
978-1-5386-2014-4/18/$31.00 ©2018 IEEE

 1

Spacecraft Mission Agent for
Autonomous Robust Task Execution

Antony Gillette*, Brendan O’Connor†, Christopher Wilson*, Alan George*
*NSF SHREC Center, ECE Department,

University of Pittsburgh
4420 Bayard Street, Suite #560, Pittsburgh, PA, 15213

412-383-8142
{antony.gillette, christopher.wilson,

alan.george}@chrec.org

†Emergent Space Technologies
6411 Ivy Lane, Suite 303, Greenbelt, MD, 20770

301-345-1535
brendan.oconnor@emergentspace.com

Abstract—Autonomy in space systems can drastically reduce the
workload of ground crews for satellite missions, especially for
clusters of satellites. Additionally, autonomy can increase the
efficiency of missions by maximizing the utilization of resources
and by rapidly handling any issues that arise without having to
wait for instructions from the ground. This research presents an
agent-based, task-execution approach to onboard spacecraft
autonomy. Instead of the traditional approach requiring
onboard planning and scheduling, this method uses a
combination of constraint and priority parameters associated
with every task to ensure robust task execution with behavior as
intended. Using this method, tasks will only run under safe
conditions (e.g. no conflict with any running tasks), which allows
for conflicting tasks to be scheduled closer together or even
overlapping for lower-priority tasks. This approach manages
the execution of tasks on the timescale of seconds, allowing
conflicting tasks to run sequentially, therefore increasing
productivity if earlier tasks finish ahead of schedule. This
framework leverages the NASA-developed, open-source
projects cFE and PLEXIL and was tested on development
boards comparable to flight hardware.

TABLE OF CONTENTS
1. INTRODUCTION ... 1
2. BACKGROUND... 2
3. RELATED WORK ... 2
4. APPROACH.. 3
5. RESULTS ... 5
6. DISCUSSION .. 6
7. FUTURE WORK ... 6
8. CONCLUSION .. 7
ACKNOWLEDGEMENTS ... 7
REFERENCES .. 7
BIOGRAPHY.. 8

1. INTRODUCTION

There is a growing interest in small spacecraft by commercial
and government organizations to meet critical observations
and measurement requirements. These organizations desire
to use small spacecraft in more sophisticated configurations,
such as constellations and coordinated measurements [1].
Most solitary spacecraft are operated by a ground crew;
however, it is challenging to maintain and manage operations

for clusters of satellites without proportionally increasing the
number of required ground operators. In space systems,
increasing the level of autonomy for a spacecraft, or cluster
of spacecraft, can drastically reduce the workload of ground
crews required for satellite missions. An additional benefit of
autonomy is an increase in the efficiency of missions by
maximizing the utilization of resources and by handling any
issues that arise without having to wait for instructions from
the ground.

This paper presents a simple, yet powerful spacecraft mission
agent, the Spacecraft Mission Agent for Autonomous Robust
Task Execution (SMAARTE), for autonomously managing
the execution of tasks on one or more spacecraft.
Traditionally, autonomy in space systems consists of an
onboard planner used to determine the optimal path to
achieve mission goals and an onboard scheduler used to add
tasks to the spacecraft schedule table according to the
planner’s instructions. Using a planner and scheduler in this
manner results in a schedule that requires replanning and
rescheduling if any problems occur, such as a system
malfunction or a task running longer than expected.
SMAARTE uses a combination of constraints and priorities
to create an agent that can efficiently manage the execution
of tasks and automatically handle issues that arise without
necessarily requiring replanning or rescheduling.

By associating constraint and priority parameters with every
scheduled task, the agent can handle unexpected situations as
they arise using the same procedures as a ground operator.
Time constraints restrict tasks to run during specified time
windows, allowing for flexibility due to delays while also
preventing tasks from running when they are not permitted.
Conflict constraints keep tasks from running if they interfere
with another task (e.g. resource contention or task
dependency). By using these constraints, the spacecraft
schedule can be shifted earlier if allowed by the constraints,
resulting in minimized delay between sequential tasks.
Priority parameters allow tasks to be prioritized based on
sensor results, such as detection of significant science data,
or if any anomalies are detected. Priority parameters can also
be used to override originally planned tasks with higher-
priority tasks (e.g. error handling or maneuvering) and for
determining when it is acceptable to end any conflicting tasks
early. This usage of constraints and priorities simplifies the
construction of an autonomous system that will behave as

 2

desired, and it also facilitates the addition and modification
of tasks from the ground.

