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ABSTRACT

The incorporation of GPUs as co-processors has brought
forth significant performance improvements for High-
Performance Computing (HPC). Efficient utilization of the
GPU resources is thus an important consideration for com-
puter scientists. In order to obtain the required perfor-
mance while limiting the energy consumption, researchers
and vendors alike are seeking to apply traditional CPU ap-
proaches into the GPU computing domain. For instance,
newer NVIDIA GPUs now support concurrent execution of
independent kernels as well as Dynamic Voltage and Fre-
quency Scaling (DVFS). Amidst these new developments,
we are faced with new opportunities for efficiently scheduling
GPU computational kernels under performance and energy
constraints.
In this paper, we carry out performance and energy opti-

mizations geared towards the execution phases of concurrent
kernels in GPU-based computing. When multiple GPU ker-
nels are enqueued for concurrent execution, the sequence
in which they are initiated can significantly affect the total
execution time and the energy consumption. We attribute
this behavior to the relative synergy among kernels that are
launched within close proximity of each other. Accordingly,
we define metrics for computing the extent to which kernels
are symbiotic, by modeling their complementary resource re-
quirements and execution characteristics. We then propose
a symbiotic scheduling algorithm to obtain the best possible
kernel launch sequence for concurrent execution. Experi-
mental results on the latest NVIDIA K20 GPU demonstrate
the efficacy of our proposed algorithm-based approach, by
showing near-optimal results within the solution space of
both performance and energy consumption. As our further
experimental study on DVFS finds that increasing the GPU
frequency in general leads to improved performance and en-
ergy saving, the proposed approach reduces the necessity for
over-clocking and can be readily adopted by programmers
with minimal programming effort and risk.
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1. INTRODUCTION
The proliferation of GPUs as application accelerators has

been witnessed over the past few years in the HPC field.
With the rapid advancements in the graphics technology,
an increasing number of processing cores are integrated into
the massively parallel processing architecture. As a result,
a wide range of modern parallel computers have incorpo-
rated GPU accelerators to achieve well-improved floating-
point performance beyond the Tera FLOPS (FLoating-point
Operations Per Second) barrier. Such computers also in-
clude some of the world’s fastest supercomputers such as
Titan (Cray XK7), Tianhe-1A and Tsubame 2.0 [1].

Modern GPUs are composed of up to thousands of
Streaming Processors (SPs), or CUDA cores, which are or-
ganized into Streaming Multiprocessors (SMs). The mas-
sive parallel architecture requires the application (kernel) to
exhibit enough parallelism to fully utilize the computation
power. However, since the internal parallelism expressed by
a kernel heavily depends on the programming style as well
as the problem size, device can be underutilized. As a result,
improving the GPU resource utilization has been one of the
major focuses for both GPU vendors and research commu-
nities. Concurrent kernel execution is one of such features
provided available for both Kepler and Fermi series of GPUs
by NVIDIA [15]. It improves the device utilization by allow-
ing thread blocks from multiple kernels to be concurrently
scheduled and executed on the SMs, provided that kernels
are launched from separate CUDA streams. However, for
both Fermi and Kepler series of GPUs, when there are sev-
eral kernels ready for execution, all thread blocks from the



earliest issued kernel are first assigned to the SMs, followed
by thread blocks from the next issued kernel [18]. Although
the Kepler GPU architecture provides an improvement over
Fermi by using multiple hardware work queues (HyperQ)
that help to eliminate false dependencies [15], we have ob-
served from our experiments that the allocation of thread
blocks to SMs still follows the kernel launch order. In other
words, current GPU work distributor [15] (in charge of as-
signing thread blocks to SMs) on both generations of devices
assigns thread blocks by following the kernel launch order,
which determines how thread blocks from different kernels
are co-scheduled on the SMs. Thread blocks from different
concurrent kernels exhibit varied extent of SM resource us-
age (the usage of share memory, registers, warps and blocks
etc.) as well as the utilization of both compute instruction
throughput and global memory bandwidth. Launching in-
dependent kernels through individual CUDA streams allows
all kernels to be queued for the distributor, which sequen-
tially processes through the kernel queue and assigns thread
blocks to an SM till one of SM resource limits is met. As a
result, naively co-scheduled thread blocks from different ker-
nels conflicting on one or more SM resources cannot be co-
executed simultaneously within the same execution round.
Instead, they will be executed in separate execution rounds
and thus potentially underutilize the GPU. Note that we
here define the term execution round as each round of si-
multaneous thread block execution on the SMs. (the same
as the term wave [13] used by NVIDIA).
With a single modern high-end GPU consuming up to 300

watts, reducing the GPU energy consumption has also been
an ongoing challenge, especially considering that a GPU-
based supercomputer such as Titan consists 18,688 GPUs
[1]. Vendors such as NVIDIA applied the Dynamic Voltage
and Frequency Scaling (DVFS) technology to most of their
GPUs, primarily for the purpose of reducing the idle energy
consumption by lowering both the GPU and memory fre-
quencies. However, under the scenario of concurrent kernel
execution, optimizing for reduced GPU energy consumption
at kernel run-time has been barely addressed by previous
studies. Moreover, few previous works have been focused
on studying the impact of frequency scaling on both per-
formance and energy consumption for concurrent kernels.
Therefore, it is imperatively necessary to explore run-time
energy optimization techniques for concurrent kernel execu-
tion under GPU-based heterogeneous computing.
In this paper, we present an algorithm-based approach to

optimize the performance and energy consumption of con-
current kernels being executed on the GPU. For both per-
formance and energy optimizations, we focus our method-
ology on rescheduling the kernel launch sequence into mul-
tiple symbiotic execution rounds to eliminate potential SM
resource contention among kernels. The term symbiosis [20]
is used to refer the effectiveness of co-executing varied thread
blocks from multi-kernels to achieve overall performance im-
provement, due to the elimination of SM resource conflic-
tion. To theoretically study the relative synergy among
kernels that are launched within close proximity of each
other, we define necessary resource utilization metrics for
computing the extent to which kernels are symbiotic. A
multi-threading model is presented to capture the utiliza-
tion of compute instruction throughput and global mem-
ory bandwidth from multiple kernels and further utilized to
derive the benefit of kernel symbiosis. Based on the the-

