
3506 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 57, NO. 6, DECEMBER 2010

Synchronization Techniques for Crossing Multiple
Clock Domains in FPGA-Based TMR Circuits

Yubo Li, Student Member, IEEE, Brent Nelson, Senior Member, IEEE, and Michael Wirthlin, Senior Member, IEEE

Abstract—Triple modular redundancy (TMR) is a widely used
mitigation technique to protect FPGA circuits against single event
upsets (SEUs). TMR, however, does not adequately protect signals
that cross asynchronous clock domains. Signals which cross clock
domains in TMR circuits may suffer from the combined effects of
two failure modes: asynchronous sampling effects and SEUs. This
paper analyzes and quantifies these problems. In addition, various
solutions are proposed for designing safe synchronizers with TMR.
Finally, the improvements in reliability provided by the proposed
synchronizers are demonstrated by both mathematical modeling
and fault injection testing on an FPGA circuit. It is shown that the
proposed mitigated synchronizer designs provide between 6 and 10
orders of magnitude improvement in reliability compared to un-
mitigated designs.

Index Terms—Field programmable gate arrays, reliability,
single event upset, synchronizer, triple modular redundancy.

I. INTRODUCTION

F IELD programmable gate arrays (FPGAs) are an attrac-
tive technology to end users due to their low design costs

and ability to support post-deployment design modifications.
SRAM-based FPGAs use volatile configuration storage, and
therefore are susceptible to radiation-induced single event
upsets (SEUs) in their configuration store [1]. Triple modular
redundancy (TMR) is a widely used technique to mitigate the
effects of SEUs in the FPGA configuration memory, especially
in space environments. Using TMR, three copies of the same
circuit are created with the purpose of masking out a single
failure in any one of the three copies. This masking is accom-
plished by means of a majority (two-out-of-three) voter on the
circuit outputs [2].

While TMR has been shown to work well in synchronous sys-
tems, it is unsuitable, without modification for transmitting trip-
licated signals across asynchronous clock domain boundaries.
Others have investigated this problem in the context of tripli-
cated asynchronous FIFOs. It has been pointed out that both
TMR and customized mitigation techniques are required to be
employed to effectively reduce SEU susceptibility [3].

A circuit’s functional correctness may be threatened by three
problems: 1) meta-stability, 2) asynchronous sampling uncer-
tainty, and 3) SEUs. This paper analyzes and quantifies each

Manuscript received July 16, 2010; revised September 24, 2010; accepted
October 05, 2010. Date of current version December 15, 2010. This work was
supported by the I/UCRC Program of the National Science Foundation under
Grant 0801876.

The authors are with the NSF Center for High-Performance Reconfigurable
Computing (CHREC), Department of Electrical and Computer Engineering,
Brigham Young University, Provo, UT 84606 USA (e-mail: liyubobuaa@gmail.
com).

Digital Object Identifier 10.1109/TNS.2010.2086075

Fig. 1. Synchronizers between the two clock domains.

of these problems. The paper also demonstrates the effects of
asynchronous sampling uncertainty with regard to triplicated
clock domain crossings. The paper further presents a number of
TMR-compatible synchronizers, details the timing constraints
on their use, and then uses fault injection and analytical mod-
eling to demonstrate their operation and mean time to failure
(MTTF) characteristics.

II. META-STABILITY

Meta-stability is a well-known issue that may cause system
failures in digital systems where signals are transmitted across
asynchronous clock boundaries [4]. Meta-stability is also a
problem within FPGA circuits that incorporate multiple clock
domains [5]. In all digital systems, a flip-flop may enter a
meta-stable state when its setup or hold times are violated.

A special synchronizer circuit is used to reduce the frequency
of meta-stability. In one example, two or more flip-flops are
placed in series to synchronize the incoming asynchronous
signal to the clock domain (see Fig. 1). Since the input signal is
asynchronous, the first flip-flop (FF1) may enter a meta-stable
state if the signal undergoes a transition within its setup/hold
time window. Although FF1 may enter a meta-stable state, FF2
will not sample FF1 for another clock period. The additional
clock period usually provides time for FF1 to resolve to a stable
state. A variety of additional circuits beyond the circuit of
Fig. 1 have been proposed to address this problem under many
different circumstances [6].

