
50 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 67, NO. 1, JANUARY 2020

Statistical Method to Extract Radiation-Induced
Multiple-Cell Upsets in SRAM-Based FPGAs

Andrés Pérez-Celis , Student Member, IEEE, and Michael J. Wirthlin , Senior Member, IEEE

Abstract— Radiation-induced multiple-cell upsets (MCUs) are
a concern because they can overcome the protection of error
correction code and triplicated designs. Extracting MCU data
from radiation tests is helpful to perform more accurate fault
injection tests, where MCUs could be simulated with the injection
of bits based on the MCUs shapes, sizes, and frequencies. This
article presents a statistical method to extract MCU shapes
and frequencies from components with no information regard-
ing their physical layout. The proposed method can be used
to extract MCU information from BRAM and CRAM alike.
The results show the MCU data for three families of Xilinx
field-programmable gate arrays (FPGAs).

Index Terms— Field-programmable gate arrays (FPGAs),
multiple-bit upset (MBU), multiple-cell upset (MCU), radiation
testing, single-event effects (SEEs).

I. INTRODUCTION

ELECTRONIC circuits are susceptible to radiation-
induced effects known as single-event effects (SEEs) [1].

These events occur when a particle strikes the circuit transfer-
ring some of its energy. The transferred energy can be suffi-
cient to cause a change in the state of a memory element [2].
This change of state is known as a single-event upset (SEU)
and can cause a variety of problems in electronic circuits.

As transistors shrink, the possibility that an SEU upsets
multiple cells increases [3]. This could be a result of charge
collection in adjacent transistors that are physically closer to
each other [4]. With transistors decreasing in size, a charged
particle is more likely to generate charge in an area that will
allow more than one transistor to collect some of the charges.
Other characteristics that cause more than one cell to upset
with the interaction of a single particle are the fabrication
process [5] and the indirect charge collection in the transistor
wells [6].

SEEs that affect more than one cell are known as
multiple-cell upsets (MCUs). MCUs are a concern for error
correction codes (ECCs) since they affect several bits of a

Manuscript received October 22, 2019; revised November 18, 2019;
accepted November 18, 2019. Date of publication November 21, 2019;
date of current version January 29, 2020. This work was supported in part
by the I/UCRC Program of the National Science Foundation under Grant
1738550 and in part by the Los Alamos Neutron Science Center under Grant
NS-2018-7895-A.

The authors are with the Department of Electrical and Computer
Engineering, Brigham Young University, Provo, UT 84602 USA, and also
with the NSF Center for Space, High-Performance, and Resilient Computing
(SHREC) (e-mail: pcelis@byu.edu; wirthlin@byu.edu).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNS.2019.2955006

word overcoming the ECC protection [7]. They also affect
triplicated designs—MCUs have been shown to be the leading
cause of failures exhibited on circuits protected with triplicated
hardware redundancy [8]. Evaluating the impact that MCUs
have on an application is needed.

Extracting MCU data from accelerated radiation tests can
be used to fulfill this goal. Namely, MCU data can be used
to perform more accurate fault injection tests, where MCUs
could be simulated by injecting bits based on the MCUs
shapes, sizes, and frequencies. Thus, MCU data can be used
to evaluate memory devices, such as field-programmable gate
arrays (FPGAs), with fault injection tests. These tests will
closely simulate the results of an accelerated radiation test.

This article presents an improved method to extract the
MCUs distribution of SRAM FPGAs from radiation data with
no information about the physical layout. This method extends
the previous work in [9] with three specific contributions.
First, this article introduces an improved technique for extract-
ing MCUs with prefiltering data, providing a larger search
window, and uses a statistical approach for identifying MCU
patterns. Second, this improved technique has been used to
extract MCU data from a neutron radiation test data with
three different FPGA families: the Xilinx 7-Series, (28 nm),
the UltraScale (22 nm), and UltraScale+ (16 nm). Third,
this technique was applied to measure MCUs within the
configuration memory (CRAM) of all three FPGA families
and the block memory (BRAM) of the 7-Series FPGA.