oretical modeling analysis, we propose a concurrent kernel
symbiotic algorithm that reschedules the kernel launch order
based on the symbiosis among kernels. The algorithm is de-
signed to maximize the SM resource usage of each execution
round as well as to appropriately balance the throughputs
between compute instructions and global memory accesses.
In other words, it can potentially optimize the performance
and energy consumption by improving the GPU utilization
among kernels. We therefore conduct a series of experiments
by utilizing a single node of our Cray XK7 supercomputer
with the latest NVIDIA K20 GPU. With different appli-
cation benchmarks, our experimental results demonstrate
that the proposed symbiotic algorithm is able to derive a
kernel order schedule with near-optimal performance and
energy results within all possible kernel orderings (the so-
lution space). Furthermore, we experimentally study the
impact of DVFS on concurrent kernel workloads and find
that the best performance and run-time energy consumption
comes from the highest GPU frequency. Thus, the proposed
scheduling approach can potentially avoid over-clocking the
GPU by still achieving an improved performance and energy
efficiency compared with a random kernel schedule. To the
best of our knowledge, our approach is the first to provide a
performance/energy-aware solution for concurrent GPU ker-
nels through kernel reordering and symbiosis. Moreover, the
proposed work also has the potentials to impact the design
of future GPU architecture and work distributor.

The rest of this paper is organized as the following: Sec-
tion 2 provides an overview of the related work. Section 3
introduces a brief background of concurrent kernel execution
and DVFS. Section 4 provides the resource metric modeling
analysis as well as the detailed description of the proposed
symbiotic algorithm. Section 5 presents the experimental
results and further discussions, followed by the conclusion
in Section 6.

2. RELATED WORK
There are several streams of research endeavors target-

ing at improving GPU resource utilization for the pur-
pose of performance and power/energy optimization, respec-
tively. However, researchers have overlooked the fact that
the launch order of concurrent GPU kernels significantly af-
fects the GPU SM resource utilization among multiple kernel
blocks. In other words, it is counter-intuitive that the order
of issuing concurrent kernels can affect the performance and
energy consumption. A recent study [11] reported that the
effect of kernel launch order on the performance side (total
execution time) is trivial. However, their conclusion was er-
roneous because it was based on identical kernels differing
only in the number of thread blocks (grid size) within each
experiment. This “non-commutative concurrency” has only
very recently been mentioned in [18] for GPUs. While their
work follows a different approach through source-to-source
transformation of kernels into kernels into elastic versions,
our symbiotic algorithm solution identifies the source of the
problem and requires little programming effort. As our
method is mainly focused on reducing GPU resource compe-
tition among GPU kernels, similar research such as [6] also
identifies the necessity to co-execute kernels with opposing
resource boundaries (compute/memory). With a different
focus, they primarily studied the possible performance gain
with the kernel-merge approach specifically for OpenCL [10]
kernels, due to OpenCL’s lack of concurrent kernel support.



On the CPU side, [19] and [20] brought in the term“symbio-
sis”from the biology field and presented several predictors to
possibly reduce microprocessor resource contention among
time-slices of multiple OS workloads. While their studies
are primarily concerned with co-executing time-slices of OS
workloads on Simultaneous Multi-Threading (SMT) micro-
processors, their experiments simply analyzed several CPU
performance counters as the basis of co-executing workload
time-slices. Note that we here merely borrow the term sym-
biosis and look at a completely different problem on how to
efficiently co-schedule concurrent GPU kernels.
Several previous works have also studied possible opti-

mization techniques for GPU energy improvement. Simi-
larly as [6], [21] proposed a kernel-fusion method to fuse
independent kernels to reduce energy consumption by im-
proving GPU utilization. However, fusion/merging kernels
requires kernel source code modification and imposes non-
negligible overheads. Thus programmability and portability
can be the one of the main issues, especially considering
that modern GPU provides features such as concurrent ker-
nel execution. [4] studied the energy consumption of single
CUDA kernels with varied thread topology. Even though
not directly stated, their results demonstrated that energy
consumption can be improved by increasing the number of
warps on the SM (warp occupancy) through changing the
thread topology (different grid and block sizes). Studies
such as [5] and [9] investigated the possible energy behavior
with DVFS. [5] studied the effect of DVFS on the energy
consumption for the latest K20 GPU. While only single ker-
nel execution scenarios were studied, their work found that
the highest clock setting on the K20 brings the best energy
efficiency. Similarly, [9] experimentally analyzed DVFS for
both compute and memory-bound kernels on an older GTX
280 GPU and observed that scaling down the GPU core fre-
quency can save energy for memory-bound kernels. Further-
more, both [8] and [14] proposed the detailed GPU power
modeling by using the performance counters and provided
us with some optimization thoughts on the aspect of en-
ergy saving and future work. However, it is worth pointing
out that none of these previous works has provided per-
formance/energy optimization solution under the context
of concurrent GPU kernels. We therefore believe that the
work we present in this paper is the first to provide a con-
current kernel reordering/symbiosis solution aiming at opti-
mizations on both performance and energy consumption.