An equation for estimating the mean time between
failure (MTBF) of such a flip-flop based synchronizer is
given by [7]

(1)

is the resolution time or the time given to the synchronizer
to resolve to a stable state once it enters a meta-stable state.
is the clock frequency of the synchronizer domain, and is
the data frequency or the frequency at which the input signal
changes. is the meta-stability catching window, which is the
sum of flip-flop setup time and hold time, and is a constant
which depends on the characteristics of a specific device. For

0018-9499/$26.00 © 2010 IEEE

Authorized licensed use limited to: Brigham Young University. Downloaded on October 29,2020 at 18:43:13 UTC from IEEE Xplore. Restrictions apply.

LI et al.: SYNCHRONIZATION TECHNIQUES FOR CROSSING MULTIPLE CLOCK DOMAINS IN FPGA-BASED TMR CIRCUITS 3507

Fig. 2. Clock domain crossing with TMR and sampling uncertainty.

a Xilinx Virtex-4 FPGA flip-flop, let us assume 0.5 ns,
200 MHz, and 100 MHz. Using data from [7] and

[8], for Xilinx Virtex-4 devices is calculated as 24.30/ns. For
the circuit shown in Fig. 1, is a clock period minus FF2’s
setup time and the propagation delay of the wire. If we assume
the sum of FF2’s setup time and the propagation delay is 0.5 ns,
then 4.5 ns. Using these values, the MTBF of the synchro-
nizer is years.1 As will be shown later
in this paper, this is many orders of magnitude longer than the
MTBF of the other parts of a clock crossing circuit. Thus, in the
remainder of this paper we will not further deal with meta-sta-
bility under the specific assumption that meta-stability synchro-
nizers are always used in circuits to deal with this particular
problem.

III. SIGNAL REPLICATION AND SAMPLING UNCERTAINTY

When applying TMR to a circuit, each component and signal
in the circuit is triplicated.

Using three copies of a synchronizer to represent the same
signal introduces a new problem—asynchronous sampling
uncertainty. When three identical signals are sampled asyn-
chronously, they may arrive in the receiving clock domain
on different clock cycles. Fig. 2(a) illustrates a circuit where
a triplicated signal sendSig crosses a clock domain. Ideally,
the three copies of the received signal, rcvSig A, rcvSig B,
and rcvSig C, will be identical in the receiving clock domain.
However, Fig. 2(b) demonstrates the problem caused by asyn-
chronous sampling uncertainty: the sampled signals may not be
identical in the receiving domain due to differences in wire de-
lays and the random nature of sampling asynchronous signals.

A. Mathematical Model of Sampling Uncertainty

To estimate the reliability of a triplicated synchronizer like
the one shown in Fig. 2(a), a model is needed to estimate the

1Even greater reliability can be achieved by increasing the resolution time
using more serial flip-flops in the synchronizer.

Fig. 3. The circuit used for modeling.

probability of sampling uncertainty. This section will introduce
such a model and validate it with a hardware test.

The model presented in this section is based on the circuit
depicted by Fig. 3 where signal is sent from the domain
and received in the domain. Signal is triplicated into three
identical signals and transported over a wiring network with the
following delays: delay delay delay . In addition, we make
the assumptions that and of flip-flops are 0 (meta-
stability of flip-flops is ignored for this analysis).

Fig. 4 shows the timing analysis of the sampling uncertainty.
When is sent from the sender’s domain, its three copies,

, and , may arrive at the receiver’s domain at different
instants due to the varying wire delays. As shown in Fig. 4,
and arrive before the rising edge of and thus are going
to be caught by the flip-flop in the receiver’s domain. Signal ,
however, falls behind the rising edge of and is going to miss
this coming clock cycle. In this situation, a sampling uncertainty
event occurs.

It is clear that if the rising edge of falls outside of the
window bounded by the minimum delay and the maximum
delay (delay and delay in Fig. 4), sampling uncertainty
will not happen. In the following model, we use delay and
delay to denote the maximum and the minimum delay of
the three signal wires. In addition, is the clock frequency of
the sender’s domain, is the clock frequency of the receiver’s
domain, is the clock period of the sender’s domain, and
is the changing frequency of signal .