II. BACKGROUND

A static radiation test for devices containing a dense array
of a static memory (such as an SRAM or an FPGA) typically
involves two primary steps. First, the device under test (DUT)
is irradiated to induce SEUs within the memory array. Second,
the radiation beam is stopped, and the contents of the memory
state are read back from the test apparatus. The contents of the
memory are compared against the known memory pattern to
determine how many memory cells (n) were upset during the
radiation phase. The sensitive cross section of the memories
can then be estimated by dividing the number of upset memory
cells by the total radiation fluence (number of particles per
cm2) applied during the test

σ = n

fluence
. (1)

In addition to computing the memory cell cross section, sta-
tic radiation tests typically collect and record a list of specific
memory cells that have been upset during a test run. This list

0018-9499 c� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Brigham Young University. Downloaded on April 07,2021 at 14:54:28 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0328-6713
https://orcid.org/0000-0003-0931-4260

PÉREZ-CELIS AND WIRTHLIN: STATISTICAL METHOD TO EXTRACT RADIATION-INDUCED MCUs IN SRAM-BASED FPGAs 51

Fig. 1. Examples of the types of upsets experienced in an SRAM FPGA.
The black cell is an SCU, the blue cells show an MCU, the two red cells are
a CSEU, and the green cells represent a micro-SEFI.

of upset cells can be analyzed to obtain more insight into
the behavior of the device in a radiation field. For example,
this list can be analyzed to measure the radiation sensitivity
of different memory cell types within the device, identify the
device-specific failure modes, or extract the location-specific
behavior within the device.

The list of upset cells from a radiation test can also be
used to extract multicell upsets. If the physical layout of the
device is known, MCUs can be easily extracted from this list
by grouping upset memory cells that are physically adjacent to
the device. If the physical layout of the device is not known,
MCUs extraction is more difficult and involves statistical and
pattern analysis of the upset data [7], [9]. The primary goal
of the MCU extraction process described in this article is to
analyze a list of individual cell upsets that occur within a
radiation test experiment and decide which of them, if any,
upset together as a part of a single-event multicell upset.

Extracting MCUs from radiation test data cannot be done
by simply finding cells that are “logically” adjacent. Mem-
ory cells are uniquely identified through the use of a log-
ical address that specifies the row, column, frame, bit, or
other device-specific characteristic manner of organizing the
memory cells. Although a logical address provides a unique
identifier for each cell in the device, this logical address does
not necessarily provide any insight into the physical location of
the cell or its relationship to other logically adjacent neighbors.

For the Xilinx FPGAs used in this study, the logical address
of a configuration memory cell (CRAM) and block memory
cell (BRAM) is specified by its frame number and bit number
within the given frame. The number of bits per frame varies
between devices from different families.1 Fig. 1 demonstrates
a figurative 2-D logical address space of the configuration
memory of a Xilinx FPGA with frames indicated as rows and
bits as the columns.

Most of the cells that upset in a radiation test are single-cell
upsets (SCUs). These upsets involve a single particle causing a
single cell to upset (represented by the black cell labeled “1”
in Fig. 1). These upsets involve one and only one cell and

1The Xilinx 7-Series FPGA has 3232 b/frame, the Ultrascale FPGA has
3936 b/frame, and the Ultrascale+ has 2976 b/frame.

have no impact on other cells in the device. Some events in
the radiation test will upset multiple cells from a single particle
and are called multicell upsets or MCUs. An example of an
MCU event is shown by the blue cells labeled “2” in Fig. 1.
This example demonstrates that the bits associated with this
single-event MCU are not necessarily logically adjacent.

Fig. 1 demonstrates two other upset types that make it more
difficult to infer MCUs from the radiation test data. The first
upset type is called coincident SEUs (CSEUs) and occurs
when two independent SCUs are found in logically adjacent
or nearby locations (represented by the red cells labeled “3”
in Fig. 1). While CSEUs are rare, the probability of occurrence
increases significantly as the number of upset cells in the
radiation test data increases. The presence of CSEUs will
negatively affect the quality of the MCU inference.

The second type of upsets is called micro-Single-Event
Functional Interrupts (micro-SEFIs). A micro-SEFI is an SEU
within a single bit that indirectly causes multiple-related cells
to change their value. For example, upsetting a register that
controls the reset signal of a multibit register will result in
many cells appearing in the radiation test upset data. An exam-
ple of a micro-SEFI is represented by the eight green cells
labeled “4” in Fig. 1. Micro-SEFI events have been observed in
SRAM FPGAs in the form of BRAM column upsets [10] and
full LUT contents upsets [11]. The presence of micro-SEFIs
within the radiation test will skew the radiation test data
by introducing false upset patterns. Failing to identify and
disregard micro-SEFIs could lead to inaccurate identification
of MCUs.