3. BACKGROUND
Modern GPUs such as the NVIDIA Kepler K20 are com-

posed of 13 SMs, each of which further consists 192 single-
precision CUDA cores (SPs) and 64 double-precision units.
Each SM executes one or more thread blocks simultaneously
(up to 16 for Kepler) depending on the SM resource usages of
a given SM. These SM resources include the shared memory
usage; register usage of each thread and the total number of
warps (a group of 32 threads) within the block. Note that
warps are the atomic scheduling units within the SM. While
multiple warps schedulers (4 for Kepler) are presented in
each SM, each warp scheduler is composed of two instruc-
tion dispatch units, each of which issues one warp instruc-
tion per clock cycle. Since each SM has a limited number
of registers, a fixed size of shared memory and a maximum
number of warps that can co-exist and be scheduled, only
multiple thread blocks meeting these resource constraints

Table 1: Memory and GPU Frequencies Supported by K20

Global Memory
Clocks (MHz)

Possible GPU Clocks (MHz) Un-
der the Global Memory Clock

2600 (Default) 758, 705 (Default), 666, 640, 614
324 324

can be scheduled within a single SM.
Concurrent kernel execution provided by NVIDIA’s Ke-

pler and Fermi devices allows thread blocks from multiple
kernels to be simultaneously executed on an SM. With a
fixed kernel launch order sequence specified by the program-
mer using CUDA streams, the GPU work distributor pro-
cesses through the kernels sequentially and assign the thread
blocks on the SMs under a round-robin fashion until one
SM resource limit is met. The remaining thread blocks are
left for execution in the following execution rounds until all
blocks are scheduled on the SMs. For a given single ker-
nel or multiple kernels consisting of identical thread blocks
(the number of blocks from each kernel does not need to be
the same, note that this is also the only scenario studied
and concluded by [11]), since each block requests identical
amount of SM resources, the launch order does not affect
the SM resource contention behaviors within each execution
round. However, in the scenario of multiple non-identical
kernels, which is usually the case, kernel launch order de-
termines the consecutive thread blocks and thus the SM re-
source contention behavior. Therefore, we focus our analysis
on finding the optimal kernel order, which minimizes the SM
resource contention within each execution round. Note that,
if the total number of blocks from all kernels does not ex-
ceed the number of SMs, the kernel launch order does not
affect the SM resource utilization. In other words, there is
no resource contention among blocks since each block has
a dedicated SM. However, this scenario heavily underuti-
lizes the GPU and therefore will not be considered in our
optimization analysis.

For Fermi or earlier GPU architectures, SMs and SPs op-
erate at different clocks while the clock of SPs generally dou-
bles the clock of SMs. For the latest Kepler GPU architec-
ture, SMs and SPs operate at the same frequency with many
more SPs integrated into a single SM. Therefore, the Kepler
architecture further expands the parallelism within each SM
and thus greatly increases the available SM resources. Cur-
rent DVFS technique provided by NVIDIA allows program-
mers to adjust the application clock settings for both GPU
and global memory. As shown in Table 1, under two dif-
ferent memory clock states, only a few corresponding GPU
clocks are supported for the latest Tesla K20. By using
NVML API [16], the clock settings can be preset for a given
GPU context (program). However, it is not yet possible to
fine-control the frequencies within a CUDA program.

4. SYMBIOTIC SCHEDULING AND OPTI-

MIZATION
In this section, we are primarily focused on analyzing

the SM resource utilization behavior of concurrent kernels.
Since the optimization objective is to improve potential SM
resource utilization when thread blocks from multiple ker-
nels are presented, we focus our analysis on the following
discussed two aspects. On one hand, due to the native
multi-threading and high memory throughput architecture
of GPUs, the utilization of compute instruction throughput



Table 2: Parameters Defined For Modeling Analysis and Algo-
rithm

Symbol Definition ∗

NSM The # of SMs in the GPU
Nreg SM The # of registers in each SM
Sshm SM The size of shared memory in each SM
Nwarps SM The maximum # of warps allowed in each SM
Ntblk SM The maximum # of thread blocks allowed in each SM
IPCsp # of single-precision instructions per clock cycle as-

suming there is no memory latency for each SM
IPCdp # of double-precision instructions per clock cycle as-

suming there is no memory latency for each SM
IPCmem # of memory instructions per clock cycle for each SM
Bmax mem The maximum global memory bandwidth (byte/cycle)
Ugpu b The optimum GPU utilization balance

Ntblk i The # of thread blocks for kernel i
Nthd per tblk i The # of threads per block for kernel i
Ninst i The # of instructions for kernel i
Nreg i The # of registers for kernel i
Nshm i The size of shared memory used by kernel i
Nwarp i The # of warps for kernel i
Nwarp SM i The # of warps per SM for kernel i
Ntblk SM i The average # of thread blocks per SM for kernel i
Rsp i The single-precision instruction ratio for kernel i
Rdp i The double-precision instruction ratio for kernel i
Rmem i The memory instruction ratio for kernel i
Nmem i The average memory access size (byte) for kernel i
Bmem i The memory bandwidth (byte/cycle) for kernel i
Tavg data i The average data access latency (cycle) for kernel i
IPCmax i The # of compute instruction (per SM, including sin-

gle and double precision) per cycle on average for ker-
nel i assuming there is no memory latency

IPCmax r The # of compute instruction (per SM, including sin-
gle and double precision) per cycle on average for ex-
ecution round r assuming there is no memory latency

Uipc i The compute instruction throughput (IPC) utilization
for kernel i

Umemb i The memory bandwidth utilization for kernel i
Uipc r The IPC utilization for execution round r
Umemb r The memory bandwidth utilization for execution

round r
Ugpu b i The GPU utilization balance for kernel i
Ugpu b r The GPU utilization balance for execution round r
Ugpu b devlim The Deviation limit on the GPU utilization balance

∗

The upper parameters are constant for a given GPU, whereas the
remaining parameters are application dependent.

(from many threads) as well as the global memory band-
width are inter-correlated and need to be balanced. In
other words, unbalanced utilizations can result in either
memory-bound or compute-bound behavior. Therefore, co-
scheduling kernels with opposing compute/memory bound-
aries can improve and balance both compute and memory
throughputs. On the other hand, optimizing kernel co-
schedules to utilize all GPU device (SM) resources including
shared memory, registers and co-existing warps can increase
the total number of warps within each execution round (warp
occupancy) as well as possibly reduce the number of execu-
tion rounds. Therefore, we here initially present a multi-
threading model to capture the utilizations of both compute
instruction throughput and memory bandwidth. The mod-
eling analysis is further utilized in the symbiotic algorithm
as one of the decision-making factors.