The possibility of a disagreement can be broken into three in-
dependent probabilities. First, assume the clock of the receiver’s
domain is slower than that of the sender’s domain. In this case,
a rising edge of the receiver clock will not always fall within a
sender clock cycle. The probability that has a rising edge
within a cycle is

(2)

Second, if has a rising edge in a cycle, the probability
that it falls into the critical window is computed by dividing the
length of the critical window by the period of the sender clock,
or

delay delay
(3)

Authorized licensed use limited to: Brigham Young University. Downloaded on October 29,2020 at 18:43:13 UTC from IEEE Xplore. Restrictions apply.

3508 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 57, NO. 6, DECEMBER 2010

Fig. 4. Timing analysis of the sampling problem.

Fig. 5. Circuit used for model validation.

The probability that three pulses sent from the sender are not
synchronously received at the receiver is

delay delay

delay delay (4)

Finally, the probability that the input signal changes within
this cycle can be expressed as . Thus, the proba-
bility that the outputs of the three flip-flops are not all sampled
in the same clock cycle is derived as

delay delay

delay delay (5)

Multiplying by the clock frequency of the sender’s domain,
we obtain the number of disagreements per second:

disagreement second delay delay (6)

To verify the correctness of the mathematical model, we built
the circuit of Fig. 5 in an FPGA and ran two hardware experi-
ments to measure the rate of disagreements. The disagreement
detector outputs a “0” when all of the three inputs are the same,

TABLE I
AUTOMATIC ROUTING EXPERIMENTAL RESULTS

and outputs a “1” otherwise. The counter counts how many
times disagreement occurred.

We carried out two experiments: the first one was performed
on an automatic routed FPGA circuit, and the second one on a
manually re-routed circuit. By manually routing, we could min-
imize the difference in the wire delays as much as possible.

In the first experiment, , the sender’s clock frequency, was
100 MHz and the input data frequency, , was 50 MHz. Table I
shows the results obtained for the automatically routed circuit.
Column 1, , is the receiver’s clock frequency. Column 2,
the “disagreements/second” column, is the measured number
of disagreements per second exhibited by the circuit. The next
column, “delay delay calculated”, was calculated from
this disagreement rate using (6). The next column, “ ”, was
then obtained from (4). The last column, “delay delay
reported”, was computed from delay values reported by the
Xilinx fpga editor layout tool.

From Table I, we note that the calculated and reported values
for delay delay are close but slightly different. This
is to be expected since delay numbers reported by fpga editor
are worst case estimates while the actual delays in the running
circuit are not.

A second experiment was then performed to reduce the size of
the critical window by manually routing the problematic wires.
The three sensitive wires were routed in such a way that they
have the same delay within the FPGA editor tool. Table II shows
the experimental results after manually routing the wires.

As shown, the number of disagreements per second decreases
by a factor of 10 when the three sensitive wires are manually
routed. Although FPGA Editor shows that all the three wires

Authorized licensed use limited to: Brigham Young University. Downloaded on October 29,2020 at 18:43:13 UTC from IEEE Xplore. Restrictions apply.

LI et al.: SYNCHRONIZATION TECHNIQUES FOR CROSSING MULTIPLE CLOCK DOMAINS IN FPGA-BASED TMR CIRCUITS 3509

TABLE II
MANUALLY ROUTING EXPERIMENTAL RESULTS

Fig. 6. Sampling of three delayed signal replicas.

have the same delay (delay delay 0 ns), disagree-
ments are not completely eliminated. This is because the three
wires are not perfectly matched in the actual silicon of the de-
vice. Additionally, sampling error is not only a result of wire
delay—even if the three legs have exactly the same delays, set up
time and hold time violations are unavoidable due to the asyn-
chronous sampling being performed.

In the sections which follow, the presence of sampling uncer-
tainty will play a role in the design of a number of synchronizers.
This sampling uncertainty effect will only be exacerbated by un-
equal arrival times of the three signals at the sampling flip flop
inputs. In the following sections we will call this difference in
arrival times delay delay the signal skew. Synchro-
nizers used in a TMR environment must be developed with this
in mind.

IV. TMR, SAMPLING UNCERTAINTY, AND SIGNAL SKEW

Consider the circuit of Fig. 6. Here, three copies of a single
pulse have been transmitted across the circuit to be sampled in
another domain. Due to differences in the delays imposed by
interconnect, these three signal copies will not result in identical
sample signal values in the receiving domain. For example, note
that only will likely be sampled as a “1” by the first clock
edge. However, because the pulse is so long, a voter placed on
the sampled values of the three signals will produce an output
pulse two clock cycles wide (corresponding to the two middle
clock edges in the figure). Thus, this example shows that if the
transmitted pulse is long enough, signal skew will not cause an
error if voters are placed on the three sampled signal paths.