III. OVERVIEW OF MCU EXTRACTION PROCESS

The method proposed in this article to extract MCUs from a
list of unique upset bits involves identifying common patterns
on the positional difference of upsets. These common patterns
are then combined to identify statistically likely MCUs from
radiation test data. This method consists of the following steps.

1) Gather SRAM upset data.
2) Filter contamination on the data.
3) Compute the offsets between upsets and generate a

histogram of offsets.
4) Select the most-common offsets.
5) Reconstruct MCUs based on most-common offsets.

Each step of this method is described in more detail within
the remainder of this section.

A. Data Collection

The first step of our statistical method is to collect upset
data from static designs. During this step, we continuously
perform a readback of the device and compare it to a golden
copy to identify upsets on the configuration memory (CRAM)
and BRAM cells. Then, upsets on the CRAM are scrubbed,
while upsets on BRAM are updated in the golden copy to
avoid reporting duplicated upsets. The time it takes to perform
a readback, a comparison with the golden copy, and the
correction of the upsets is known as a scrub cycle.

Authorized licensed use limited to: Brigham Young University. Downloaded on April 07,2021 at 14:54:28 UTC from IEEE Xplore. Restrictions apply.

52 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 67, NO. 1, JANUARY 2020

TABLE I

UPSET INFORMATION FROM LANSCE NEUTRON TESTING

The collected data show the logical addresses where the
upsets occurred. Table I shows an example of the data col-
lected from a neutron test performed at the Los Alamos
Neutron Science Center (LANSCE) in December 2018. The
data are comprised of the frame number, the word, the bit,
the current scrub cycle, and an ID for each upset within a scrub
cycle. Having the data separated by the scrub cycle makes it
easier to manage since an MCU cannot span across multiple
scrub cycles because an MCU is caused by a single particle
that upsets the content of more than one memory cell.

It is important to ensure that the fewest number of upsets
occur during each scrub cycle [12]. As the number of
upsets per scrub cycle increases, the probability of having
CSEUs also increases. Conversely, the probability of a CSEU
decreases as the size of the configuration memory increases.
We can compute the probability of a CSEU occurring in a
scrub cycle based on the average number of upsets per scrub
cycle, the size of the memory array, and the size of the CSEU.
The expression to compute the probability of a 2-b CSEU is

P(CSEU2) = 2

N − 1
×

(
u

2

)
(2)

where P(CSEU2) is the probability of at least one given CSEU
of size two, N is the number of cells in the memory array,
which could be BRAM or CRAM, and u is the average number
of upsets per scrub cycle.

For example, the probability of having a given size-2 CSEU
[P(CSEU2)] on the CRAM of the Artix-7 200t device is
3.4 × 10−8, assuming that on average the device upset two
times every nonempty scrub cycle, which lasts 0.25 s, and
considering that the Artix-7 200t has 59 145 600 bits2 on its
configuration memory (CRAM). P(CSEU2) can be seen as
the probability that u upsets will generate a size-2 CSEU in a
grid with N cells. The same approach can be used to compute
the probability of size-2 CSEU for BRAM upsets.

B. Data Filtering

Wirthlin et al. [9] did not describe any type of filtering
applied to their data; however, the process of filtering data
is needed to remove contamination caused by micro-SEFIs.
In the presence of a micro-SEFI, readbacks can show hundreds
or thousands of upsets per cycle. These scrub cycles have

2The number of CRAM bits was obtained by performing a readback of each
type-0 and type-1 frame. A total of 18 308 type 0 frames were identified. Out
of those, eight were dummy frames. Finally, the remaining number of frames
(18 300) was multiplied by 3232, which is the number of bits per frame.

TABLE II

PROBABILITY OF EVENTS IN A SCRUB CYCLE WITH λ = 2

little information on MCUs and should be disregarded in the
remainder of the process.

Since beam testing is a random process, any memory
location has the same probability of having an upset. Experi-
ments of such nature follow a Poisson distribution [13]. The
probability of an event that follows the Poisson distribution is:

p(x) = λx e−λ

x ! (3)

where x is an integer of the number of events, P(x) is the
probability of exactly x events happening, and λ is the mean
of the distribution or expected number of events.

