006.

[17] E. Fuller, M. Caffrey, P. Blain, C. Carmichael, N. Khalsa, and A. Salazar, “Radiation test
results of the Virtex FPGA and ZBT SRAM for space based reconfigurable computing,” in
Proceeding of the Military and Aerospace Programmable Logic Devices International Con-
ference(MAPLD), Laurel, MD, September 1999.

[18] K. Morgan, D. McMurtrey, B. Pratt, and M. Wirthlin, “A comparison of TMR with alternative
fault-tolerant design techniques for FPGAs,” IEEE transactions on nuclear science, vol. 54,
no. 6 Part 1, pp. 2065–2072, 2007.

[19] J. Von Neumann, “Probabilistic logics and the synthesis of reliable organisms from unreliable
components,” Automata Studies, pp. 43–98, 1956.

[20] M. Wirthlin, N. Rollins, M. Caffrey, and P. Graham, “Hardness by Design Techniques for
Field Programmable Gate Arrays,” in Proceedings of the 11th Annual NASA Symposium on
VLSI Design. Washington, D.C.: NASA Office of Logic Design, AIAA, 2003, pp. WA11.1
– WA11.6.

[21] B. Pratt, M. Caffrey, P. Graham, K. Morgan, and M. Wirthlin, “Improving FPGA design
robustness with partial TMR,” in 44th Annual IEEE International Reliability Physics Sympo-
sium Proceedings, 2006, pp. 226–232.

[22] C. Carmichael, M. Caffrey, and A. Salazar, “Correcting single-event upsets through Virtex
partial configuration,” Xilinx Application Notes, XAPP216 (v1. 0), 2000.

[23] J. Heiner, N. Collins, and M. Wirthlin, “Fault tolerant ICAP controller for high-reliable inter-
nal scrubbing,” in 2008 IEEE Aerospace Conference, 2008, pp. 1–10.

[24] M. Berg, C. Poivey, D. Petrick, D. Espinosa, A. Lesea, K. LaBel, M. Friendlich, H. Kim, and
A. Phan, “Effectiveness of Internal Versus External SEU Scrubbing Mitigation Strategies in
a Xilinx FPGA: Design, Test, and Analysis,” IEEE Transactions on Nuclear Science, vol. 55,
no. 4 Part 1, pp. 2259–2266, 2008.

[25] D. Siewiorek and R. Swarz, Reliable computer systems: design and evaluation. AK Peters,
Ltd.

58

[26] D. McMurtrey, K. Morgan, B. Pratt, and M. Wirthlin, “Estimating TMR reliability on FPGAs
using Markov models.” 2008, [Online]. Available: http://hdl.handle.net/1877/644.

[27] Y. Li, “Synchronization issues of TMR crossing multiple clock domains: Analysis and solu-
tions,” November 2009, CHREC B5b-09 project technical report.

[28] R. Karp, “Reducibility among combinatorial problems,” Complexity of computer computa-
tions, vol. 43, pp. 85–103, 1972.

[29] G. Even, “Approximating minimum feedback sets and multicuts in directed graphs,” Algo-
rithmica, vol. 20, no. 2, pp. 151–174, 1998.

[30] P. Eades, X. Lin, and W. Smyth, “A fast and effective heuristic for the feedback arc set
problem,” Information Processing Letters, vol. 47, no. 6, pp. 319–323, 1993.

[31] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to algorithms. The MIT
press, 2001.

[32] M. Sharir, “A strong-connectivity algorithm and its applications in data flow analysis,” Com-
puters & Mathematics with Applications, vol. 7, no. 1, pp. 67 – 72, 1981, DOI: 10.1016/0898-
1221(81)90008-0.

[33] R. Tarjan, “Depth-first search and linear graph algorithms,” in Switching and Automata The-
ory, 1971., 12th Annual Symposium on, Oct. 1971, pp. 114–121.

59

60

APPENDIX A. OBTAINING AND USING THE BYU-LANL TRIPLE MODULAR RE-
DUNDANCY (BL-TMR) TOOL

A.1 Obtaining the BL-TMR Tool

The BYU-LANL Triple Modular Redundancy (BL-TMR) Tool is the automated TMR tool

that was used to perform the voter insertion experiments in this work. The tool was extended to

support all of the voter insertion algorithms presented in the work. The BL-TMR Tool is an open

source project that can be obtained from http://sourceforge.net/projects/byuediftools.

A.2 Introduction

The BYU-LANL Triple Modular Redundancy (BL-TMR) Tool is an EDIF-based tool ca-

pable of inserting redundancy in an FPGA design in order to increase reliability. Triple modular

redundancy (TMR) and/or duplication with compare (DWC) are applied to an EDIF input file ac-

cording to the options chosen by the user. Several different voter insertion algorithms are available

for use with TMR.

A.3 Replication Toolflow

The tool is split into several subtools. This allows the user to adjust various command-line

options in one phase, and then move onto the next phase. The toolflow for the tool is illustrated in

Figure A.1

All of the subtools will be described briefly in this section. Full documentation of the

toolflow is available at http://sourceforge.net/projects/byuediftools. The documenta-

tion for the subtools that were necessary to perform the experiments in this work (i.e. JEdifBuild,

JEdifAnalyze, JEdifNMRSelection, JEdifVoterSelction, JEdifNMR, and JEdifReplicationQuery)

will be repeated from the documentation available online in the sections that follow.

61

Clock
domain

info

Circuit
info

Replication
info

JEdif
Replication
Toolflow

Optional tool

JEdifBuild
Netlist conversion, merging

JEdifAnalyze
Circuit analysis

JEdifNMRSelection
Select partitions for replication

JEdifVoterSelection
Select voter locations

JEdifDetectionSelection
Select detector locations

JEdifPersistenceDetection
Select extra detector locations

JEdifNMR
Perform replication

JEdifMoreFrequentVoting
Select extra voter locations

JEdifNetList
Netlist conversion

JEdifReplicationQuery
Get replication info

JEdifQuery
Get circuit info

JEdifClockDomain
Get clock domain info

.cdesc
circuit

description file

.rdesc
replication

description file

.jedif
JEdif

netlist file

.jedif
replicated JEdif

netlist file

EDIF
replicated EDIF

netlist file

Original
EDIF

EDIF netlist file

Figure A.1: The BL-TMR Tool Flow.

62

A.3.1 JEdifBuild

JEdifBuild creates merged netlists in a .jedif file format from one or more .edf files. By de-

fault, JEdifBuild also flattens the design and optionally performs FMAP removal, RLOC removal,

SRL replacement, and half-latch removal. The .jedif file format is an intermediate file format used

by the remainder of the replication tools.

A.3.2 JEdifAnalyze

JEdifAnalyze performs some basic circuit analysis necessary for subsequent executables.

In particular, it performs feedback and IOB analysis. The results of JEdifAnalyze are saved in a

circuit description file (.cdesc) required by later executables.

A.3.3 JEdifNMRSelection

JEdifNMRSelection determines which parts of a design will be replicated. This executable

can be run in multiple passes to select different parts of a design for different kinds of replication.

Each run of JEdifNMRSelection can select portions of a design for a single replication type (i.e.

duplication, triplication). Design portions can be selected for replication based on available space

or specific cell types, instances, ports, and clock domains specified by the user. The results of

JEdifNMRSelection are saved in a replication description (.rdesc) file. This file can be modified

by subsequent runs of this and other executables in the toolflow.