The SMAARTE framework was developed as a library,
which allows it to be easily integrated into existing executives
or simply run standalone. SMAARTE was developed and
integrated with both NASA Goddard’s core Flight Executive
(cFE) and NASA Ames’ Plan Execution Interchange
Language (PLEXIL) executive to demonstrate a case study
on hazard detection using a cluster of satellites and
synchronized, camera-event scheduling. In this case study, a
forest-fire event was simulated and the testbed cluster
representing flight hardware performed a synchronized
reaction that was triggered and coordinated. SMAARTE was
also used to demonstrate conflict and priority functionality
for other potential applications.

2. BACKGROUND
The main end goal for this research is to enable autonomous
capabilities for distributed space missions (DSMs). The
SMAARTE framework was built as a component in the
Distributed Automation Suite for Heuristic Execution and
Response (DASHER) project by Emergent Space
Technologies in collaboration with the National Science
Foundation (NSF) Center for Space, High-performance, and
Resilient Computing (SHREC) at the University of
Pittsburgh. DASHER seeks to improve the coordination
between the executive agents on a cluster of satellites while
enabling autonomous operation.

Core Flight Executive (cFE)

To accomplish the goals established by DASHER, the first
design decision made was to use cFE as a base for the project
due to its flight heritage on several missions [2] and wide
community acceptance. An additional benefit of cFE is its
networking capabilities, which include several options such
as the Software Bus Network (SBN) and more recently the
Software Bus Distributed (SBD) [3]. One of the most
attractive features of cFE is the availability of an open-source
release, which makes it one of the few options available for a
standardized flight executive. Various applications are
included with cFE that provide additional functionality such
as a command ingest, telemetry output, and a software bus
for cFE application communication. In addition, cFE works
on top of the OSAL (Operating System Abstraction Layer),
which allows cFE to work on Real-Time Operating Systems
(RTOS) for missions requiring low jitter and determinism.

Planning-Language Selection

After selecting cFE for inclusion in the framework, the next
step was to identify if there was a pre-existing, community-
wide, and decisive planning language that could be used to
facilitate the design of autonomous functionality. After an
extensive literature survey, it was determined that no single
planning language was foremost dominant to flight systems.
Of the planning languages identified, a decision, analysis, and
resolution chart comparing desirable features of a language

(e.g. licensing, build difficulty, etc) was made during the
initial selection phase, shown in Figure 1.

After comparison with the key project goals, many of the
options were eliminated due to critical development
obstructions, such as licensing issues and integration
difficulty. For this reason, these options were not obtained
and tested, resulting in blanks in the chart. Since cFE is open-
source, an accompanying open-source planning language
was naturally preferred to facilitate future code distribution.
The requirement of needing to work on top of cFE also
reduced the viability of options with complex standalone
platforms like the Robot Operating System (ROS)
framework. Also, as the target platform is the ARM processor
architecture, the build complexity was a key factor. In the
concluding analysis, the decision was narrowed down to
PLEXIL and Python (using the Advanced Python Scheduler
module), with PLEXIL eventually being selected due to the
difficulty of formally verifying Python code and in
consideration of the overlapping user base with the space
community for PLEXIL.

Plan Execution Interchange Language (PLEXIL)

PLEXIL is a plan-execution framework with development
led by NASA Ames. The source code is open-source and
publicly accessible through SourceForge [4]. PLEXIL uses
the concept of node trees to represent complex plans. The
deterministic execution of a system can be controlled using a
combination of different types of nodes, node states, and node
transitions. A primary use case for PLEXIL is the
autonomous operation of rovers such as the K10 rover. In the
planning-language survey, PLEXIL won over the other
choices due to its open-source license, simplicity to setup on
the ARM processor architecture, determinism, and formal
verification. More description and detail of PLEXIL can be
found in [5].

3. RELATED WORK
One of the goals in developing the SMAARTE framework
was to provide an alternative approach to traditional
spacecraft autonomy (using onboard planning and
scheduling) by using a simple, agent-based framework with
rules for priority and constraints. Two different approaches
to autonomy using onboard planning and scheduling are

Figure 1. Planning Language Comparison Chart

 3

presented in this section, with comparison to the SMAARTE
framework in the discussion section below.