4.1 Modeling Analysis on Compute/Memory
Utilization and Balance for Concurrent
Kernels

As each SM of the GPU can keep track of many threads
within an execution round, the very low context-switch over-

head among threads allows the execution of compute in-
structions from many threads to hide the global memory
access latency. Thus, under concurrent kernel execution,
different thread blocks (from different kernels) with varied
ratios between the number of compute and memory instruc-
tions are to be executed within each required SM execution
round. By extending the multi-threading principles studied
by [7], we here derive a GPU utilization model to predict
the utilizations of both compute instruction throughput and
memory bandwidth as well as the GPU utilization balance,
which is the metric defined to measure the ratio between the
utilizations of compute instruction throughput and memory
bandwidth. As Table 2 defines necessary parameters for our
modeling analysis, we initially analyze the scenario with a
single kernel i to be executed and further extend the analy-
sis to cover an execution round with multiple kernels. Note
that we focus our analysis on a single SM due to the SPMD
model adopted by GPUs. We also assume that there is no
dependency among all threads and context-switch overhead
among threads is negligible.

For a given kernel i composed of memory, single-precision
and double-precision instructions, a thread need to stall
when executing a memory instruction so that other threads
can switch in. Assuming Rmem i+Rsp i+Rdp i=1, for every
1/Rmem i instructions on average, a thread needs to stall to
wait for the global memory access. With the multi-threading
architecture of each SM, stalled threads are filled with other
threads executing compute instructions. Since the average
maximum Instruction Per Cycle (IPC) for compute instruc-
tions can be derived from (1), for each SM, the number of
extra threads required to switch in to fully hide the data
access latency is Tavg data i · Rmem i · IPCmax i. Note that
Tavg data i defines the average number of clock cycles to ac-
cess the global memory. As one of our purposes to conduct
the multi-threading modeling is to demonstrate a simple way
of deriving the compute instruction throughput utilization
Uipc i, here for simplicity, we do not take the impact of cache
on Tavg data i into consideration.

IPCmax i =
Rsp i + Rdp i + Rmem i

Rsp i/IPCsp + Rdp i/IPCdp + Rmem i/IPCmem

=
1

Rsp i/IPCsp + Rdp i/IPCdp + Rmem i/IPCmem

(1)

Considering the current thread issuing the memory instruc-
tion along with all other additional threads needed in order
to fully hide memory latency, a total number of (Tavg data i ·

Rmem i · IPCmax i + 1) · NSM threads will satisfy the mem-
ory latency hiding requirement and thus achieve IPCmax i

theoretically. Therefore, based on the number of threads
requested by kernel i, which equals to Ntblk i · Nthd per tblk i,
compute (IPC) utilization of kernel i can be derived from
(2). Note that here we assume that kernel i can be fit within
a single execution round.

Uipc i = MIN

(

Ntblk i · Nthd per tblk i

(Tavg data i · Rmem i · IPCmax i + 1) · NSM
, 1

)

(2)
For the memory bandwidth of kernel i, Rmem i ·Ninst i mem-
ory instructions need to request Rmem i ·Ninst i ·Nmem i bytes
of data within Ninst i

IPCmax i·Uipc i·NSM
cycles. Therefore Bmem i can

be derived with (3). Accordingly, the utilization of memory



bandwidth for kernel i, Umemb i, can be calculated using (4).

Bmem i =
Rmem i · Ninst i · Nmem i · IPCmax i · Uipc i · NSM

Ninst i

= Rmem i · Nmem i · IPCmax i · Uipc i · NSM (3)

Umemb i =
Bmem i

Bmax mem

=
Rmem i · Nmem i · IPCmax i · Uipc i · NSM

Bmax mem
(4)

Furthermore, to demonstrate the balance between the uti-
lizations of compute throughput and memory bandwidth,
we use the metric Ugpu b i and derive it with (5).

Ugpu b i =
Uipc i

Umemb i
=

Bmax mem

Rmem i · Nmem i · IPCmax i · NSM
(5)

In our modeling analysis, we are mostly interested in Ugpu b i

and will further use it as one symbiosis metric in our al-
gorithm. While Ugpu b i is able to demonstrate the com-
pute/memory utilization boundaries of each kernel, (kernel
i is memory-bound when Ugpu b i < 1 and vice versa.) cor-
relating and combining the metric of Ugpu b i from multi-
ple kernels (further defined as Ugpu b r) for each execution
round helps us better understand the overall compute and
memory utilization balance when kernels are concurrently
executed. It also provides us insights on co-scheduling ker-
nels with opposing resource requirements. We therefore ex-
tend the modeling analysis to multiple kernels and are fo-
cused on the compute/memory utilization analysis for a sin-
gle execution round composed of multiple kernels. This is
because thread blocks from multiple kernels are executed
under the multi-threading model for each execution round.
Therefore, assuming m kernels can be executed within an
execution round, IPCmax r can be derived with (6) by con-
sidering Ninst i of each kernel within the execution round. By
following (5) and combining the contribution of each kernel,
the compute/memory utilization balance for a specific exe-
cution round, Ugpu b r, can be derived using (7). Note that
Uipc r can be derived similarly as (2) for multiple kernels.
Since we are primarily interested in studying Ugpu b r, which
is not directly correlated to Uipc r similar as (5), the detailed
deriving equation for Uipc r is not discussed here.