A.3.4 JEdifVoterSelection

JEdifVoterSelection determines the locations where voters will be inserted into a triplicated

design (or triplicated portions of a design). Voter locations are determined using a feedback cutset

algorithm (i.e. one of the algorithms presented in this work) and rules for voting where downscal-

ing is necessary. The results are added into the replication description (.rdesc) file.

63

A.3.5 JEdifMoreFrequentVoting

Optional: JEdifMoreFrequentVoting inserts extra voters for more frequent voting within a

design based on a logic levels threshold or a total number of desired partitions.

A.3.6 JEdifDetectionSelection

Optional: JEdifDetectionSelection determines detector locations for both triplicated and

duplicated design portions using user-specified options. Like JEdifNMRSelection, this tool is

designed to be run in multiple passes (only one replication type can be processed per pass). Results

are saved in the replication description file (.rdesc).

A.3.7 JEdifPersistenceDetection

Optional: JEdifPersistenceDetection determines additional detector locations necessary for

classifying persistent/non-persistent errors detected in a design. It is designed to be run in multiple

passes. Results are saved in the replication description (.rdesc) file.

A.3.8 JEdifNMR

JEdifNMR performs the replication selected by previously run tools. Information about

what to replicate and where to insert voters/detectors is obtained from the replication description

(.rdesc) file created by the previous steps.

A.3.9 Other JEdif tools

JEdifNetList

JEdifNetlist converts a netlist in .jedif format to EDIF (.edf) format for use with other

standard EDIF tools.

64

JEdifQuery

JEdifQuery is a tool used to query the contents of a .jedif file and to provide summary

information about the EDIF design contained within.

JEdifReplicationQuery

JEdifReplicationQuery is a tool used to query the contents of a replication description file

(.rdesc) and provide summary information about the kind of replication that will be performed on a

design. It reports information about replication types, organs to be inserted (i.e. voters, detectors),

and detection error outputs.

JEdifClockDomain

The JEdifClockDomain tool is a .jedif based tool to analyze FPGA designs to obtain infor-

mation about the clock(s). The tool first identifies all clocks in a design. This information is then

used to optionally display other information, such as classifying Xilinx primitives into one or more

domains, showing clock crossings, etc.

A.4 JEdifBuild Options

JEdifBuild creates merged netlists in a .jedif file format from multiple .edf files. By default,

JEdifBuild also flattens the design and optionally performs FMAP removal, RLOC removal, SRL

replacement, and half-latch removal (functions performed by JEdifSterilize in previous versions

of the toolflow). The .jedif file format is an intermediate file format used by the remainder of the

replication tools.

Although flattening occurs by default, it can be disabled with the --no flatten option. It

is also possible to specify that specific cell types should not be flattened. This can be accomplished

by adding a ‘do not flatten’ property to the cell in the .edf file as follows:

(property do not flatten (boolean (true)))

65

If this property is used on a cell that is a black box in the main design file and is merged in

from a separate .edf or .edn file, the property should be specified in the black box definition file,

not in the main design .edf file.

It should be noted that designs that are not flattened will not be replicated properly. Any

unflattened cells will be replicated as an atomic unit, preventing proper voter insertion. Use the

‘do not flatten’ property only when this is the desired behavior.

Options can be specified on the command line or in a configuration file in any order. This

section describes each of these options in detail.

> java edu.byu.ece.edif.jedif.JEdifBuild --help

Options:

[-h|--help]

[-v|--version]

<input_file>

[(-o|--output) <output_file>]

[(-d|--dir) dir1,dir2,...,dirN]

[(-f|--file) file1,file2,...,fileN]

[--no_flatten]

[--no_open_pins]

[--blackboxes]

[--no_delete_cells]

[--pack_registers <{i|o|b|n}>]

[--replace_luts]

[--remove_fmaps]

[--remove_rlocs]

[--remove_hl]

[--hl_constant <{0|1}>]

[--hl_use_port <hl_port_name>]

[--hl_no_tag_constant]

[(-p|--part) <part>]

[--write_config <config_file>]

[--use_config <config_file>]

[--log <logfile>]

[--debug[:<debug_log>]]

[(-V|--verbose) <{1|2|3|4|5}>]

[--append_log]

66

A.4.1 File options: input, output, etc.

The following options specify the top-level input EDIF file, any auxiliary EDIF files, and

the destination EDIF file.

<input file>

Filename and path to the EDIF source file containing the top-level cell to be converted.

This is the only required parameter.

Allowed filename extensions are:

• Parsable EDIF: edn,edf,ndf

• Binary netlist (Blackboxes): ngc,ngo

• Blackbox Utilization: bb

Parsable EDIF files will be parsed and included in the algorithms. Binary netlist files are

not parsable by JEdifBuild, but the program recognizes them as blackboxes, and will not complain

about not finding the entity. Blackbox utilization files allow the user to specify the resource use

of the blackboxes to help in the utilization estimate and partial tmr algorithms. The file format is

“Resource:Number”. Below is an example:

myblackbox.bb:

BRAM:1

FF:400

LUT:100

This entity, named myblackbox, uses 1 BRAM, 400 Flipflops and 100 LUTS

(-o|--output) <output file>

Filename and path to the jedif output file.

Default: <input file>.jedif in the current working directory.

67

(-d|--dir) dir1,dir2,...,dir3

Comma-separated list of directories containing external EDIF files referenced by the top-

level EDIF file. The current working directory is included by default and need not be specified.

Multiple -d options may be specified.

Example: -d aux files,/usr/share/edif/common -d moreEdifFiles/

(-f|--file) file1,file2,...,fileN

Similar to the previous option, but rather than specifying directories to search, each external

EDIF file is named explicitly—including the path to the file. Multiple -f options may be specified.

Example: -f multBox.edn,src/adder.edf -f /usr/share/edif/blackBox.edf.

A.4.2 Maintenance Options

The following options allow some control over what happens during the conversion process

--no flatten

By default, JEdifBuild will flatten the EDIF files. Flattening is required by the TMR tools,

but other applications may wish to keep the hierarchical design.

--no open pins

Do not allow the parser to infer open pins on black box definitions.

--blackboxes

Allow parser to continue if blackbox definitions are not found.

--no delete cells

By default JEdifBuild will remove unused cells to reduce the size of the final .jedif file.

However, the user can request that these cells be retained for future use.

68

--pack registers {i|o|b|n}

By default, the BL-TMR tool treats all ports on the input EdifCell as top-level ports (those

that will be the inputs and outputs of the FPGA). The half-latch tool must therefore treat any

FFs that will be packed into the IOBs differently than other FFs (at least with Virtex devices). This

option allows the user to specify which IOBs the registers should be packed into: inputs (i), outputs

(o), both (b), or none (n). The default is to pack both input and output registers.

A.4.3 Sterilize Options

--replace luts

When this option is specified, the tool replaces LUT RAMs and SRLs with flip-flop equiv-

alents. This option is useful because bitstream scrubbing cannot be used with designs that contain

LUT RAMs or SRLs.

--remove fmaps

Remove FMAPs from the input design.

--remove rlocs

Remove ALL RLOCs in the design. The replication tools will not work correctly if a design

contains RLOCs.

--remove hl

Remove half-latches in the input design before performing replication.

Note: Not all half-latches can be removed at the EDIF level for all architectures. Some

post-processing may be necessary.

69

--hl const {0,1}

Sets the polarity of the half-latch constant to be used, whether an internally-generated con-

stant or a top-level port.

Valid options are 0 and 1. Default: 0.

--hl use port <hl port name>

Specify a top-level port to use in place of half-latches when using half-latch removal. The

top-level port will have the name specified with this option and the polarity (1 or 0) specified with

the --hl const option.