In order to maximize throughput, a designer would desire
to send the shortest pulse possible. This section will consider
the problem of determining the timing constraints on that trans-
mitted pulse. Fig. 7 shows the transmission of three identical
signals but where the pulse length is minimized to be only
wide. There is no signal skew between the three signals and it
should be clear that no sampling error will occur—all three will
be correctly (concurrently) sampled by the clock edges in the
figure, and a voter on the sampled signals would produce an
output pulse. In contrast, Fig. 8 shows the same signals but with
signal skew. In particular, has been delayed (due to wiring

Fig. 7. Sending Three Minimum Width Pulses.

Fig. 8. Signal skew effects.

Fig. 9. Sampling Uncertainty and SEU Lead to TMR Failure.

delays) by and thus the sampled signals in the receiving
clock domain will be different.

Fig. 9 shows the effects of such sampling discrepancies. In
the top half of the figure there are no SEUs and, as shown, a
voter operating on three different received signals will correctly
produce an output pulse in each case. This is in spite of the
fact that in Cases 2 and 3 a sampling disagreement event has
occurred.

The lower half of the figure shows the situation with SEUs
present. In Case 1 a fault on one of the domains does not cause
any errors since no sampling disagreement event has occurred.
In Case 3 a sampling disagreement event occurs but the fault has
occurred on the out-of-phase signal and a voter will produce the
correct output as shown. It is in Case 2 where a fault combined
with sampling uncertainty can cause a failure of the circuit.

This indicates that a simple constraint on transmitted
pulsewidth of is insufficient for proper operation.

To overcome the problem illustrated in Fig. 9, the pulsewidth
of the transmitted signals must be increased by the amount of
the maximum signal skew delay delay . This
is shown in Fig. 10, where the transmitted pulses have all been

Authorized licensed use limited to: Brigham Young University. Downloaded on October 29,2020 at 18:43:13 UTC from IEEE Xplore. Restrictions apply.

3510 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 57, NO. 6, DECEMBER 2010

Fig. 10. Increasing � Overcomes Failure Due to Signal Skew.

Fig. 11. A block diagram of a general TMR synchronizer solution.

stretched in time by . This ensures that, in spite of any
possible relative delays between the three signal copies, a fault
cannot cause a sampling event to result in a voting error. Specif-
ically, note that although and have been delayed by
a significant amount , all three signals will be concur-
rently sampled by the middle clock edge in the figure and Case
2 of Fig. 9 cannot occur.

Thus, the constraint on minimum pulsewidth for sending trip-
licated signals across a clock domain is given by

(7)

If this constraint is obeyed the combination of SEUs, sampling
uncertainty, and signal skew will not cause a voting error.

V. MITIGATION SOLUTIONS

A general mitigation solution for clock domain crossing in
TMR is shown in Fig. 11 and consists of two parts. The first
part is the creation of a synchronizer block which will ensure
that the transmitted pulses are concurrently sampled by at least
one clock edge in the receiving clock domain. The second part
is a bank of voters which will compensate for SEUs which may
occur in the synchronizer blocks. In this section we present
two different mitigation solutions whose differences lie in how
their synchronizer blocks are constructed. These differences
will stem primarily from the characteristics of the originally
transmitted signals.

A. Long Pulse Synchronization

The discussion of the previous section has shown that if suf-
ficiently long pulses are transmitted across a clock domain they
can be reliably sampled in the receiving domain in spite of dif-
ferences of arrival time due to variations in wiring delay and
sampling uncertainty. Thus, if the inequality of (7) holds, the
circuit of Fig. 1 can be used as the synchronizer block of Fig. 11
to create a TMR clock crossing circuit. This is shown in Fig. 12.

Typically, a pulse is sent from the sender’s domain to the re-
ceiver’s domain using some number of sender’s clock cycles.