IPCmax r =

∑

m

i=1
Ninst i

∑

m

i=1

(

Rsp i/IPCsp + Rdp i/IPCdp

+ Rmem i/IPCmem

)

· Ninst i

(6)

Ugpu b r =
Bmax mem ·

∑

m

i=1
Ninst i

IPCmax r · NSM ·

∑

m

i=1
Rmem i · Ninst i · Nmem i

(7)

4.2 Optimization Strategies
Since our optimization goal is mainly focused on improv-

ing the GPU resource utilization, we concentrate on two
utilization aspects while setting the optimization unit to
be each execution round. This is because kernel blocks
are co-executed on SMs through multiple consecutive ex-
ecution rounds. The previously discussed multi-threading
model captures the utilization balance of compute instruc-
tion throughput and memory bandwidth within each execu-
tion round. By considering the analyzed utilization balance,
one of our optimization strategies is to optimize each exe-
cution round with the minimum difference in the utilization

ratios of both compute and memory bandwidth. This is due
to the fact that a kernel or an execution round profiled as ei-
ther compute or memory-bound generally has the underuti-
lized memory/compute resource, which can greatly impact
the overall performance as well as energy consumption.

Based on the previous modeling analysis, in order to im-
prove the utilization of either compute throughput or mem-
ory bandwidth, more corresponding instructions need to
be provided by more threads within the execution round.
Therefore, we focus the other optimization strategy on im-
proving the number of warps (threads) that can be co-
executed. Under the current GPU architecture, the number
of threads blocks (from multiple kernels) that can be ex-
ecuted within each execution round is limited by the SM
hardware resource limitations including Nreg SM, Sshm SM,
Nwarps SM and Ntblk SM as defined in Table 2. In other words,
for each execution round, meeting either one of these re-
source limitations will block further thread blocks to be
scheduled in. As we discussed earlier, for a sequence of
concurrent kernels with varied profiles, different grid/block
configurations and the amount of shared memory requested
by each kernel determines the number of execution rounds
as well as the number of different blocks within each execu-
tion round. Therefore, consecutive kernels competing for the
same resource (for example, two consecutive kernels both re-
questing a large shared memory size) can be delayed with
extra execution rounds. The resource underutilization can
happen when any of the consecutive kernels barely requires
other SM resources. Thus, we believe a fundamental solution
to tackle this problem without complicated kernel source
modification is to design an algorithm which can derive an
SM resource-optimized kernel launch order with balanced
utilization of compute throughput and memory bandwidth.

4.3 Concurrent Kernel Symbiotic Algorithm
The fundamental concept of scheduling kernel launch or-

der allows each kernel to be co-executed with different other
kernels within each execution round. Therefore, two or more
kernels with opposing resource requirements can be mutu-
ally beneficial in terms of resource exploitation. While the
term Symbiosis is defined as the mutually beneficial living
together of two dissimilar organisms in close proximity [19],
we here adapt this term to refer the improvements of the SM
resource utilization by co-scheduling thread blocks from two
or more kernels. As a result, possible reduction on both exe-
cution time and energy consumption can be achieved. Here
we present and implement a resource-aware symbiotic algo-
rithm that provides a suitable launch order for a sequence
of concurrent kernels. One fundamental symbiosis consid-
eration is to maximize the number of kernels that can be
executed within a single execution round. In other words,
this allows a possibly large number of threads for each SM
to schedule and execute simultaneously in each execution
round. In other words, our desired algorithm should max-
imally eliminate kernel blocks’ confliction on the SM hard-
ware resources and thus improve the warp occupancy of each
execution round. The other optimization consideration fo-
cuses on balancing the utilization of compute throughput
and memory bandwidth of a given execution round. In other
words, we desire an algorithm that can schedule the launch
order of kernels so that each execution round is symbioti-
cally optimized with balanced compute/memory utilization
and eliminated SM hardware resource confliction.



Input: the set of Nknl kernels (K ) with profiling results (PR):
Ntblk i, Nreg i, Nshm i, Nwarp i, Ugpu b i

Output: Kernel order from symbiotically optimized Rd1 to Rdr

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Denote Rdr to be the set storing symbiotically optimized kernel
order within execution round r ; r=0
SymbiosisScoreMatrix[ ][ ]=SymbiosisScoreGen(K, K, PR)
while K != null do

5: r++ ⊲ Counting towards the next execution round
Within K, find kernel: Ka,Kb with the highest score in Sym-

biosisScoreMatrix[ ][ ]
Push Ka,Kb into Rdr (using the decreasing order of Nshm a,

Nshm b) and remove Ka and Kb from K
Kcomb=ProfileCombine(Ka,Kb)
for All kernels Kr (from K ) whose utilized SM resource can

fit within Rdr do
10: SymbiosisScoreVec[ ]=SymbiosisScoreGen(Kcomb, Kr, PR)

Push Kc with the highest score in SymbiosisScoreVec[ ]
into Rdr (Sort by Nshm c, Nshm comb with decreasing order)

Kcomb=ProfileCombine(Kcomb,Kc) and remove Kc from K

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
function SymbiosisScoreGen(KM, KN, PR) ⊲ KM & KN are
two kernel sets

15: for All kernels Ki within KM do
for All kernels Kj within KN do

if Ki and Kj cannot fit within an execution round then
S[i][j] = 0

else

S[i][j] += max{
Nshm SM−Nshm i−Nshm j

Nshm SM
, 0}

20: S[i][j] += max{
Nreg SM−Nreg i−Nreg j

Nreg SM
, 0}

S[i][j] += max{
Nwarp SM−Nwarp i−Nwarp j

Nwarp SM
, 0}

S[i][j] += max{
Ntblk SM−Ntblk SM i−Ntblk SM j

Ntblk SM
, 0}

if Ugpu b i≤Ugpu b≤Ugpu b j or Ugpu b j≤Ugpu b≤Ugpu b i

then
if Ugpu b comb(i,j) = Ugpu b then

25: S[i][j]+= 1 ⊲ Ugpu b comb(i,j) is the combined
utilization balance

if Ugpu b comb(i,j) > Ugpu b then

S[i][j]+= max{(1 −
Ugpu b comb(i,j)