Our approach to filtering the data comes from computing
the number of expected upsets per scrub cycle. This number
can be computed multiplying the number of upsets per second
by the seconds in a scrub cycle. Then, the expected number of
upsets per scrub cycle is used as the mean of a Poisson distrib-
uted process. The Poisson distribution shows the probability
of having x number of upsets on a scrub cycle.

Consider the following example, where an FPGA experi-
ences two upsets per scrub cycle, and the probabilities for x
events happening in a scrub cycle are shown in Table II. As the
expected number of upsets increases, the probability of such a
number occurring decreases. This is important because it gives
us statistical support to identify anomalies, including micro-
SEFIs, on scrub cycles that report a large number of upsets.

Using this calculation, it is possible to identify scrub cycles
corresponding to outliers, i.e., scrub cycles with an improbable
number of upsets. If the data are not filtered, SEFIs could
hide the actual patterns of MCUs. Using this filtering process,
we found that the XCZU9EG device experienced several
micro-SEFIs in the configuration memory that would have
disrupted the identification of MCUs (refer to Section VI for
more details). The cross section for these events is reported in
this article.

C. Computation of Offsets

The offset computation begins with the translation of the
upset information into a coordinate system. The proposed
method looks into the whole memory array, instead of only
computing offsets in a restricted window as performed in
[9]. Our proposed coordinate system consists of (x, y), where
x is the frame number in decimal and y is computed as
32 × word + bit. The method then iterates through each upset
computing the positional difference, i.e., offset, for each pair
of upsets within the same scrub cycle. Table III shows an
example with neutron data for the XCKU040 device.

Authorized licensed use limited to: Brigham Young University. Downloaded on April 07,2021 at 14:54:28 UTC from IEEE Xplore. Restrictions apply.

PÉREZ-CELIS AND WIRTHLIN: STATISTICAL METHOD TO EXTRACT RADIATION-INDUCED MCUs IN SRAM-BASED FPGAs 53

TABLE III

UPSET INFORMATION EXTRACTED FROM LANSCE
NEUTRON TESTING FOR THE XCKU040

Each offset is added to a histogram containing the frequency
of each offset. To avoid duplicates, we only consider offsets
with a positive x value. The resulting histogram is used in the
next step.

D. Selection of Most Common Offsets

The histogram contains the frequency of each offset that
occurs during the test. The most common offsets (MCOs) are
chosen for the MCU reconstruction based on their frequency.
The more times an offset happens the more likely that it is the
effect of a single particle. In the past, the MCOs to reconstruct
MCUs have been chosen arbitrarily [9], [7]. For this step, our
method uses the Poisson statistics to choose the MCOs.

Relying on the nature of radiation testing following a
Poisson distribution, offsets should have the same frequency
in the histogram. Offsets that appear at a higher frequency
are flagged as MCOs. Those MCOs comprise the adjacency
model.

The MCOs are chosen based on the probability that a given
offset should not appear repeatedly due to the random nature
of beam testing. Using the average number of upsets per
nonempty scrub cycles and the Poisson statistics, we compute
the probability that a scrub cycle has two or more upsets. Since
this probability is high, we know that is highly likely that any
shape we only see once has been randomly generated and it is
not an MCU. Given that we see a shape once, the probability
of seeing it again is modeled by (2).

E. Reconstruction of MCUs

The reconstruction is an iterative process that goes through
each scrub cycle and groups any two bits that have the same
offset as any of the MCOs. Consider the example in Fig. 2,
where a scrub cycle experienced five upsets. Also, consider
that the adjacency model has only two MCOs: (0,−1) and
(1, 0). Fig. 2(a) shows the data in the scrub cycle. The
algorithm takes the first MCO on the adjacency model, (0,−1)
for this case, and groups the bits into MCUs. The result is
shown in Fig. 2(b). The algorithm goes through all the MCOs
of the adjacency model and groups the upsets into MCUs.
For this example, the resulting MCUs are shown in Fig. 2(c).
Then, the algorithm continues with the next scrub cycle.

IV. EXPERIMENTAL SETUP

The proposed technique was used to extract MCU data and
identify micro-SEFIs on data from multiple neutron tests. The
CRAM data used include three FPGAs from Xilinx: Artix-7

Fig. 2. Steps on the reconstruction of MCUs from upset data. (a) Five upsets
that happened within a scrub cycle. (b) Grouping of MCUs after processing
the first MCO (0, −1). (c) Two MCUs after running through all MCOs.