--hl no tag constant

When half-latch removal is used, a constant comes from either a constant generator cell

(ROM16X1) or a port specified by the user. In either case, the input buffer for the port or the

generator cell should be triplicated (or duplicated) to ensure reliability. By default, such instances

are tagged with an EDIF property called ‘half latch constant’ so that they can be automatically

selected for replication by JEdifNMRSelection later in case partial replication is used. This option

disables the default behavior of tagging safe constant instances with this property.

A.4.4 Target Part Options

--part <partname>

Target architecture for the design. Used to take into account part-specific properties, in-

cluding the number of resources available in each part. Valid parts include all parts from the Virtex

and Virtex2 product lines, represented as a concatenation of the part name and package type. For

example, the “Xilinx Virtex 1000 FG680” is represented as XCV1000FG680. This argument is not

case-sensitive. The default is xcv1000fg680.

70

A.4.5 Configuration File Options

The BL-TMR tools can use configuration files in place of command-line parameters. If a

parameter is specified in a configuration file, it will be passed to the BL-TMR tool, unless it is

overridden by the same argument on the command-line.

--use config <config file>

Specify a configuration file from which to read parameters.

--write config <config file>

Write the current set of command-line parameters to a configuration file and exit. The

parameters will be parsed to ensure they are valid, but the BL-TMR tool will not run. Note

that only the parameters on the command-line are stored in the configuration file. When using

--write config, any use of --use config is ignored. This is to prevent complicated cascades

of configuration files combined with command-line options.

Examples:

• --write config JonSmith.conf will write the command-line parameters to the file

JonSmith.conf in the current directory.

• --write config /usr/lib/BL-TMR/common.conf will write the command-line parame-

ters to the file /usr/share/BL-TMR/common.conf.

• See section A.10.11, “Using Configuration Files,” for more information.

A.4.6 Logging options

--log <logfile>

Specifies an alternate file for logging output.

71

--debug[:<debug log>]

Specifies a file for logging the debugging output.If no file specified, debug output is printed

to the log file.

(-V|--verbose) <{1|2|3|4|5}>

Sets the verbosity level: 1 prints only errors, 2 warnings, 3 normal, 4 log to stdout. 5 prints

debug information. (default: 3)

--append log

Append to the logfile instead of replacing it.

A.5 JEdifAnalyze

JEdifAnalyze performs some basic circuit analysis necessary for subsequent executables.

In particular, it performs feedback and IOB analysis. The results of JEdifAnalyze are saved in a

circuit description (.cdesc) file required by later executables.

The following options control the feedback and IOB analysis performed by this executable.

The results of the analysis affect the execution of later steps in the toolflow.

>java edu.byu.ece.edif.jedif.JEdifAnalyze

Options:

[-h|--help]

[-v|--version]

<input_file>

(-o|--output) <output>

[--pack_registers <{i|o|b|n}>]

[--use_bad_cut_conn]

[--no_iob_feedback]

[(-p|--part) <part>]

[--write_config <config_file>]

[--use_config <config_file>]

72

[--log <logfile>]

[--debug[:<debug_log>]]

[(-V|--verbose) <{1|2|3|4|5}>]

[--append_log]

A.5.1 File Options

<input file>

Filename and path to the jedif source file to be analyzed

(-o|--output) <output file>

Filename and path to the ciruit description (.cdesc) file that will be output.

A.5.2 Analysis Options

--pack registers {i|o|b|n}

By default, the BL-TMR tool treats all ports on the input EdifCell as top-level ports (those

that will be the inputs and outputs of the FPGA). The half-latch tool must therefore treat any

FFs that will be packed into the IOBs differently than other FFs (at least with Virtex devices). This

option allows the user to specify which IOBs the registers should be packed into: inputs (i), outputs

(o), both (b), or none (n). The default is to pack both input and output registers.

--use bad cut conn

Use bad cut group connectivity graph

--no iob feedback

Use this option to exclude IOBs from the feedback analysis. This is useful when a top-level

inout port is involved in feedback but by design will never be written to and read from at the same

time. Thus there is no real feedback. Using this option may greatly reduce the amount of feedback

found in the design and thus reduce the number of voters inserted.

73

A.5.3 Target Part Options

--part <partname>

Target architecture for the design. Used to take into account part-specific properties, in-

cluding the number of resources available in each part. Valid parts include all parts from the Virtex

and Virtex2 product lines, represented as a concatenation of the part name and package type. For

example, the “Xilinx Virtex 1000 FG680” is represented as XCV1000FG680. This argument is not

case-sensitive. The default is xcv1000fg680.

A.5.4 Configuration File Options

The BL-TMR tools can use configuration files in place of command-line parameters. If a

parameter is specified in a configuration file, it will be passed to the BL-TMR tool, unless it is

overridden by the same argument on the command-line.

--use config <config file>

Specify a configuration file from which to read parameters.

--write config <config file>

Write the current set of command-line parameters to a configuration file and exit. The

parameters will be parsed to ensure they are valid, but the BL-TMR tool will not run. Note

that only the parameters on the command-line are stored in the configuration file. When using

--write config, any use of --use config is ignored. This is to prevent complicated cascades

of configuration files combined with command-line options.

Examples:

• --write config JonSmith.conf will write the command-line parameters to the file

JonSmith.conf in the current directory.

• --write config /usr/lib/BL-TMR/common.conf will write the command-line parame-

ters to the file /usr/share/BL-TMR/common.conf.

• See section A.10.11, “Using Configuration Files,” for more information.

74

A.5.5 Logging options

--log <logfile>

Specifies an alternate file for logging output.

--debug[:<debug log>]

Specifies a file for logging the debugging output.If no file specified, debug output is printed

to the log file.

(-V|--verbose) <{1|2|3|4|5}>

Sets the verbosity level: 1 prints only errors, 2 warnings, 3 normal, 4 log to stdout. 5 prints

debug information. (default: 3)

--append log

Append to the logfile instead of replacing it.

A.6 JEdifNMRSelection

JEdifNMRSelection determines which parts of a design will be replicated. This executable

can be run in multiple passes to select different parts of a design for different kinds of replication.

Each run of JEdifNMRSelection can select portions of a design for a single replication type (i.e.

duplication, replication). Design partitions can be selected for replication based on available space

or specific cell types, instances, ports, and clock domains specified by the user. The results of

JEdifNMRSelection are saved in a replication description (.rdesc) file. This file can be modified

by subsequent runs of this and other executables in the toolflow.

See Section A.10 for examples of JEdifNMRSelection usage in common scenarios.