Ugpu b·Ugpu b devlim
), 0} ⊲

Ugpu b devlim set the upper limit on Ugpu b comb(i,j)

if Ugpu b comb(i,j) < Ugpu b then

S[i][j]+= max{(1−
Ugpu b

Ugpu b comb(i,j)·Ugpu b devlim
), 0}

⊲ Ugpu b devlim set the lower limit on Ugpu b comb(i,j)

return S[ ][ ]
30: end function

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
function ProfileCombine(Ka, Kb)

Nshm comb=Nshm a+Nshm b;
Nreg comb=Nreg a+Nreg b;

35: Nwarp comb=Nwarp a+Nwarp b;
Ntblk comb=Ntblk a+Ntblk b;
Ntblk SM comb=Ntblk SM a+Ntblk SM b;

Ugpu b comb(a,b) =
Bmax mem·

∑
i=a,b Ninst i

IPCmax r·NSM·

∑
i=a,b Rmem i·Ninst i·Nmem i

⊲

Derived from Equation (7)
return Kcomb ⊲ Virtual “kernel” with combined profile

40: end function

Figure 1: Pseudocode: Concurrent Kernel Symbiotic Algorithm

Figure 1 presents the pseudocode of the proposed sym-
biotic heuristic, which is based on greedy method and im-
plemented with C. All symbols used in the algorithm are
defined in Table 2. The algorithm sequentially selects ker-
nels based on a pre-calculated Symbiosis Score. Function
SymbiosisScoreGen(KM, KN, PR) computes the score be-
tween every kernel pair taken from the set KM and KN re-
spectively. The resultant score matrix is two dimensional
or one dimensional depending on the input dimensions. For
every kernel pair, the resulting SM hardware resources that
remain available add to the score, shown in lines 19-22 in
Figure 1. For all kernels to be scheduled, kernel pairs re-

sulting in a lower and balanced usage of all four resource
metrics are calculated with the highest Symbiosis Score.
This allows more subsequent kernels to co-execute within
the same execution round. On the other hand, a score com-
ponent is also given by comparing the combined GPU re-
source utilization balance Ugpu b comb(i,j) with the optimum
(desired) balance Ugpu b. Ugpu b comb(i,j) is derived in function
ProfileCombine(Ka, Kb) according to Equation (7) from the
previous modeling analysis. The score decision is only con-
sidered when both kernels are of the opposing resource (com-
pute/memory) characteristics. (For example, Ki is compute-
bound whileKj is memory-bound.) Here we set a customized
deviation limit Ugpu b devlim to denote the maximum number
of times that Ugpu b comb(i,j) is greater or smaller than Ugpu b.
In other words, a score of zero is given if Ugpu b devlim is ex-
ceeded on either side. Otherwise, an extra Symbiosis Score
is given as shown in lines 23-29 based on the closeness of
Ugpu b comb(i,j) to the optimum balance requirement Ugpu b.

The main algorithm takes the set of concurrent kernels to
be reordered along with required profiling results as inputs.
(Profiling results are collected through the CUDA profiler).
Initially, the SymbiosisScoreMatrix is built to analyze the
pair-wise resource-based Symbiosis Score among all kernels.
The algorithm continues for each execution round r, the pair
of kernel with the highest Symbiosis Score is selected for
symbiosis within current execution round r, denoted by the
set Rdr. Note that for each symbiotic kernel pair, we order
the pair decreasingly by the shared memory usage since this
allows the kernel with more Nshm i to release the resource
sooner. In order to evaluate the symbiosis of current kernel
pair with other unscheduled kernels if resource allows, the
kernel pair is virtually combined by profile into a single vir-
tual kernel Kcomb with the function ProfileCombine(). The
virtual kernel Kcomb tracks multiple resource utilizations of
current execution round, which is taken into consideration
when choosing the next kernel for symbiosis. Therefore, a
single dimension matrix SymbiosisScoreVec[ ] in line 10 is
created to demonstrate the Symbiosis Score between cur-
rent execution round and all unscheduled kernels. Kernels
continue to be incorporated into the round r as long as the
SM hardware resource permits until a new execution round
r+1 needs to be opened. The algorithm repeats until all ker-
nels are scheduled into Rdr and outputs the kernel launch
schedule from Rd1 to Rdr that are symbiotically optimized.

5. EXPERIMENTAL RESULTS
In this section, we use a series of application benchmarks

with varied profiles to demonstrate the improvements of ex-
ecution time and energy consumption through the proposed
symbiotic algorithm. All experiments are conducted under
a single GPU computing node of our Cray XK7 supercom-
puter. The GPU node of Cray XK7 consists of an NVIDIA
Tesla K20 GPU, a single socket AMD Opteron 6272 with
16 cores @2.1GHz and 16GB system memory. The NVIDIA
K20 GPU is composed of 13 SMs @705 MHz with 4.8GB
global memory @2600 MHz and allows up to 32 concurrent
kernels to be executed. All benchmark results are collected
under Cray Linux environment with CUDA 5.0. All resource
metrics are experimentally collected by CUDA profiler for
each kernel. Note that all the constant parameters from
upper side of Table 2 are accordingly derived for K20 as
the following [17]: NSM=13; Nreg SM=64K; Sshm SM=48K;
Nwarps SM=64; Ntblk SM=16; IPCsp=6; IPCdp=2; IPCmem=1;
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Figure 5: Energy: EpGrid-6
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Figure 6: Performance: BsBlk-6
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Figure 7: Energy: BsBlk-6

Table 3: Benchmark Profiles

Experiment Constant
Metrics

Variables Across Kernels

EpShm-6 Ugpu b i=0.224,
Ntblk i=26,
Nthd per tblk i=128

Nshm i = 12K, 16K, 20K, 22K, 26K,
48K

EpGrid-6 Ugpu b i=0.224,
Nshm i = 0,
Nthd per tblk i=128

Nwarp SM i = 8, 16, 24, 32, 40, 48
(Ntblk i = 26, 52, 78, 204, 130, 156)

BsBlk-6 Ugpu b i=1.361,
Nshm i = 0,
Ntblk i=26

Nwarp SM i = 4, 8, 12, 16, 32, 64
(Nthd per tblk i = 64, 128, 256, 512,
768, 1024)