TABLE IV

SUMMARY OF CRAM TESTING SETUP FOR THREE DIFFERENT DEVICES

TABLE V

SPECIFICATIONS FOR BRAM EXPERIMENT

Fig. 3. XCKU040 aligned with the neutron beam.

(XC7A200T), Kintex Ultrascale (XCKU040), and an MPSOC
featuring the Zynq Ultrascale+ (XCZU9EG). BRAM data
used the XC7A200T device with all the BRAMs instantiated.

We tested the three FPGAs from Xilinx at the LANSCE
in December 2018. Fig. 3 shows the KCU105 board setup
inside the facility. Each board was connected to a JTAG
Configuration Manager (JCM) [14]. The JCM was used to

Authorized licensed use limited to: Brigham Young University. Downloaded on April 07,2021 at 14:54:28 UTC from IEEE Xplore. Restrictions apply.

54 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 67, NO. 1, JANUARY 2020

TABLE VI

AVERAGE UPSETS PER NONZERO SCRUB CYCLE AND PROBABILITY OF CSEU FOR NEUTRON DATA GATHERED AT LANSCE

Fig. 4. Heat map of patterns for the XCZU9EG data before filtering. Blue
color indicates few repetitions of the offset, while red color indicates that the
offset happened more frequently.

configure the device, perform readbacks of the configuration
memory and BRAMs, and scrub the configuration memory.
The JCM will reconfigure the device in case an upset cannot
be fixed. In addition, a timer power cycles the board every
hour.

The JCM is capable of using JTAG and SMAP. On average,
the JCM performed a readback and a scrub cycle every 0.25 s
for the Artix-7 (with SMAP), 4 s for the XCKU040 (with
JTAG), and 9 s for the XCZU9EG (with JTAG). The average
flux was 8.22 ×105 n/cm2/s. A summary of the testing setup,
along with the CRAM data for the three families, is shown
in Table IV. BRAM data for the seven-series device is shown
in Table V.

V. CRAM RESULTS

The cutoff to filter contamination was computed using the
average number of upsets for each nonzero scrub cycle as the
mean of a Poisson distribution. The cutoff was set to the first
value that yields a probability of 10−10 or less. The mean
value used and the cutoff value are shown in the second and
third columns of Table VI, respectively.

The filtering process is quite important to ensure accurate
results. Consider Fig. 4 that shows an unfiltered heat map for
radiation testing data on the XCZU9EG part. Each square on
the heat map represents an upset that happened x frames and
y bits away from the origin (depicted as a black square). The
two long red lines on the left and the blocks of bits circled in
green are contamination.

Fig. 5 shows the heat map after filtering the data. The
heat map becomes much cleaner with all the red blocks of
contamination gone. Thus, the heat map shows the patterns

Fig. 5. Heat map of patterns for the XCZU9EG data after filtering. Blue
color indicates few repetitions of the offset, while red color indicates that the
offset happened more frequently.

TABLE VII

NUMBER OF MCUS AND SCUS FOR EACH DEVICE

TABLE VIII

PERCENTAGES OF MCUS FOR EACH DEVICE

that are likely followed by MCUs. All the blocks that appeared
before filtering the data jeopardize the identification of MCUs,
as they introduce fake counts for the selection of the patterns.

After filtering the data, the offsets are computed. Then,
the MCOs are chosen based on the probability that a given
offset should not be seen frequently due to the random nature
of beam testing. Using the average number of upsets per
nonempty scrub cycles and Poisson statistics, we compute
the probability that a scrub cycle has two or more upsets.
Since this probability is high, it is highly likely that any shape
that appeared once has been randomly generated and it is not
an MCU. Given that we see a shape once, the probability of
seeing it again is modeled by 2. The results for each device
are shown in Table VI. The highest probability of seeing any
one shape twice is 3.4 × 10−8 for the Artix-7 200t. Since
the probability of having the same shape twice is low, all the

Authorized licensed use limited to: Brigham Young University. Downloaded on April 07,2021 at 14:54:28 UTC from IEEE Xplore. Restrictions apply.

PÉREZ-CELIS AND WIRTHLIN: STATISTICAL METHOD TO EXTRACT RADIATION-INDUCED MCUs IN SRAM-BASED FPGAs 55

TABLE IX

COMPARISON BETWEEN THE PROPOSED TECHNIQUE AND THE TECHNIQUE IN [9]

shapes with more than one occurrence are used for the MCU
reconstruction.