CASPER and SCL on EO-1

One of the most heavily cited papers in the field of
autonomous spacecraft software describes the considerations
for autonomy on Earth Observing One (EO-1) [6]. EO-1,
which flies in Low Earth Orbit (LEO), was developed to
autonomously detect notable events using onboard image
sensors and appropriately respond with the proper procedure.
Aside from the software used to process images for detecting
interesting phenomena, onboard software was also used for
replanning and execution. EO-1 used the Continuous Activity
Scheduling Planning Execution and Replanning (CASPER)
software to handle planning (on the order of tens of minutes),
and replanning when necessary by using feedback from the
image-processing software. The output from CASPER would
then feed into the Spacecraft Command Language (SCL)
executive, where the appropriate low-level commands would
be robustly executed according to CASPER’s provided plan.

Due to limited CPU resources, it was necessary for CASPER
to vary the resolution of plans depending upon the proximity
of events to the current time. For activities more than a day
in the future, the plan would be abstract and not well defined.
CASPER would then plan these activities at a more detailed
level as they got closer to their intended run time. The amount
of activities EO-1 needed to handle per week was
approximately 7800, which covered around 100 science
observations. This number of activities resulted in detailed
planning being restricted to 6 hours in the future to keep heap
space usage down.

Autonomous Mission Manager

Referencing EO-1’s approach for autonomous capabilities, a
more standardized approach to autonomy, using a modular
autonomy architecture to improve on the reusability of
autonomous capabilities (without being tied to specific
hardware and software) is discussed in [7]. The research
described is for the Autonomous Mission Manager (AMM)
architecture sponsored by the Air Force Research Lab
(AFRL), and it uses a Service-Oriented Architecture (SOA)
to allow software to be partitioned into modules that can
communicate using predefined data interfaces. Like EO-1,
AMM uses CASPER for mission planning but replaces SCL
with an executive provided by the Cooperative Intelligent
Real-Time Control Architecture (CIRCA). AMM also adds a
middleware inter-module messaging system called the
Adaptive, Scalable, Portable Infrastructure for Responsive
Engineering (ASPIRE) framework. The ASPIRE framework
fills a role similar to NASA Goddard’s cFE by providing a
messaging service between components, and it functions as
an application wrapper that allows the software to not be
restricted to a specific system or hardware. The goal of the
AMM architecture is to standardize the data interface
between the components mentioned above.

4. APPROACH
The goal of the SMAARTE framework is to manage the
execution of scheduled and routine tasks while appropriately
handling unexpected events such as hardware and software
malfunctions. There are four main components of the
architecture: (1) A lightweight C++ library of schedule
managing functions (Schedule Manager); (2) PLEXIL Plan
consisting of PLEXIL nodes; (3) PLEXIL Adapter which acts
as the interface between the PLEXIL plan and the rest of the
system; and (4) cFE application which launches PLEXIL and
interacts with the rest of the cFE/cFS system applications.
Figure 2 displays all four components together in a software
diagram with cFE/ES (Executive Services) and cFS/HS
(Health Services) as example applications in the system.

The main operation of the framework relies on tasks with a
standardized format. Tasks can be PLEXIL adapter function
calls, cFE commands, or triggers for external applications.
All tasks include key parameters, such as time constraints
(start/end time), priority levels, and resource requirements.
These tasks are stored in a dynamically sized schedule, which
is controlled by the Schedule Manager component. Tasks can
be added or removed from the schedule by sending
commands to the cFE app via the Software Bus (which can
interact with a cluster through the Software Bus Network,
cFS/SBN), or by reading directly from a file. The task
schedule is routinely processed on an interval dictated by the
PLEXIL plan and, when the current system time passes the
start time parameter, the task is either executed or put on hold
if its required resources are not yet available. After task
execution, the task is either removed, or a new start time
parameter is generated if the task is configured as a routine
task. The following sections describe each of the four main
components of the SMAARTE framework in greater detail.