Thus, to compute the number of sender’s clock cycles required,
the following equation should be used:

(8)

where is the number of sending domain’s clock cycles.
Just as there is a pulsewidth constraint for a transmitted

signal, the timing of the spacing between pulses follows the
same analysis. Thus, the time between pulses must also satisfy
the constraint of (7), and the maximum transfer rate using
the circuit of Fig. 12 can be computed as one transfer every

seconds.
Finally, note that depending on the actual transmitted

pulsewidth chosen, the outputs of the voters in Fig. 12 may be
a single clock cycle wide or multiple cycles wide. If desired,
edge detectors may be placed on the voter outputs to produce
single-cycle signals to the receiving domain.

B. Short Pulse Synchronization

The key to the above technique is that (7) dictates how the
sent pulse must be stretched in time by the sender to account
for signal skew and to ensure correct voting behavior. However,
it is not always possible to stretch the pulse in the sending do-
main. For example, this would be the case when interfacing with
an existing sub-system which cannot be modified. In this case,
(7) could still be consulted to determine whether the circuit of
Fig. 12 could be used. That is, can a suitable value of be
found for the given and ? If not, an alternative ap-
proach must be employed.

Fig. 13 shows an alternate synchronizer from [9] which can
be used in these scenarios. The function of this synchronizer is
to stretch the transmitted pulse in the receiver’s domain so that
the receiving circuitry can correctly sense it. This is in contrast
to the circuit of Fig. 12 which requires the transmitted pulse to
be stretched appropriately in the sender’s domain before being
sent.

This does not, however, eliminate any constraint on the trans-
mitted pulse but rather introduces different constraints. The first
constraint is that the transmitted pulse must be long enough to
properly set the latch . In addition, there is a max-
imum pulsewidth constraint. That is, the sent pulse must have
returned to zero prior to the feedback signal arriving to reset the
front end latch. Otherwise, both and will be asserted at the
same time, resulting in undefined operation of the latch. Finally,
there is a maximum transfer rate imposed by the design. The
sender cannot send another pulse across the domain boundary
using this circuit until 1) the previous pulse has been received,
2) the latch reset, and 3) the latch reset signal has been de-as-
serted. Just as with the previous synchronizer design, failure to
abide by the implied protocol associated with the synchronizer
will result in failure.

However, triplicated circuits constructed based on the circuit
of Fig. 13 may still fail due to the combined effect of sampling
uncertainty and SEUs and thus must be modified before use.
In this section, we present a modification to this synchronizer
circuit and the resulting TMR solution. We then provide a timing
analysis to show correctness.

Authorized licensed use limited to: Brigham Young University. Downloaded on October 29,2020 at 18:43:13 UTC from IEEE Xplore. Restrictions apply.

LI et al.: SYNCHRONIZATION TECHNIQUES FOR CROSSING MULTIPLE CLOCK DOMAINS IN FPGA-BASED TMR CIRCUITS 3511

Fig. 12. A TMR synchronizer design.

Fig. 13. A synchronizer for sending a short pulse across a clock domain.

Fig. 14. A modified synchronizer design.

Fig. 15. The timing diagram of the modified synchronizer.

A modified version of the synchronizer of [9] is shown in
Fig. 14, where an additional flip-flop has been added on the right
of the original circuit to stretch the received signal pulse in the
receiver’s domain by one additional clock cycle. Fig. 15 shows
the timing diagram of the modified circuit.

In the remainder of this section we analyze a triplicated syn-
chronizer design such as is shown by Fig. 11 where the “syn-
chronizer” block is the modified synchronizer of Fig. 14.

1) Solution Correctness Without Considering SEUs: As-
suming no SEUs, we only need to consider the effect of

Fig. 16. The three cases without the effect of SEUs.

sampling uncertainty, and there are three possibilities that we
need to consider. As shown in Fig. 16 it is obvious that in all
the three cases, voters are sufficient to determine the outputs,
because at most one of the three signals could be different from
the other two.

2) Solution Correctness With SEUs: In the presence of
SEUs, any signal could be stuck at “0” or “1” and there are four
different cases that must be considered as shown in Fig. 17.

Authorized licensed use limited to: Brigham Young University. Downloaded on October 29,2020 at 18:43:13 UTC from IEEE Xplore. Restrictions apply.

3512 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 57, NO. 6, DECEMBER 2010

Fig. 17. Four cases with the presence of SEUs.