>java edu.byu.ece.edif.jedif.JEdifNMRSelection

Options:

[-h|--help]

[-v|--version]

75

<input_file>

(-r|--rep_desc) <rep_desc>

(-c|--c_desc) <c_desc>

--replication_type <replication_type>

[--continue]

[--override]

[--full_nmr]

[--no_partial_nmr]

[--nmr_p Port name1,Port name2,...,Port nameN]

[--nmr_inports]

[--nmr_outports]

[--no_nmr_p port1,port2,...,portN]

[--nmr_c cell_type1,cell_type2,...,cell_typeN]

[--nmr_clk clock_domain1,clock_domain2,...,clock_domainN]

[--nmr_i cell_instance1,cell_instance2,...,cell_instanceN]

[--no_nmr_c cell_type1,cell_type2,...,cell_typeN]

[--no_nmr_clk clock_domain1,clock_domain2,...,clock_domainN]

[--no_nmr_i cell_instance1,cell_instance2,...,cell_instanceN]

[--no_nmr_feedback]

[--no_nmr_input_to_feedback]

[--no_nmr_feedback_output]

[--no_nmr_feed_forward]

[--scc_sort_type <{1|2|3}>]

[--do_scc_decomposition]

[--input_addition_type <{1|2|3}>]

[--output_addition_type <{1|2|3}>]

[--merge_factor <merge_factor>]

[--optimization_factor <optimization_factor>]

[--factor_type <{DUF|UEF|ASUF|CF}>]

[--factor_value <factor_value>]

[--ignore_hard_resource_utilization_limits]

[--ignore_soft_logic_utilization_limit]

[(-p|--part) <part>]

[--write_config <config_file>]

[--use_config <config_file>]

[--log <logfile>]

[--debug[:<debug_log>]]

[(-V|--verbose) <{1|2|3|4|5}>]

[--append_log]

76

A.6.1 File Options

<input file>

Filename and path to the jedif source file to be replicated.

(-r|--rep desc) <rep desc>

Filename and path to the replication description (.rdesc) file to be written. The file will be

modified by subsequent runs of JEdifNMRSelection when the --continue option is used.

(-c|--c desc) <c desc>

Filename and path to the circuit description (.cdesc) file generated by JEdifAnalyze.

A.6.2 Replication Type Options

--replication type <replication type>

Replication type to use for this run. Must be one of triplication or duplication.

--continue

Select this option to build selection results on top of results from previous runs. If not se-

lected, the replication description file (.rdesc) will be overwritten completely instead of just mod-

ified. Normally, when continuing NMR selection with this flag, only instances that have not yet

been selected for a replication type will be considered. Overriding replication types for instances

and ports can be accomplished by using the --override flag in conjunction with this flag.

--override

This flag may be used in conjunction with the --continue flag in order to override the

replication type selections for instances that have already been selected.

77

A.6.3 Partial Replication Options

--full nmr

Fully replicate the design, skipping all partial replication analysis. This method is preferred

when the design is expected to fit in the target part with full replication of every resource since some

time-consuming algorithms are skipped. Resource utilization estimates will still function, stopping

replication and warning the user if the full replicated design is not expected to fit in the target part.

Note: --full nmr will replicate all logic within the design; however, top-level ports are not

replicated by default. To replicate top-level ports, use the --nmr inports and --nmr outports

options.

--no partial nmr

This option will disable the use of partial NMR analysis to determine which parts of the

circuit to replicate. Use this option in conjuction with the --nmr i and --nmr c options for explicit

control of replicated instances. This option need not be used when the --full nmr option is used.

--nmr p port1,port2,...,port3

Comma-separated list of ports to be replicated.

--nmr inports

Replicate all top-level input ports. The resulting EDIF file will have replicated input ports

for every input port in the original design, with names such as inputPort TMR 0, inputPort TMR 1,

and inputPort TMR 2.

--nmr outports

Force replication of all top-level output ports. The resulting EDIF file will have replicated

output ports for every output port in the original design, with names such as outputPort TMR 0,

outputPort TMR 1, and outputPort TMR 2.

78

--no nmr p port1,port2,...,portN

Prevent replication of specific top-level port(s), specified as a comma-separated list. Used

in conjunction with --nmr inports and --nmr outports. For example, the following will repli-

cate all input ports except the clock and reset ports, assuming Clk and rst are the (case-sensitive)

names of the clock and reset input ports, respectively:

--nmr inports --no nmr p Clk,rst

--nmr c cell type1,cell type2,...,cell typeN

Force replication of specific cell type(s), specified as a comma-separated list. All instances

of the types specified will be replicated. --nmr c takes precedence over --no nmr c. Mulitple

--nmr c lists may be specified.

Examples:

• --nmr c bufg,ibufg,fdc

• --nmr c bufg,ibufg --nmr c fdc

--nmr clk clock domain1,clock domain2, ...,clock domainN

Force replication of the specified clock domain(s), specified as a comma-separated list.

Each clock domain should be specified with it’s full path, not including the top level instance

name, each level being separated by ’/’ Note: --no nmr clk takes precedence over --nmr clk.

Multiple --nmr clk lists may be specified.

--nmr i cell instance1,cell instance2, ...,cell instanceN

Force replication of specific cell instance(s), specified as a comma-separated list. Note:

--no nmr i takes precedence over --nmr i. Multiple --nmr i lists may be specified.

Example: --nmr i clk bufg,multiplier16/adder16/fullAdder0

79

--no nmr c cell type1,cell type2,...,cell typeN

Prevent replication of specific cell type(s), specified as a comma-separated list. Multiple

--no nmr c lists may be specified.

Example: --no nmr c bufg,ibufg,fdc

--no nmr clk clock domain1, clock domain2,...,clock domainN

Prevent replication of specified clock domain(s), specified as a comma-separated list. Mul-

tiple --no nmr c lists may be specified.

Example: --no nmr clk clk c

--no nmr i cell instance1, cell instance2,...,cell instanceN

Prevent replication of specific cell instance(s), specified as a comma-separated list. Multi-

ple --no nmr i lists may be specified.

Example: --no nmr i clk bufg,multiplier16/adder16/fullAdder0

--no nmr feedback

Skip replication of the feedback section of the design. Is it not recommended to skip

replication of the feedback section, as it is the most critical section for SEU mitigation.

--no nmr input to feedback

Skip replication of the portions of the design that “feed into” the feedback sections. These

portions also contribute to the “persistence” of the design and should be included in replication,

when possible.

--no nmr feedback output

Skip replication of the portions of the design which are driven by the feedback sections of

the design.

80

--no nmr feed forward

Skip replication of the portions of the design which are not related to feedback sections

(neither drive nor are driven by the feedback sections).

A.6.4 SCC Options

The following options control how BL-TMR handles strongly connected components (SCCs)

and related logic. An SCC, by definition, is a maximal subgraph of circuit components that are mu-

tually reachable. That is, following the flow of data, every component in the SCC can be reached

from every other. In an SCC, each component is related to every other component. The feed-

back section is defined as the combination of all the strongly-connected components (SCCs). The

following options determine the order in which SCCs and related logic are replicated as well as

whether or not SCCs can be partitioned into smaller components.

--ssc sort type {1,2,3}

Choose the method the BL-TMR tool uses to partially replicate logic in the “feedback”

section of the design. Option 1 replicates the largest SCCs first. Option 2 replicates the smallest

first. Option 3 replicates the SCCs in topological order.

This option only affects the resulting circuit if only some of the feedback section is repli-

cated. If all or none of the “feedback” section is replicated, the three options produce identical

results. The difference lies in what order the logic in this section is added and thus what part of it

is replicated if there are not enough resources available to replicate the entire section. Valid options

are 1, 2, and 3. Default: 3 (topological order).

--do scc decomposition

Allow portions of strongly-connected components (SCCs) to be included for replication.

By default, if a single SCC is so large that it cannot be replicated for the target part, it is

skipped. This option allows large SCCs to be broken up into smaller pieces, some of which may fit

in the part. This is only useful if there are not enough resources to replicate the entire set of SCCs.

81

--input addition type {1,2,3}

Select between three different algorithms to partially replicate logic in the “input to feed-

back” section of the design. Option 1 uses a depth-first search starting from the inputs to the

feedback section. Option 3 uses a breadth-first search. Option 2 uses a combination of the two.