Schedule Manager

The main component of the SMAARTE framework is the
Schedule Manager. The Schedule Manager allows for the
creation and management of a dynamically sized vector of
tasks. As mentioned previously, each task has its own table

Figure 2. SMAARTE Architecture Diagram

 4

of key parameters (Table 1). Each task is individually
initialized by providing the fields in white. The pid field (in
grey) is added when the task executes, and the task is only
removed from the schedule when the task ends. Currently the
system can only monitor external processes, but a future goal
is to integrate PLEXIL node and cFE application monitoring
functionality. Table 2 provides a more detailed description
for each field.

Table 1. Schedule Manager Task Fields

Type: int pid id start_time

Type: int end_time duration conflict
Type: int priority type routine

Type: string path arg1 arg2
Type: string arg3 arg4 arg5

Table 2. Schedule Manager Field Descriptions

pid The return of the fork function to the parent
when launching the child executable

id The identification number for the Task, also
used to keep track of completed Task entries

start_time The start time of the Task (Unix timestamp,
seconds since Epoch)

end_time The end time of the Task (Unix timestamp,
seconds since Epoch)

duration The expected duration of the Task in seconds

conflict The resources needed for the Task; Tasks with
the same conflict number cannot run together

priority The priority number (higher is more priority), it
determines which Tasks launch first

type
The type of the Task (0 for executable, > 0
corresponds with application-specific
functions)

routine_
interval

The number of seconds to add to the start and
end time of a Task upon execution

path The path to the desired executable, can be
blank if type > 0

argN Arguments to add to the executable or function

Task schedule processing is routinely triggered by a PLEXIL
node in the PLEXIL plan. The PLEXIL node calls a PLEXIL
adapter function, which uses the Schedule Manager
functionality to process the schedule, as well as a queue for
finished tasks. First, all active processes (tasks with pid > 0)
are checked using a non-blocking waitpid call and, if the
task has returned, it checks the exit status and handles it
accordingly. If the task has exited, a cleanup function is
called, which either adds the task’s vector position to the
finished tasks queue or modifies the start and end time
parameters if the task is to be restarted or is a routine task.

After all the ended active processes are handled, the
remaining active processes are checked to monitor resource
usage. The Schedule Manager updates a conflict array, where
each index corresponds to the type of resource being used
(one entry for every type of resource conflict possible), and
the entry in the array is the priority value of the task using the
resource. Typically, this resource would be a sensor (e.g. a
camera) or an application acceleration module, which makes
having one conflict per task suitable for many scenarios. An
approach to handle more complex scenarios including
multiple categories and variable resources is discussed in the
future work section. After creating this array, a separate
conflict array is created for non-active tasks (tasks yet to start
with pid=0). When filling this array, entries are overwritten
if a new task with the same conflict number has a higher
priority.

The schedule is then processed for all non-active tasks. If the
current time is past the end_time field, then it is too late to
execute and the cleanup function is called. If the
start_time field has passed but not end_time, then the
task is executed if the active conflict array does not have an
entry at the index of the current task’s conflict field and if the
current task’s priority is equal to the priority in the index of
the non-active conflict array (and the value is incremented so
another non-active task with the same conflict and priority
values will not also run). If the task cannot run, then it is put
on hold and will keep attempting to run until the task’s end
time is reached. The driving logic behind this method is that,
if there is a conflict, the priority entry will be the task’s
priority, if it is the highest priority task in the schedule for
that conflict. For conflicting tasks with the same priority, the
one higher up in the schedule is executed.

Tasks can be added one at a time through a message queue or
in bulk by reading from an uploaded file. For receiving single
tasks through a message queue, a task constructor is called
with the arguments received. For reading from a file, a
Schedule Manager function takes a text file with human-
readable, space-separated entries as an input and adds each
entry to the schedule.

When functions are called instead of executables (type field
> 0), then in the PLEXIL adapter, a modified form of the task
execution function is used where, instead of forking a new
process, a function is called instead depending upon the type
number. At any time, the current schedule can be printed
using a Schedule Manager print function, which iterates
through the vector of tasks and prints out all the fields space
separated.

PLEXIL Plan

A PLEXIL plan consists of a tree of varying types of nodes
and allows for deterministic execution. Each node has its own
state and is connected to other nodes using one of several
types of transitions available. The PLEXIL plan uses separate
internal variables for its functionality, such as node
conditions, so it needs to interact with the system using the
PLEXIL adapter. The interface to this adapter consists of

 5

either Commands or Lookups. Commands can support a
variable number of arguments and Lookups retrieve variables
initialized as Lookup variables in the adapter. Nodes in
PLEXIL plan files other than the main plan can be used with
the LibraryCall utility.