To further stress the importance of filtering, we com-
pute the MCOs for the unfiltered and filtered data shown
in Figs. 4 and 5. The unfiltered data show that the four MCOs
are (0, −1), (0, −2), (0, −3), and (0, −4). The filtered data
show that the four MCOs are (1, 0), (1, −1), (3, −2), (1, 1).
This is important because MCOs that should be disregarded
can cause an increased number of MCUs or a merge of MCUs
into bigger ones.

After choosing the MCOs, the MCUs are reconstructed with
our proposed method. The number of MCUs and SEUs are
shown in Table VII. For the XC7A200T device, 27.7% of
events were MCUs, for the XCKU040 14.59% and for the
XCZU9EG 5.59%.

Table VIII breaks down the MCUs based on their sizes,
showing the percentages for each size. An interesting behavior
was experienced by the XC7A200T device. An unexpected
number of events of size greater than five were identified.
Roughly 18% are 6-bit MCUs, and only 2% are larger.
Although we are unable to determine the exact cause for this
unexpected result, we think that a micro-SEFI affecting 6 b
or the organization of the CRAM is possible explanations.
However, more experiments are needed to uncover the reason
behind this result. With the current data, we can say that from
the decreasing behavior of the number of events with the size
of the events, we would expect to have a percentage of 6-b
MCUs within the range of the percentage of 5- and 7-b MCUs,
and this is between 1.82% and 1.47%.

A. CRAM Result Comparison

This section compares the MCU distributions obtained with
the proposed technique and the technique detailed in [9]. The
results in Table IX show the number of identified MCUs,
the percentage of events that were MCUs, and the distribution
of those MCUs based on their size.

The method proposed in this article identifies a higher
number of MCUs; this is mostly because it is not restricted by
a window of 32 × 32 bits. Another factor is the usage of more
MCOs. Having more MCOs increases the number of MCUs,
especially 2-b MCUs because more shapes can be considered
in the reconstruction of MCUs. However, it also changes the
distribution because with more MCOs, some of the small-size
MCUs identified with [9] become part of a larger MCU. In [9],
and only the first four MCOs were used to generate the shapes.

Finally, the distributions change due to the contamination of
micro-SEFI events. This is more prominent on the XCZU9EG

TABLE X

SUMMARY OF THE BRAM ACQUIRED DATA

TABLE XI

NUMBER OF DETECTED MCUS AND CORRESPONDING

SCRUB CYCLES WITH EXACTLY n UPSETS

results since the largest event found on the device was 320-b
long, while in the other devices, it was only 36-b long. Without
filtering the data, the MCOs changed, drastically modifying the
distribution of MCUs. The unfiltered data show only 6.64%
of 2-b MCUs and a high value of 22.89% for MCUs of seven
or more bits.

VI. BRAM RESULTS

All 365 BRAMs in the XC7A200T were instantiated for
a static neutron test. A summary of the acquired data is
presented in Table X.

Almost 3000 upsets were experienced in the BRAMs. All
of those were used to perform the MCU data extraction. With
the average upsets per nonzero scrub cycle, we computed
the probability that an MCU identified with the proposed
technique was a CSEU. The almost nonexistent probability
(see Table X) shows that the identification of MCUs was
successful.

Table XI shows, in the second row, the size of each of the
207 MCUs identified. The third row shows the number of
scrub cycles with n upsets and a percentage of how many of
those scrub cycles had an MCU. Some of the scrub cycles
might have unidentified MCUs; however, there is not enough
information since the shape of the upsets comprising the
possible MCU only happened once. In the future, we will

Authorized licensed use limited to: Brigham Young University. Downloaded on April 07,2021 at 14:54:28 UTC from IEEE Xplore. Restrictions apply.

56 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 67, NO. 1, JANUARY 2020

develop a rigorous approach to determine when sufficient data
to classify MCUs are acquired.

VII. CONCLUSION

MCUs are a concern for ECC-protected devices and for
triplicated designs. This article shows a statistical technique
that successfully identifies MCUs from radiation testing data.
The method reduces the contamination of the data by iden-
tifying micro-SEFIs providing more accurate identification of
MCUs. Likewise, more accurate results are achieved with the
statistical identification of the MCOs used in the reconstruction
of MCUS. Applying this method to radiation test enables the
use of the extracted information to generate improved fault
injection campaigns where MCUs could be injected either
based on their distribution or at an accelerated pace. Moreover,
researchers will have the option to control the size, shape, and
frequency of the injected MCU.