This option only affects the resulting circuit if only some of the input to feedback section

is replicated. If all or none of the input to feedback section is replicated, the three options produce

identical results. The difference is in what order the logic in this section is added and thus what

part of it is replicated if there are not enough resources available to replicate the entire section.

Results may differ between the three addition types depending on the input design. It is yet

not clear if one method is superior to the others in general. Valid options are 1, 2, and 3. Default:

3 (breadth-first search).

--output addition type {1,2,3}

Similar to --input addition type, this option applies to the logic in the “feedback out-

put” section, that is, logic that is driven by the feedback section.

This option only affects the resulting circuit if only some of the feedback output section

is replicated. It has no effect if all or none of the feedback output section is replicated. As with

--input addition type, it is yet not clear if one method is superior to the others in general.

Valid options are 1, 2, and 3. Default: 3 (breadth-first search).

A.6.5 Merge Factor and Optimization Factor

The following factors are used by the utilization tracker, which estimates the anticipated

usage of the target chip after performing (partial) replication. All factors in this section have the

precision of a Java double.

--merge factor {0≤ n≤ 1}

Used to fine-tune the estimation of logic resources in the target chip. Each technology has

an internal, default “merge factor” which estimates the percentage of LUTs and flip-flops that will

82

share the same slice. As this factor is both technology and design dependent, this option allows the

user to specify his/her own merge factor.

The total number of logic blocks (without taking into account optimization) is given by the

following equation:

total logic blocks = FFs+LUT s− (mergeFactor ∗FFs).

If you need to calculate a custom mergeFactor for a specific design, use the following

equation:

mergeFactor =
(FFs+LUT s−2∗ slices)

FFs
.

Must be between 0 and 1, inclusive. Default: 0.5.

--optimization factor {0≤ n≤ 1}

The “optimization factor” is used to scale down the estimate of LUTs and flip-flops used to

account for logic optimization performed during mapping. For example, an optimization factor of

0.90 would assume that logic optimization techniques would reduce the required number of LUTs

and FFs by 10%.

We define the optimization factor to be the number of logic blocks after optimization di-

vided by the number of logic blocks before optimization. So the final equation for the total number

of logic blocks is as follows:

Estimate = optimization f actor ∗ (FFs+LUT s−mergeFactor ∗FFs),

where Estimate must be between 0 and 1, inclusive. The default is 0.95.

83

--factor type {ASUF,UEF,DUF}

Specify the Utilization Factor Type to be used. Valid Factor Types are:

• ASUF

Available Space Utilization Factor: The maximum utilization of the target part, expressed as

a percentage of the unused space on the part after the original (unreplicated) design has been

considered.

• UEF

Utilization Expansion Factor: The maximum increase in utilization of the target part, ex-

pressed as a percentage of the utilization of the original (unreplicated) design.

• DUF

Desired Utilization Factor: The maximum percentage of the target chip to be utilized after

performing Partial replication.

Not case sensitive.

--factor value

Specify a single Factor Value. The number has the precision of a Java double and is

interpreted based on the Factor Type as explained above.

For example, if a design occupies 30% of the target part prior to replication, a DUF of 0.50

would use 50% of the part. An UEF of 0.50 would increase the usage by 50%, resulting in 45%

usage of the part. An ASUF of 0.50 would use 50% of the available space prior to replication,

resulting in 65% usage. Must be greater than or equal to 0. Default: 1.0.

--ignore hard resource utilization limits

This option causes all hard resource utilization limits to be ignored when determining how

much of the design to replicate.

84

--ignore soft logic utilization limit

This option causes logic block utilization to be ignored when determining how much of the

design to replicate. Hard resources such as BRAMs and CLKDLLs will still be tracked.

A.6.6 Target Part Options

--part <partname>

Target architecture for the design. Used to take into account part-specific properties, in-

cluding the number of resources available in each part. Valid parts include all parts from the Virtex

and Virtex2 product lines, represented as a concatenation of the part name and package type. For

example, the “Xilinx Virtex 1000 FG680” is represented as XCV1000FG680. This argument is not

case-sensitive. The default is xcv1000fg680.

A.6.7 Configuration File Options

The BL-TMR tools can use configuration files in place of command-line parameters. If a

parameter is specified in a configuration file, it will be passed to the BL-TMR tool, unless it is

overridden by the same argument on the command-line.

--use config <config file>

Specify a configuration file from which to read parameters.

--write config <config file>

Write the current set of command-line parameters to a configuration file and exit. The

parameters will be parsed to ensure they are valid, but the BL-TMR tool will not run. Note

that only the parameters on the command-line are stored in the configuration file. When using

--write config, any use of --use config is ignored. This is to prevent complicated cascades

of configuration files combined with command-line options.

85

Examples:

• --write config JonSmith.conf will write the command-line parameters to the file

JonSmith.conf in the current directory.

• --write config /usr/lib/BL-TMR/common.conf will write the command-line parame-

ters to the file /usr/share/BL-TMR/common.conf.

• See section A.10.11, “Using Configuration Files,” for more information.

A.6.8 Logging options

--log <logfile>

Specifies an alternate file for logging output.

--debug[:<debug log>]

Specifies a file for logging the debugging output.If no file specified, debug output is printed

to the log file.

(-V|--verbose) <{1|2|3|4|5}>

Sets the verbosity level: 1 prints only errors, 2 warnings, 3 normal, 4 log to stdout. 5 prints

debug information. (default: 3)

--append log

Append to the logfile instead of replacing it.

A.7 JEdifVoterSelection

JEdifVoterSelection determines the locations where voters will be inserted into a triplicated

design (or triplicated portions of a design). Voter locations are determined using a feedback cutset

algorithm and rules for voting where downscaling is necessary. The results are added into the

replication description file (.rdesc).

86

At times, the user may wish to force voter insertion on certain nets and disable voter inser-
tion on others. This can be accomplished by inserting ‘force restore’ and ‘do not restore’

properties on selected nets in the .edf file as follows:
(property force restore (boolean (true)))

(property do not restore (boolean (true)))

>java edu.byu.ece.edif.jedif.JEdifVoterSelection

Options:

[-h|--help]

[-v|--version]

<input_file>

(-r|--rep_desc) <rep_desc>

(-c|--c_desc) <c_desc>

[--after_ff_cutset]

[--before_ff_cutset]

[--connectivity_cutset]

[--basic_decomposition]

[--highest_fanout_cutset]

[--highest_ff_fanout_cutset]

[--highest_ff_fanin_input_cutset]

[--highest_ff_fanin_output_cutset]

[--write_config <config_file>]

[--use_config <config_file>]

[--log <logfile>]

[--debug[:<debug_log>]]

[(-V|--verbose) <{1|2|3|4|5}>]

[--append_log]

A.7.1 File Options

<input file>

Filename and path to the .jedif source file.

(-r|--rep desc) <rep desc>

Filename and path to the replication description (.rdesc) file to be modified.

87

(-c|--c desc) <c desc>

Filename and path to the circuit description (.cdesc) file generated by JEdifAnalyze.

A.7.2 Cutset Algorithms

Synchronization voters are essential in FPGA circuits that use TMR because they ensure

that the internal state of all three TMR replicates are synchronized after configuration scrubbing.

Adding synchronization voters in a design manually, however, is a difficult and error prone pro-

cess. This tool uses automated cutset algorithms for selecting synchronization voter locations and

inserting them in the design.

Synchronization voter insertion algorithms must determine a set of nets within a design that

cuts all feedback in the design. Voters are placed on each of these nets to ensure that synchroniza-

tion voting occurs within the feedback structures of a design. Determining a set of voter locations

that satisfy this constraint is an instance of the feedback edge set (FES) problem. The algorithms

used in this tool solve the FES problem for voter insertion in a way that avoids illegal cut locations.