When signal rcvSig A is stuck at “1”, there are two possi-
bilities (shown by the left half of Fig. 17): signals rcvSig B
and rcvSig C are off by one clock cycle (case 1), or they are
identical (case 2). In case 1, signal output lasts for three
clock cycles, and in case 2 it lasts for two clock cycles.

When signal rcvSig A is stuck at “0”, we have two cases
to consider as well (the right half of Fig. 17). In case 3, sig-
nals rcvSig B and rcvSig C are off by one clock cycle, and
signal output lasts for 1 cycle. In case 4, signals rcvSig B and
rcvSig are identical, and signal outpu lasts for 2 cycles.
As shown, however, in each case the received signals overlap
sufficiently that voters can accurately detect the pulses.

VI. FAULT INJECTION TESTS

To validate the reliability improvement provided by the pro-
posed synchronizers, we performed fault injection experiments
on our different circuits using a SEAKR Radiation Test Board,
which contains three Xilinx FPGAs. One is a Xilinx Virtex-4
FPGA, which holds the design under test (DUT). The other two
are Xilinx Virtex-2 Pro FPGAs, acting as the configuration mon-
itor (Configmon) and the functional monitor (Funcmon), respec-
tively.

A block diagram of part of the test fixture is shown by Fig. 18,
where the DUT is shown containing one of the synchronizers
tested but with edge detectors on the outputs to ensure that the
received pulses are exactly one clock cycle wide in the receiving
domain.

In the Funcmon, the pulse generator (on the left of Fig. 18)
operates in the sender’s clock domain and generates a sequence
of one million pulses. The pulse receiver (right side of figure) is
in the receiver’s clock domain, and counts the number of pulses
it receives from the DUT.

The purpose of the Configmon is to generate bitstreams with
injected faults, which are sent to the DUT. To fully test the be-
havior of the circuit in the presence of SEUs, all configuration
bits of the design were upset, one at a time, with test results re-
ported back to a host system.

In all, we carried out two sets of experiments: one on long
pulse synchronizers and the other on short pulse synchronizers.
Each set included three types of designs—a single synchronizer,
a naive/incorrectly triplicated synchronizer, and a modified/cor-
rectly triplicated synchronizer. All the triplicated versions in-
clude voters as they are required by the nature of TMR. In each
case, the bitstream was upset and programmed into the DUT
and then one million pulses were transmitted to the DUT by
the Funcmon. After this was completed, if the pulse receiver’s
counter did not match the pulse sender’s counter, we called it a

failure of the synchronizer, and the corresponding upset bit in
FPGA configuration memory was marked as a sensitive bit. The
percentage of signals that arrived at the receiver’s domain for the
runs containing sensitive bits was then determined and termed
“Signal Arrival %”. The results are summarized in Table III.

A. Long Pulse Synchronizers

A basic, single long pulse synchronizer is shown in Fig. 1 and
is a conventional meta-stability filter. Fault injection identified
18 sensitive bits for this design. Because this circuit contains no
redundancy, when an SEU occurred at a sensitive bit location
no pulses arrived at the receiver’s domain (they were all cata-
strophic failures).

We then tested the design of Fig. 12, with an artificially in-
serted delay on one of the three signal paths so that (7) was vi-
olated. Testing with this uncovered 105 sensitive bits. Failures
in this experiment were caused by the combined effects of both
sampling uncertainty and SEU. When an SEU occurred at a sen-
sitive bit, the synchronizer failed in accordance with the prob-
ability of sampling uncertainty. On average, 47% of the sent
signals were successfully received at the receiver’s domain. In
other words, the synchronizer of this experiment failed at a prob-
ability of 53% with the presence of an SEU at a sensitive bit
location. This is shown as “Naive TMR” in Table III because it
fails to take into account the constraint of (7).

The third test was also on the design of Fig. 12, only without
artificial skew among the three signals ((7) was satisfied). This
circuit resulted in no sensitive bits, suggesting that this synchro-
nizer mitigates all SEUs in combination with sampling uncer-
tainty.

B. Short Pulse Synchronizers

By fault injecting the basic single short pulse synchronizer
of Fig. 13, we observed 147 sensitive bits and 0% signal arrival
percentage.

We then tested a naively triplicated version of the design
above. Fault injection identified 188 sensitive bits in this design.
In addition, 99.58% of the sent pulses were correctly received
at the receiver’s domain.