EpBsWarp-6 Nshm i = 0 3 EP kernels with Nwarp SM i=8,
Ugpu b i=0.224,
3 BS kernels with Nwarp SM i=24,
Ugpu b i=1.361

EpBsShm-6 — 3 EP with Nshm i=16K,24K,48K
3 BS with Nshm i=16K,24K,48K

EpBsEsSw-8 — EP, BS, ES and SW kernels, 2 each

Bmax mem=302 Bytes/cycle. In our experiments, we use
Ugpu b=1 as the targeting optimum GPU utilization balance.
For power measurement, we utilize the on-board power

measurement feature of the K20 with NVML[16] support.
NVML provides the programmers with the API to check
current power draw from the GPU sensor. Here we use a sin-
gle POSIX thread (Pthread) that keeps polling the current
power draw with a preset frequency (100Hz in our experi-
ments) during the period of kernel execution. The Pthread
also accumulates the total energy consumption over the time
of concurrent kernel execution. We will mainly use the met-
ric of total energy consumption for further analysis. On the
performance side, we are mainly focused on the total execu-
tion time of a given concurrent kernel launch order.

5.1 Effectiveness of the Symbiotic Algorithm
on Performance and Energy Optimization

To demonstrate the achievable reduction on both execu-
tion time and energy consumption of a kernel order with our
symbiotic algorithm, all of our following experiments evalu-
ate the concurrent execution and corresponding energy con-
sumption of all possible kernel orderings. In other words,
we conduct our experiment within the permutation (solu-
tion) space of kernel launch ordering and find the ranking
of the kernel order given by our algorithm in terms of per-
formance and energy consumption respectively. Initially, to
demonstrate the effectiveness of the proposed algorithm on
different resource metrics, we conduct five experiments, each
of which consists of six concurrent kernels. We use NAS par-
allel Benchmarks (NPB) kernel EP [12] (M=24, Ugpu b i<1)
and the European option pricing benchmark BlackScholes
(BS) [3] (4M options, Ugpu b i>1) to represent memory-
bound and compute-bound respectively. The benchmark
profile of each experiment is listed in Table 3. Figure 2
to Figure 13 show the performance (execution time) and en-
ergy consumption (mJoules) for the permutation space of all
six benchmarks. The performance and energy consumption
of all possible sequences for each experiment are ranked with
the execution time for each of the figures. As shown from
Figure 2 to Figure 13, we are able to observe that the to-
tal energy consumption in general increases proportionally
with the execution time. Therefore, the kernel symbiosis
provided by our algorithm optimizes performance and en-
ergy simultaneously. Detailed results of each benchmark are
explain as the following.

• Single Application (constant Ugpu b i), varying shared
memory usage only : The experiment EpShm-6 con-
sists of six EP kernels that varies only the shared mem-
ory usage. We use EpShm-6 to demonstrate the algo-
rithm’s effectiveness on shared memory resource con-
flicts among kernels. Figure 2 plots the performance
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Figure 13: Energy: EpBsEsSw-8

of EpShm-6 ’s permutation space ranked by the total
execution time while Figure 3 demonstrated the mea-
sured total energy consumption of each correspond-
ing sequence of Figure 2. Both figures demonstrate
that our algorithm can produce the concurrent kernel
launch schedule with 96.1% and 96.4% percentile rank
for performance and energy respectively.

• Single Application (Constant Ugpu b i), varying warp
usage only : The experiment EpGrid-6 varies the warp
usage by only changing the kernel grid size among ker-
nels whereas BsBlk-6 instead varies only the block size
alone. Our purpose of using both EpGrid-6 and BsBlk-
6 is to demonstrate the impact of kernel launch order
on both performance and energy consumption when
kernel warp usage is varied by grid and block size re-
spectively.

– Through varying grid sizes: As shown in Figure
4 and 5, for EpGrid-6, both performance and en-
ergy stay approximately the same for all possi-
ble launch orders. This is because all six kernels
have identical thread blocks. As discussed ear-
lier in Section 3, the composition of thread blocks
for each execution round as well as the number of
rounds are the same regardless of the launch or-
der. Thus, results and ranking shown in Figure 4
and 5 are merely to demonstrate this special sce-
nario that kernel launch order does not matter.

– Through varying block sizes: However, under var-
ied warp usage of BsBlk-6 due to different block
sizes, both performance and energy are greatly
impacted by the launch order, as shown in Figure
6 and 7. In this case, our algorithm provides the
kernel order with 100% percentile rank in perfor-

mance and 99.6% in energy.

• Two Applications, varying warp usage only across the
two applications: The next experiment, EpBsWarp-6
tests two different kernels with different warp usage
and compute/memory utilization balance (Ugpu b i).
Figure 8 and 9 demonstrate that our algorithm pro-
vides the performance and energy percentile rank of
97.1% and 99.2% for EpBsWarp-6.

• Two Applications, varying warp usage across the two
applications; varying shared memory usage across the
3 kernels of each application: In the EpBsShm-6
experiment, the effect of varying the shared mem-
ory is additionally further factored in compared with
EpBsWarp-6. As shown in Figure 10 and 11, the se-
quence delivered by the algorithm achieves 97.9% and
95.8% rank in performance and energy respectively.