As future work, we plan on investigating the extraction of
MCUs using laser testing over a range of angles. Likewise,
it will be interesting to explore the accuracy of our method for
different duration of the scrub cycles. Finally, we will develop
a more rigorous approach for determining when sufficient data
are gathered to classify MCUs.

REFERENCES

[1] M. Ceschia et al., “Identification and classification of single-event upsets
in the configuration memory of SRAM-based FPGAs,” IEEE Trans.
Nucl. Sci., vol. 50, no. 6, pp. 2088–2094, Dec. 2003.

[2] H. M. Quinn, P. Graham, K. Morgan, J. Krone, M. P. Caffrey, and
M. J. Wirthlin, “An introduction to radiation-induced failure modes and
related mitigation methods for Xilinx SRAM FPGAs,” in Proc. ERSA,
2008, pp. 139–145.

[3] N. Seifert et al., “Radiation-induced soft error rates of advanced
CMOS bulk devices,” in Proc. IEEE Int. Rel. Phys. Symp., Mar. 2006,
pp. 217–225.

[4] L. T. Clark and S. Shambhulingaiah, “Methodical design approaches
to radiation effects analysis and mitigation in flip-flop circuits,”
in Proc. IEEE Comput. Soc. Annu. Symp. VLSI, Jul. 2014,
pp. 595–600.

[5] P. E. Dodd, F. W. Sexton, and P. S. Winokur, “Three-dimensional
simulation of charge collection and multiple-bit upset in Si
devices,” IEEE Trans. Nucl. Sci., vol. 41, no. 6, pp. 2005–2017,
Dec. 1994.

[6] J. D. Black et al., “Characterizing SRAM single event upset in terms
of single and multiple node charge collection,” IEEE Trans. Nucl. Sci.,
vol. 55, no. 6, pp. 2943–2947, Dec. 2008.

[7] J. A. Clemente et al., “Statistical anomalies of bitflips in SRAMs to
discriminate SBUs from MCUs,” IEEE Trans. Nucl. Sci., vol. 63, no. 4,
pp. 2087–2094, Aug. 2016.

[8] M. J. Cannon, A. M. Keller, H. C. Rowberry, C. A. Thurlow,
A. Pérez-Celis, and M. J. Wirthlin, “Strategies for removing common
mode failures from TMR designs deployed on SRAM FPGAs,” IEEE
Trans. Nucl. Sci., vol. 66, no. 1, pp. 207–215, Jan. 2019.

[9] M. Wirthlin, D. Lee, G. Swift, and H. Quinn, “A method and case
study on identifying physically adjacent multiple-cell upsets using
28-nm, interleaved and SECDED-protected arrays,” IEEE Trans. Nucl.
Sci., vol. 61, no. 6, pp. 3080–3087, Dec. 2014.

[10] G. M. Swift et al., “Dynamic SEE testing of selected architectural
features of Xilinx 28 nm Virtex-7 FPGAs,” in Proc. RADECS, Oct. 2017,
pp. 544–549.

[11] M. Cannon, A. Pérez-Celis, G. Swift, R. Wong, S.-J. Wen, and
M. Wirthlin, “Move the laser spot, not the DUT: Investigating the new
micro-mirror capability and challenges for localizing SEE sites on large
modern ICs,” in Proc. 17th Eur. Conf. Radiat. Effects Compon. Syst.
(RADECS), Oct. 2017, pp. 126–129.

[12] H. M. Quinn et al., “A test methodology for determining space readiness
of Xilinx SRAM-based FPGA devices and designs,” IEEE Trans.
Instrum. Meas., vol. 58, no. 10, pp. 3380–3395, Oct. 2009.

[13] H. Quinn, “Challenges in testing complex systems,” IEEE Trans. Nucl.
Sci., vol. 61, no. 2, pp. 766–786, Apr. 2014.

[14] A. Gruwell, P. Zabriskie, and M. Wirthlin, “High-speed programmable
FPGA configuration through JTAG,” in Proc. 26th Int. Conf. Field
Program. Logic Appl. (FPL), Aug./Sep. 2016, pp. 1–4.

Authorized licensed use limited to: Brigham Young University. Downloaded on April 07,2021 at 14:54:28 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