Finally, we combined three copies of the modified synchro-
nizer circuit of Fig. 14 with voters. This circuit resulted in no
sensitive bits, suggesting that this synchronizer mitigates all
SEUs in combination with sampling uncertainty.

VII. RELIABILITY COMPARISON

In this section, we compare the reliability of the various syn-
chronizers from the previous section. In each reliability model
of this section, we assume use of a Xilinx-4QV FPGA operating
in the geostationary earth orbit (GEO). In this orbit, the expected
upset rate of a single configuration bit is
upsets per day [10]. The reliability of each synchronizer will be
measured in terms of mean time to failure (MTTF).

A. Non-Mitigated Synchronizers

The first model estimates the reliability of an unmitigated
synchronizer and will be used to estimate the MTTF of the
non-mitigated single synchronizers (Fig. 1 and Fig. 13). SEUs

Authorized licensed use limited to: Brigham Young University. Downloaded on October 29,2020 at 18:43:13 UTC from IEEE Xplore. Restrictions apply.

LI et al.: SYNCHRONIZATION TECHNIQUES FOR CROSSING MULTIPLE CLOCK DOMAINS IN FPGA-BASED TMR CIRCUITS 3513

Fig. 18. Block diagram the fault injection test fixture for the mitigated synchronizer.

are the primary failure mechanism for non-mitigated synchro-
nizers. The failure rate due to SEUs can be estimated by multi-
plying the failure rate of a single configuration bit, , by the
number of sensitive configuration bits in the synchronizer, ,
or . Assuming a constant failure rate, the MTTF
is the inverse of the failure rate or

(9)

From the fault injection results in Table III we know the
number of bits that are susceptible to SEUs for both the
non-mitigated long pulse synchronizer and the
non-mitigated short pulse synchronizer . The
fault injection experiments also indicate that once the synchro-
nizer has failed, no signals arrived implying complete failure
of the synchronizer. Using these results, the failure rate for the
two unmitigated synchronizers is
days and .

B. Naive Triplicated Synchronizers

For a triplicated synchronizer that does not properly account
for sampling uncertainty, two conditions are needed simultane-
ously for synchronizer failure. First, an SEU must occur within
the synchronizer logic to disable one of the three identical syn-
chronizers. Second, a sampling disagreement must occur be-
tween the two working synchronizers. The failure due to SEUs
is modeled as as described above. The probability of
a sampling disagreement is modeled as where is
the probability of a successful synchronization. The probability
of successful synchronization for both the long and short naive
synchronizers is found in Table III. The MTTF of naive tripli-
cated synchronizers with sampling uncertainty is modeled as

(10)

Fault injection results for the triplicated long synchronizer
with insufficient pulsewidth show that only 47% of the syn-
chronization signals arrived in the presence of a sensitive SEU.
With 105 sensitive SEUs, days which
is lower than the MTTF of the unmitigated synchronizer. The
MTTF of the naive triplicated short synchronizer, however, is
much higher as 99.58% of the synchronization pulses arrive
in the presence of a sensitive SEU. With 188 sensitive SEUs,

.

C. Correctly Triplicated Synchronizers

No failures were observed in the fault injection experiments
for either the long or short pulse synchronizers that properly
accounted for synchronizer pulse width. These results suggest
that these circuits are immune to any single event upset within
their configuration memory whether or not synchronization dif-
ferences occur. Since no failures were observed, the simple re-
liability model presented above cannot be used.

To compare the reliability of these synchronizers with the pre-
vious two synchronizers, an alternate model is proposed. This
model will estimate the probability that two or more SEUs occur
and disable two of the three synchronizers. To avoid the accumu-
lation of upsets within the FPGA configuration memory, most
systems utilizing FPGAs in a radiation environment employ
a mechanism called configuration scrubbing [11]. This tech-
nique implements upset “repair” by continuously monitoring
the FPGA configuration memory and correcting any configu-
ration upsets it finds. The standard reliability model for TMR
with repair is derived as [2]

(11)

Authorized licensed use limited to: Brigham Young University. Downloaded on October 29,2020 at 18:43:13 UTC from IEEE Xplore. Restrictions apply.