PLEXIL nodes can be triggered externally by setting external
variables (accessed with Lookups) as the start conditions for
the nodes. In the SMAARTE framework, nodes that should
be controlled by the Schedule Manager need two external
variables in their start condition: an execute boolean and an
end time. Execute is set to 1 when the node needs to be
executed, and reset to 0 when processing the node. The end
time variable is used to reset the execute variable to 0 if the
node’s other start conditions prevent the node from running
before the end time is reached. This method is beneficial
because it adds functionality and can reduce the complexity
of PLEXIL node start conditions. For a given task that has a
specific set of viable time windows, either a PLEXIL node
would need to exist for each window or a single node would
need to have all the windows as conditionals. This method
allows the Schedule Manager to maintain the conditions in a
simple table and simplifies the number of attributes needed
as Lookups in PLEXIL.

PLEXIL Adapter
The PLEXIL Adapter is the interface for PLEXIL to
communicate with the rest of the system. The adapter is
written in C++ and can interact with the system, as well as
use the functions provided by the Schedule Manager to
manage its own internal schedule. During adapter
initialization, all Commands and Lookups are globally
registered and then the base schedule is read from a file using
the Schedule Manager functions. A message queue is then
created for data to be input into the PLEXIL process
(combination of PLEXIL plan and PLEXIL adapter) from
external processes (either cFE or other sources).

SMAARTE cFE Application

cFE is the baseline flight software for the system. Therefore,
PLEXIL is launched from the SMAARTE cFE application,
and all communication options are controlled by cFE
commands.

The communication between PLEXIL and cFE is
accomplished using a message queue, which is also the
communication method of choice within the cFE framework.
This approach was preferable to using semaphores, locks, or
sockets because those methods would either introduce
blocking, or result in potentially non-deterministic outcomes
for the system.

5. RESULTS
To help convey the functionality of the SMAARTE
framework, two main demonstrations were created. The
demonstrations were tested both on PC and on development
boards.

Hardware Configuration

One significant development milestone of the SMAARTE
framework was to provide the functionality necessary to
enable formation-flying SmallSat missions on flight
hardware such as the CSPv1 [8]. To achieve this goal,
software was developed and tested on ZedBoards (FlatSat
development boards for the CSPv1 flight computer as shown
in Figure 3) which use the same SoC (Zynq-7020) as the
CSPv1 including a dual core ARM Cortex-A9 processor.
Testing was performed on Ubuntu14.04 32-bit for the PC and
both ArchLinux and Ubuntu16.04 32-bit for ARM. Multiple
OS were used on the ZedBoards to identify potential
portability concerns and issues.

For testing distributed computing with the SMAARTE
framework, a cluster of eight switch-connected ZedBoards
was assembled. However, for testing convenience and
terminal management, mainly four ZedBoards were used for
all demonstrations (two with ArchLinux and two with
Ubuntu).

Synchronized Event Demonstration

A demonstration for the SMAARTE architecture was
developed based on a use case focusing on event detection
and synchronized response. In this demonstration, one of the
boards randomly generated the detection of an event (such as
a satellite detecting a forest fire). Once the detection event
was generated, the board triggered a camera-synchronization
event (with simulated cameras in the demo). For this
demonstration, each board had the SMAARTE architecture
loaded and running. The only notable difference was that the
leader was monitoring a simulated camera to trigger the
sending of tasks over the network.

In the demonstration, once a random-number generator
reached above a set threshold, a value was set using the
PLEXIL adapter to trigger the PLEXIL plan (through a
Lookup) to call a PLEXIL Command to trigger a camera-
synchronization event. The trigger for synchronization was
routed through the PLEXIL plan to show the data-flow
architecture for a system suitable for more complex
situations. The arguments for the camera-event sync
Command were set in the PLEXIL node to show the usage of
a variable number of arguments in a PLEXIL node

Figure 3. ZedBoard Cluster Testbed

 6

Command. Once the Command was received, the data was
then sent to the other boards, where a camera event would be
scheduled for a particular time stamp (set to five seconds in
the future). The result of this demo was that each board would
print a task execution message at approximately the same
time, five seconds later, with slight deviations due to the
synchronized system time. In a fully developed system,
network communication would be through a cFE/SB
command being sent to the desired board via the SBN or
SBD, but for demonstration simplicity communication was
achieved using the cmdUtil tool packaged with cFE.