In addition, many of the algorithms employ heuristics based on FPGA architecture that attempt to

minimize circuit area or timing impact.

--before ff cutset

This option selects the Voters Before Every Flip-Flop algorithm.

--after ff cutset

This option selects the Voters After Every Flip-Flop algorithm.

--connectivity cutset

This option selects an algorithm that is the precursor to the Basic SCC Decomposition

Algorithm. It is the original algorithm that removes arbitray feedback edges until all feedback is

cut. This option has been shown to produce inferior results in general to the others but in some

88

few cases it may give better timing results (based on empirical data, this is not likely in real-world

designs).

--basic decomposition

This option selects the Basic SCC Decomposition algorithm.

--highest fanout cutset

This option selects the Highest Fanout SCC Decomposition algorithm.

--highest ff fanout cutset

The option selects the Highest Flip-Flop Fanout SCC Decomposition algorithm.

--highest ff fanin input cutset

This option selects the Highest Fan-in Flip-Flop Input algorithm.

--highest ff fanin output cutset

This option selects the Highest Fan-in Flip-Flop Output algorithm.

A.7.3 Configuration File Options

The BL-TMR tools can use configuration files in place of command-line parameters. If a

parameter is specified in a configuration file, it will be passed to the BL-TMR tool, unless it is

overridden by the same argument on the command-line.

--use config <config file>

Specify a configuration file from which to read parameters.

89

--write config <config file>

Write the current set of command-line parameters to a configuration file and exit. The

parameters will be parsed to ensure they are valid, but the BL-TMR tool will not run. Note

that only the parameters on the command-line are stored in the configuration file. When using

--write config, any use of --use config is ignored. This is to prevent complicated cascades

of configuration files combined with command-line options.

Examples:

• --write config JonSmith.conf will write the command-line parameters to the file

JonSmith.conf in the current directory.

• --write config /usr/lib/BL-TMR/common.conf will write the command-line parame-

ters to the file /usr/share/BL-TMR/common.conf.

• See section A.10.11, “Using Configuration Files,” for more information.

A.7.4 Logging options

--log <logfile>

Specifies an alternate file for logging output.

--debug[:<debug log>]

Specifies a file for logging the debugging output.If no file specified, debug output is printed

to the log file.

(-V|--verbose) <{1|2|3|4|5}>

Sets the verbosity level: 1 prints only errors, 2 warnings, 3 normal, 4 log to stdout. 5 prints

debug information. (default: 3)

--append log

Append to the logfile instead of replacing it.

90

A.8 JEdifNMR

JEdifNMR performs the replication selected by previously run tools. Information about

what to replicate and where to insert voters/detectors is obtained from the replication description

(.rdesc) file created by the previous steps.

> java edu.byu.ece.edif.jedif.JEdifNMR

Options:

[-h|--help]

[-v|--version]

<input_file>

(-r|--rep_desc) <rep_desc>

[(-o|--output) <output_file>]

[--edif]

[--rename_top_cell <new_name>]

[(-p|--part) <part>]

[--write_config <config_file>]

[--use_config <config_file>]

[--log <logfile>]

[--debug[:<debug_log>]]

[(-V|--verbose) <{1|2|3|4|5}>]

[--append_log]

A.8.1 File Options

<input file>

Filename and path to the .jedif source file.

(-r|--rep desc) <rep desc>

Filename and path to the replication description (.rdesc) file containing the replication in-

formation.

91

(-o|--output) <output file>

Filename and path to the output file. If the given filename ends in .edf or if the --edif

option is specified, an EDIF file will be generated. Otherwise, the replicated circuit will be output

in .jedif format.

--edif

Specifies that an EDIF (.edf) file should be generated instead of a .jedif file.

--rename top cell <new name>

Use this option to specify a new name for the design’s top cell.

A.8.2 Target Part Options

--part <partname>

Target architecture for the design. Used to take into account part-specific properties, in-

cluding the number of resources available in each part. Valid parts include all parts from the Virtex

and Virtex2 product lines, represented as a concatenation of the part name and package type. For

example, the “Xilinx Virtex 1000 FG680” is represented as XCV1000FG680. This argument is not

case-sensitive. The default is xcv1000fg680.

A.8.3 Configuration File Options

The BL-TMR tools can use configuration files in place of command-line parameters. If a

parameter is specified in a configuration file, it will be passed to the BL-TMR tool, unless it is

overridden by the same argument on the command-line.

--use config <config file>

Specify a configuration file from which to read parameters.

92

--write config <config file>

Write the current set of command-line parameters to a configuration file and exit. The

parameters will be parsed to ensure they are valid, but the BL-TMR tool will not run. Note

that only the parameters on the command-line are stored in the configuration file. When using

--write config, any use of --use config is ignored. This is to prevent complicated cascades

of configuration files combined with command-line options.

Examples:

• --write config JonSmith.conf will write the command-line parameters to the file

JonSmith.conf in the current directory.

• --write config /usr/lib/BL-TMR/common.conf will write the command-line parame-

ters to the file /usr/share/BL-TMR/common.conf.

• See section A.10.11, “Using Configuration Files,” for more information.

A.8.4 Logging options

--log <logfile>

Specifies an alternate file for logging output.

--debug[:<debug log>]

Specifies a file for logging the debugging output.If no file specified, debug output is printed

to the log file.

(-V|--verbose) <{1|2|3|4|5}>

Sets the verbosity level: 1 prints only errors, 2 warnings, 3 normal, 4 log to stdout. 5 prints

debug information. (default: 3)

--append log

Append to the logfile instead of replacing it.

93

A.9 JEdifReplicationQuery

JEdifReplicationQuery is used to query the contents of a replication description (.rdesc) file

and to provide information about the type(s) of replication that will be applied to a design given

the information in the file.

The tool gives information about each of the replication types (i.e. triplication, duplication)

used in the design. The ports and instances selected for each type are displayed.

The tool also gives information about organs (i.e. voters, comparators) that will be inserted

into the design on each net. An organ summary is provided that lists the total number of each kind

of organ to be inserted.

Finally, the tool lists any detection outputs to be used as well as information about whether

an output register (and which clock net) and output buffer will be used. A list of nets that will be

detected on is given for each detection output.

>java edu.byu.ece.edif.jedif.JEdifReplicationQuery

Options:

[-h|--help]

[-v|--version]

<input_file>

(-r|--rep_desc) <rep_desc>

A.9.1 File Options:

<input file>

Filename and path to the .jedif source file containing the EDIF environment to be queried.

(-r|--rep desc) <rep desc>

Filename and path to the replication description (.rdesc) file containing the replication in-

formation.

94

A.10 Common Usage of JEdifNMRSelection

This section describes a few sample scenarios and explains which combination of command

line options should be used for each.

A.10.1 Full TMR

This example shows how to perform “full” TMR (triplication of all components) on a

design. For larger designs, this may result in a TMR’d version of the design that does not fit

in the desired chip. If this is the case, some form of “partial” TMR should be used.

In this example, the design to be triplicated is myDesign.edf. Both input ports and output

ports are triplicated. The part used in this case is the Virtex II XC2V1000-FG456.

> java edu.byu.ece.edif.jedif.JEdifNMRSelection myDesign.jedif \

-c myDesign.cdesc -r myDesign.rdesc --replication_type triplication \

--nmr_inports --nmr_outports --full_nmr --part xc2v1000fg456

A.10.2 Full TMR—Clock not triplicated

Some systems are not ideal for triplicated clock lines because of resource constraints. This

example shows how to triplicate everything but the clock line.