3514 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 57, NO. 6, DECEMBER 2010

TABLE III
FAULT INJECTION TEST RESULTS OF THREE SYNCHRONIZERS

TABLE IV
ESTIMATED MTTF OF SYNCHRONIZERS (DAYS)

where is the module failure rate2, and is the repair rate.
Since these synchronizers do not actually have any sensitive

bits, we have to make an assumption for the module failure rate
(i.e., the failure rate of a single module). For this calculation we
will use from above as the failure rate of one of the three cir-
cuit copies that make up our mitigated synchronizer. We also as-
sume a conservative scrub rate of 1 Hz, giving a value of 86 400
repairs/day.

Substituting these values into (11), the MTTF of the tripli-
cated long synchronizer is estimated at days and
the MTTF of the triplicated short synchronizer is estimated as

days. Table IV summarizes the MTTF of the six
different synchronizer designs.

VIII. CONCLUSION

In this paper, we have discussed three problems associated
with TMR systems which contain signals which cross clock
domains: 1) meta-stability, 2) asynchronous sampling uncer-
tainty, and 3) SEUs. We quantified the effects of sampling
uncertainty, demonstrated how it can cause triplicated circuits
to fail in the presence of SEUs, and proposed two different

2This � is the module failure rate for one of the three copies of the circuit
which make up the TMR module itself. In contrast � , as used above, is the
failure of the entire triplicated synchronizer.

TMR synchronizers. Using fault injection we demonstrated the
performance of each and then calculated the MTTF for each
using reliability modeling. The results showed that correctly
mitigated synchronizers have between 6 and 10 orders of mag-
nitude longer MTTFs than simple triplicated synchronizers.

REFERENCES

[1] B. Pratt, M. Caffrey, P. Graham, K. Morgan, and M. Wirthlin, “Im-
proving FPGA design robustness with partial TMR,” in Proc. Relia-
bility Physics Symp., Mar. 2006, pp. 226–232.

[2] D. P. Siewiorek and R. S. Swarz, Reliable Computer Systems: Design
and Evaluation, 3rd ed. Natick, MA: A. K. Peters, 1998.

[3] M. Berg, “Embedding asynchronous FIFO memory blocks in Xilinx
Virtex series FPGAs targeted for critical space systems applications,”
presented at the NASA Conf. Military Applications of Programmable
Logic Devices (MAPLD), Sep. 2009 [Online]. Available: http://nepp.
nasa.gov/mapld_2009

[4] J. Horstmann, E. H. , and R. Coates, “Metastability behavior of CMOS
master/slave flip-flops,” IEEE Trans. Circuits Syst., vol. 24, no. 1, pp.
146–157, Oct. 1992.

[5] D. Chen, D. Sing, J. Chromczak, D. Lewis, R. Fung, D. Neto, and V.
Betz, “A comprehensive approach to modeling, characterizing and op-
timizing for metastability in FPGAs,” in Proc. 18th ACM SIGDA Int.
Symp. Field Programmable Gate Arrays, Feb. 2010, pp. 167–176.

[6] R. Ginosar, “Fourteen ways to fool your synchronizer,” in Proc. 9th
IEEE Int. Symp. Asynchronous Circuits Systems (ASYNC), May 2003,
pp. 89–96.

[7] P. Alfke, “Metastable recovery in Virtex-II Pro FPGAs,” Xilinx Corp.,
San Jose, CA, Tech. Rep., Feb. 10, 2005, xAPP094 (v3.0).

[8] P. Alfke, “Metastable delay in Virtex FPGAs,” Xilinx Corp., Tech.
Rep., Mar. 28, 2008.

[9] J. F. Wakerly, Digital Design: Principles and Practices, 3rd
ed. Upper Saddle River, NJ: Tom Robbins, 2000.

[10] G. Allen, G. Swift, and C. Carmichael, “Virtex-4QV Static SEU char-
acterization summary,” National Aeronautics and Space Administra-
tion, Jet Propulsion Laboratory (JPL), Pasadena, CA, Tech. Rep. JPL
Publication 08-16 4/08, 2008.

[11] K. Morgan, M. Caffrey, P. Graham, E. Johnson, B. Pratt, and M.
Wirthlin, “Seu-induced persistent error propagation in FPGAs,” IEEE
Trans. Nucl. Sci., vol. 52, no. 6, pp. 2438–2445, Dec. 2005.

Authorized licensed use limited to: Brigham Young University. Downloaded on October 29,2020 at 18:43:13 UTC from IEEE Xplore. Restrictions apply.