• Four Applications, varying all metrics across 8 ker-
nels: We further conduct a more generic benchmark
with four applications from different fields: the Elec-
trostatics (ES) algorithm (40K atoms) from Visual
Molecular Dynamics [2], the Smith Waterman algo-
rithm (SW) plus BS and EP. The experiment of
EpBsEsSw-8 is composed of 2 kernels of each applica-
tion with a total of 8 kernels. Each kernel of the eight
is varied with each other for all metrics including Nreg i,
Nshm i, Nwarp i (thus Nwarp SM i), Ntblk SM i and Ugpu b i.
Both Figure 12 and 13 demonstrate near-optimal per-
formance and energy results for EpBsEsSw-8 due to
the kernel symbiosis provided by our algorithm. In
other words, within the 40,320 possible kernel launch
orders, the proposed algorithm provides the sequence
with 99.7% performance rank and 99.4% energy rank.
Additionally, Figure 14 and 15 depict the distribution
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Table 4: Comparisons of Benchmark Results

Experiment
Performance Gain Energy Improvement

Dev.
from
optimal

Over
me-
dian

Over
worst

Dev.
from
optimal

Over
me-
dian

Over
worst

EpShm-6 1.64% 1.204 1.424 12.88% 1.263 1.598
BsBlk-6 0.00% 2.047 4.627 0.26% 2.738 5.231
EpBsWarp-6 0.15% 1.064 1.142 0.11% 1.023 1.320
EpBsShm-6 1.09% 1.070 1.202 5.54% 1.118 1.293
EpBsEsSw-8 4.43% 1.201 1.826 9.61% 1.292 2.021

of GPU time and energy consumption respectively. By
comparing the algorithm sequence and the median se-
quence, we demonstrate that our algorithm has 50%
of the probability to provide 20.1% performance gain
and 29.2% reduction on energy consumption.

Table 4 further summarizes the performance and energy
result comparisons for all the five benchmarks that are
within the scope of our algorithm. In Table 4, we com-
pare the algorithm results with the optimal (best ranking),
median ranking and worst ranking sequence for both perfor-
mance and energy. The deviation from the optimal, the per-
formance/energy improvement over the median and worst
results are presented. As we can see, all experiments demon-
strate the near-optimal scheduling results of the proposed
algorithm on reducing both execution time and total en-
ergy consumption for concurrent kernels, with up to 4.63
speedups and 5.23 times improvement on energy saving.

5.2 The Impact of DVFS on Performance and
Energy for Concurrent Kernels

We further conduct a series of benchmarks to experimen-
tally study the impact of frequency scaling on both perfor-
mance and energy consumption. It is worth noting that

our study is primarily focused on the impact of DVFS over
concurrent many kernels instead of the single kernel sce-
nario discussed in [5]. As Table 1 describes the supported
GPU/memory frequencies that can be set through NVML
[16], we carry out the similar performance and energy eval-
uations for two previously mentioned benchmarks: EpShm-
6 (memory-bound) and BsBlk-6 (compute-bound). Both
benchmarks are evaluated through the kernel order solution
space for performance and energy consumption under all
supported frequencies. Note that the GPU clock needs to
be set according to the two supported memory clocks as
shown in Table 1. Figure 16 and 17 respectively plot the
execution time and energy consumption of EpShm-6 under
all possible GPU frequencies, while Figure 18 and 19 show
the similar plots for BsBlk-6. From Figure 16 to 19, we
observe that the highest GPU frequency produces the best
performance and lowest energy consumption in general for
both compute-bound and memory-bound workloads com-
posed of concurrent kernels. While lowering the GPU fre-
quency can help reducing the power, it instead increases the
total energy consumption for concurrent kernels. Note that
due to the limited GPU/memory clock pairs of K20, shown
in Table 1, lowering the GPU clock to 324MHz forces the
memory clock to be lowered to 324MHz as well. In other
words, currently it is not possible to separately lower the
GPU or memory frequency alone to 324MHz without affect-
ing the other. This is why we are not able to provide the
DVFS setting of high GPU clock / low memory clock for
compute-bound benchmark (BsBlk-6) and low GPU clock
(324MHz) / high memory clock for memory-bound bench-
mark (EpShm-6) as well. Therefore, due to the potential
DVFS limitation, over-clocking on the K20 in general pro-
vides the best energy efficiency for concurrent kernel exe-
cution. For instance, over-clocking from 705MHz (stock) to
758MHz achieves 7.06% and 7.18% performance gain with



2.7% and 2.1% energy saving for the algorithm-derived ker-
nel sequence of EpShm-6 and BsBlk-6 respectively.
As a summary, to optimize for both performance and

energy consumption of concurrent kernels, we demonstrate
that the proposed symbiotic algorithm can provide the near-
optimal kernel launch schedule with significant performance
gain and energy saving compared with a naive schedule.
With the focus on the execution multiple concurrent ker-
nels, our experimental results also demonstrate that over-
clocking through DVFS further improves both performance
and energy consumption while under-clocking surprisingly
does the opposite due to the limited clock settings through
DVFS. While our DVFS experimental study can help the
programmers make optimization decisions under specific
performance and energy constraints, the proposed symbiosis
approach can be effortlessly adopted by GPU programmers
with minimal code change to achieve optimized performance
and energy consumption for concurrent kernels as well as
make over-clocking unnecessary.

6. CONCLUSION
In this paper, we presented an algorithm-based perfor-

mance and energy optimization technique, which is geared
towards the computing phase of concurrent kernels in the
GPU-based computing, We focused our analysis on reduc-
ing the GPU resource conflicts among kernels and developed
necessary resource metrics with modeling analysis. Based on
the analysis, a concurrent kernel symbiotic algorithm is pro-
posed to derive a performance/energy-aware kernel launch
schedule. The proposed algorithm is able to achieve an im-
proved overall GPU SM resource utilization among all con-
current kernels with a well-balanced utilization on both the
compute instruction throughput and memory bandwidth.
The experimental results and analysis on the latest NVIDIA
K20 GPU demonstrated that our algorithm is able to pro-
vide the kernel launch schedule with significant performance
and energy benefits with near-optimal results. Further ex-
perimental analysis by applying DVFS on concurrent ker-
nels provides the programmers with optimization insights
on its possible impacts on performance and energy consump-
tion. To the best of our knowledge, the work we have pre-
sented in this paper is the first to provide a kernel reordering
and symbiosis solution for concurrent GPU kernels and our
algorithm-based approach can be readily introduced into ex-
isting GPU programming environments with minimal risk.
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