This example is almost identical to the example in section A.10.1. The --no nmr p op-

tion specifies that the top-level port named Clk (case-sensitive) should not be triplicated. The

--no nmr c option indicates that all cells of the global clock buffer type BUFG should also not be

triplicated. This prevents the clock line after the buffer from being triplicated and the entire circuit

will use the same single clock.

> java edu.byu.ece.edif.jedif.JEdifNMRSelection myDesign.jedif \

-c myDesign.cdesc -r myDesign.rdesc --replication_type triplication \

--nmr_inports --nmr_outports --full_nmr --no_nmr_p Clk --no_nmr_c BUFG \

--part xc2v1000fg456

A.10.3 Full TMR—No I/O triplication

Many FPGA applications are port-limited. This example shows how to prevent all inputs

and outputs from being triplicated. In this example, the user must leave out the --nmr inports and

95

--nmr outports parameters so that top level ports are not included in triplication. This example

also leaves out the --part option, using the default value (a value saved as a property in the EDIF

file).

> java edu.byu.ece.edif.jedif.JEdifNMRSelection myDesign.jedif -c myDesign.cdesc \

-r one_counter.rdesc --replication_type triplication --full_nmr

A.10.4 Partial TMR—No I/O triplication

This example shows a standard usage of the BL-TMR tool for partial TMR. In this case,

the design is too large to fit in the targeted device when fully triplicated. The BL-TMR tool will

triplicate as much logic as possible and estimate when the target chip will be fully utilized.

> java edu.byu.ece.edif.jedif.JEdifNMRSelection myLargeDesign.jedif \

-c myLargeDesign.cdesc -r myLargeDesign.rdesc --replication_type triplication

A.10.5 Partial TMR—SCC Decomposition, custom estimation factors

In this case, the user wishes to include parts of strongly-connected components (SCCs) for

triplication. This example also shows how to override the default merge and optimization factors.

> java java edu.byu.ece.edif.jedif.JEdifNMRSelection myLargeDesign.jedif \

-c myLargeDesign.cdesc -r myLargeDesign.rdesc --replication_type triplication \

--do_scc_decomposition --merge_factor 0.4 --optimization_factor 0.85

A.10.6 Partial TMR—Fill 50% of target device

In some cases, the user may wish to use the triplicated design on the same chip as another

design. In this example the user knows that a separate design will require half of the target chip.

To fill as much of the left-over 50% as possible, the user specifies a --factor type of DUF and a

factor value of 0.5. This will stop triplication of the input design when half of the target chip

is utilized, according to the estimate made with the merge optimization factors.

> java edu.byu.ece.edif.jedif.JEdifNMRSelection myLargeDesign.jedif \

-c myLargeDesign.cdesc -r myLargeDesign.rdesc --replication_type triplication \

--factor_type DUF --factor_value 0.5

96

A.10.7 Partial TMR—Push utilization past 100%

Due to the way mapping tools are implemented, the user may be able to fit more logic onto

the target chip than estimated by the utilization tracker. The Xilinx map program, for example,

does not map unrelated logic into the same slice until slice utilization reaches 99%. This means

that much more logic can be added after this point, though the place and route step will become

increasingly more difficult for the vendor tools to perform.

With this in mind, to achieve the maximum capacity on the target chip, it may be necessary

to specify a desired utilization factor greater than 1.0 (more than 100% estimated utilization). The

following example uses a device utilization factor of 1.5, which will stop triplication when an

estimated 150% of the target part is utilized.

> java edu.byu.ece.edif.jedif.JEdifNMRSelection myLargeDesign.jedif \

-c myLargeDesign.cdesc -r myLargeDesign.rdesc --replication_type triplication \

--factor_type DUF --factor_value 1.5

A.10.8 Partial TMR—Use 75% of available space on target device

The available space utilization factor can be used to specify the amount of space on the

target device left after the unmitigated circuit is mapped. To fill the chip up to 75% of the left-

over space, the user specifies a --factor type of ASUF and a factor value of 0.75. If the

original design size is estimated at using 40% of the target chip, this will stop triplication when

70% (40+(100−40)∗0.75) of the target chip is utilized.

> java edu.byu.ece.edif.jedif.JEdifNMRSelection myLargeDesign.jedif \

-c myLargeDesign.cdesc -r myLargeDesign.rdesc --replication_type triplication \

--factor_type ASUF --factor_value 0.75

A.10.9 Mixed TMR/DWC—TMR Persistent Section, Duplicate the Rest

At times, it may be impossible to fit an entire triplicated design on a part. It may still be

possible to triplicate feedback sections and duplicate the rest of the design. This can be accom-

plished by running JEdifNMRSelection twice. The first run selects feedback sections for TMR

and the second run selects the rest of the design for duplication. Notice that the second run uses

the --continue option to indicate that the replication description (.rdesc) file should be modified

97

rather than overwritten. The second run also uses the --full nmr option to select the rest of the

design. This does not override the TMR sections selected by the first run because the --override

option is not used.

> java -Xmx1G edu.byu.ece.edif.jedif.JEdifNMRSelection myDesign.jedif \

-c myDesign.cdesc -r myDesign.rdesc --part xcv1000-5-bg560 \

--replication_type triplication --no_nmr_feedback_output --no_nmr_feed_forward

> java -Xmx1G edu.byu.ece.edif.jedif.JEdifNMRSelection myDesign.jedif \

-c myDesign.cdesc -r myDesign.rdesc --part xcv1000-5-bg560 \

--replication_type duplication --continue --full_nmr

A.10.10 Triplicate Specific Instances Only

By default, the BL-TMR tool tries to use partial replication to fill up a device when no other

options are specified. In order to suppress this behavior and only replicate instances specified by

the user, the --no partial nmr option can be used. (Half-latch safe constants will still be marked

for replication in designs where half-latch removal is used, but this behavior can be suppressed

by using the --hl no tag constant option in JEdifBuild). Specific instances should be selected

for replication using the --nmr i, --nmr c, --nmr clk, etc. options. The following example

triplicates only two instances (plus a half-latch safe constant cell if half-latch removal was used):

> java edu.byu.ece.edif.jedif.JEdifNMRSelection myDesign.jedif \

-c myDesign.cdesc -r myDesign.rdesc --replication_type triplication \

--no_partial_nmr \

--nmr_i synth_th1/virtexmultaccelerator_mini__1/a/multCol__13/reg_bottom_ysum/fdce,\

synth_th1/virtexmultaccelerator_mini__1/b/multCol__1/reg_top_ysum/fdce__5 \

--part xcv1000-5-bg560

A.10.11 Using Configuration Files

Configuration files can greatly simplify the use of any of the BL-TMR tools. The following

examples show how to create and use configuration files.

98

Create a Configuration File

The following will write the current command-line arguments to the file myConfig.conf:

> java edu.byu.ece.edif.jedif.JEdifNMRSelection myDesign.jedif -c myDesign.cdesc \

-r myDesign.rdesc --replication_type triplication --nmr_inports --nmr_outports \

--nmr_c DLL,fdc,clk_buf --nmr_i clk,fifo_output --no_nmr_p clk_port,data_in \

--no_nmr_c bufg --no_nmr_i mux2,and24 --no_nmr_feed_forward --input_addition_type 1 \

--output_addition_type 2 --merge_factor 0.85 --optimization_factor 0.90 \

--part XCV1000-5-BG560 --log myLogFile.log --write_config myConfig.conf

The previous command creates the following output, stored in myConfig.conf:

#myConfig.conf, created by JEdifNMRSelection

#Tue May 12 14:44:30 MDT 2009

no_nmr_i=mux2,and24

write_config=myConfig.conf

merge_factor=0.85

no_nmr_c=bufg

nmr_i=clk,fifo_output

no_nmr_feed_forward=true

replication_type=triplication

log=myLogFile.log

nmr_inports=true

nmr_c=DLL,fdc,clk_buf

input=myDesign.jedif

c_desc=myDesign.cdesc

optimization_factor=0.9

rep_desc=myDesign.rdesc

part=XCV1000-5-BG560

input_addition_type=1

nmr_outports=true

no_nmr_p=clk_port,data_in

output_addition_type=2

Configuration files are defined by the java.util.Properties class. However, the for-

mat is simple enough that configuration files can easily be created by hand or by other programs.

As seen above, the format is simply key=value. A hash mark (pound sign) (#) at the begin-

ning of a line marks that line as a comment. BL-TMR options are given just as they would

be on the command-line, with the exception that command-line options with no arguments (e.g.

--nmr inports and --do scc decomposition, etc.) are specified as either true or false, as

seen above.

99

Use a Configuration File

The following example shows how to load myConfig.conf as a configuration file:

> java edu.byu.ece.edif.jedif.JEdifNMRSelection --use_config myConfig.conf

Combining Configuration Files and Command-line Arguments

Configuration files provide default values of BL-TMR options. Any options specified on

the command-line will take precedence. (See section A.8.3, “--use config” for detailed prece-

dence information.) The following example uses the same options specified by myConfig.conf, but

changes the input and output files:

> java edu.byu.ece.edif.jedif.JEdifNMRSelection myOtherDesign.jedif \

-c myOtherDesign.cdesc -r myOtherDesign.rdesc --useconfig myConfig.conf

A.11 Sample Makefile for TMR

DESIGN=my_design

BUILD = edu.byu.ece.edif.jedif.JEdifBuild

ANALYZE = edu.byu.ece.edif.jedif.JEdifAnalyze

NMR_SELECTION = edu.byu.ece.edif.jedif.JEdifNMRSelection

VOTER_SELECTION = edu.byu.ece.edif.jedif.JEdifVoterSelection

MFV = edu.byu.ece.edif.jedif.JEdifMoreFrequentVoting

DETECTION_SELECTION = edu.byu.ece.edif.jedif.JEdifDetectionSelection

PERSISTENCE_DETECTION = edu.byu.ece.edif.jedif.JEdifPersistenceDetection

NMR = edu.byu.ece.edif.jedif.JEdifNMR

JVM_OPTS = -Xmx1G

PART = xcv1000-5-bg560

BUILD_OPTS = --remove_hl --replace_luts --remove_fmaps --remove_rlocs

ANALYZE_OPTS = --part $(PART)

NMR_SELECTION_OPTS = --part $(PART) --replication_type triplication --full_nmr --nmr_inports \

--nmr_outports

VOTER_OPTS = --highest_ff_fanout_cutset

NMR_OPTS = --part $(PART)

all: $(DESIGN)_nmr.edf

$(DESIGN)_nmr.edf: $(DESIGN).jedif voter_selection.touch

java $(JVM_OPTS) $(NMR) $(DESIGN).jedif --rep_desc $(DESIGN).rdesc $(NMR_OPTS) -o \

$(DESIGN)_nmr.edf

100

voter_selection.touch: $(DESIGN).jedif nmr_selection.touch

java $(JVM_OPTS) $(VOTER_SELECTION) $(DESIGN).jedif --rep_desc $(DESIGN).rdesc \

--c_desc $(DESIGN).cdesc $(VOTER_OPTS)

touch voter_selection.touch

nmr_selection.touch: $(DESIGN).cdesc

java $(JVM_OPTS) $(NMR_SELECTION) $(DESIGN).jedif --c_desc $(DESIGN).cdesc \

--rep_desc $(DESIGN).rdesc $(NMR_SELECTION_OPTS)

touch nmr_selection.touch

$(DESIGN).cdesc: $(DESIGN).jedif

java $(JVM_OPTS) $(ANALYZE) $(DESIGN).jedif -o $(DESIGN).cdesc $(ANALYZE_OPTS)

$(DESIGN).jedif: $(DESIGN).edf

java $(JVM_OPTS) $(BUILD) $(DESIGN).edf $(BUILD_OPTS)

clean:

rm -rf $(DESIGN).jedif $(DESIGN).cdesc $(DESIGN).rdesc $(DESIGN)_nmr.edf *.log *.touch

A.12 Special Notes

A.12.1 Naming Conventions

The BL-TMR tool alters the names of replicated signals, cell instances, and ports. Be

aware of this when using placement (or other) constraints. An output port named myOutport in

the original EDIF file, when triplicated, would become myOutport TMR 0, myOutport TMR 1, and

myOutport TMR 2. Similarly, a flip-flop whose instance name is myFF in the original file, when

triplicated, would become myFF TMR 0, myFF TMR 1, and myFF TMR 2. Net names follow the same

convention.

A.12.2 Allocating More Memory for the JVM

Larger designs may require more heap memory than the Java Virtual Machine (JVM) is

allocated by default. Use the -Xmx 1 option with the Java executable to change the maximum

1See http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/java.html#Xms for more information
about this and other command-line options to the JVM.

101

http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/java.html#Xms

amount of memory for the virtual machine. The following example allocates up to 256 MB of

heap space for the JVM:

> java -Xmx256M edu.byu.ece.edif.jedif.JEdifBuild ...

102

	Brigham Young University
	BYU ScholarsArchive
	2010-03-10

	Synchronization Voter Insertion Algorithms for FPGA Designs Using Triple Modular Redundancy
	Jonathan Mark Johnson
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Table of Contents
	LIST OF TABLES
	LIST OF FIGURES
	Chapter 1 Introduction
	Chapter 2 Background
	2.1 Radiation Effects in FPGAs
	2.2 Mitigation Techniques
	2.3 Automated TMR
	2.4 Conclusion

	Chapter 3 TMR Voter Insertion
	3.1 Reducing Voters
	3.2 TMR Partitioning Voters
	3.3 Clock Domain Crossing Voters
	3.4 Synchronization Voters
	3.5 Illegal Voter Locations
	3.6 Voter Insertion
	3.7 Conclusion

	Chapter 4 Synchronization Voter Insertion Algorithms
	4.1 Simple Algorithms
	4.2 Algorithms Based on SCC Decomposition
	4.3 Conclusion

	Chapter 5 Experimental Results
	5.1 Benchmark Designs
	5.2 Procedure
	5.3 Timing Results
	5.4 Area Results
	5.5 Analysis
	5.6 Algorithm Execution Time
	5.7 Conclusion

	Chapter 6 Conclusion
	References
	Appendix A Obtaining and Using the BYU-LANL Triple Modular Redundancy (BL-TMR) Tool
	A.1 Obtaining the BL-TMR Tool
	A.2 Introduction
	A.3 Replication Toolflow
	A.4 JEdifBuild Options
	A.5 JEdifAnalyze
	A.6 JEdifNMRSelection
	A.7 JEdifVoterSelection
	A.8 JEdifNMR
	A.9 JEdifReplicationQuery
	A.10 Common Usage of JEdifNMRSelection
	A.11 Sample Makefile for TMR
	A.12 Special Notes