Priority and Conflict Demonstration

For the demonstration of priority and conflict functionality,
various small, single-board use cases were developed. For
testing purposes, the sleep system command was used to
simulate long-running processes. To test priority, multiple
sleep commands with the same conflict field and varying
priority fields were added to the schedule with overlapping
time constraints (specifically, three tasks were added with
priority 1, 2, 3, and conflict 1), and it was shown that tasks
would run in the order expected (3 then 2 then 1), with lower-
priority tasks waiting for higher-priority tasks to finish. The
same setup was tested with routine tasks instead and it was
shown that, in the current system, conflict avoidance is
functional but priority is only considered if multiple
conflicting tasks need to start in the same schedule processing
cycle. For priority to matter aside from this case, higher-
priority tasks would need to be able to replace the lower-
priority tasks currently running. This is described further in
the future work section.

Demonstration GUI

A commanding GUI (Figure 4) was built for the demo using
Python Tkinter, which is a lightweight and de-facto standard
for efficient Python GUI development [9]. As opposed to the
more commonly used Qt-based GUI development variants,
Tkinter requires minimal setup and is either included in the
default Python installation or is readily available in most
package managers.

When the GUI initializes, default values are preloaded for the
integer arguments and cmdUtil arguments to simplify the
process of sending custom commands. There are 3 sets of
radial buttons to select before sending a command. The first
set is for absolute/relative time, which determines if the input
start_time/end_time arguments require the current
time to be added to it (i.e. if the user wants to execute a task
30 seconds later without calculating the current time + 30).
The second set determines which executable to launch. If
cmdUtil is selected, the cmdUtil arguments and either
the task arguments or a set of custom arguments are sent
(dependent on the third radial button set) and, if the PLEXIL
message queue option is selected, then only the message
queue arguments are sent using a message queue client
executable for testing.

To send commands to other boards on the network, the only
field that needs to be changed is the host field, and cmdUtil
will automatically route the command to the target assuming
there are no issues with the cluster network configuration.

6. DISCUSSION

The results and testbed demonstrations show that the
SMAARTE framework allows for the robust execution of
tasks. By keeping track of active tasks to prevent conflicts
with new tasks, task execution is not only safer, but also more
reliable because this framework can detect and handle
malfunctions with active tasks. This system, which is based
on tasks waiting on active tasks, allows for the intentional
scheduling of overlapping tasks, and can result in a more
optimal solution than a planner/scheduler approach would be
able to achieve, especially in scenarios where overlapping
tasks finish earlier than expected. By not requiring a large
safety margin to be scheduled between conflicting activities
to account for uncertainty, the system resources can be more
efficiently used, resulting in more science data acquisition
from the mission, as well as the ability to schedule tasks on
the scale of seconds, not minutes. Additionally, although this
system could benefit from onboard planning in terms of
efficiency, it does not require onboard planning, because any
deviation from the uploaded schedule is automatically
handled by conflict checking and executing actions based on
priority. The main challenge with this system, as opposed to
an onboard planning/scheduling approach as employed by
CASPER, is when unexpected situations occur without a
designed solution in the Schedule Manager. The spacecraft
would then need to default to a safe mode, while a planning
approach that considers initial state and goal state may be
able to come up with a solution to achieve the mission goals.

7. FUTURE WORK
The current SMAARTE framework has many potential areas
for further development and functionality enhancements.
Some of these enhancements would be simple to develop yet
powerful additions.

Figure 4. Python Tkinter Commanding GUI

 7

Resource Availability
In the current system, every task is limited to one type of
resource (such as a sensor) due to the current design of the
conflict field. A potential solution for representing usage of
multiple resource categories is to embed the categories into a
base-2 number. For example, in a system with four sensors,
the conflict field of a task requiring the 1st and 4th sensors
would be 10012 = 9. This system would allow for the
representation of 32 distinct categories of resources,
constrained by the size of an unsigned int.

For the representation of variable resources (such as memory
or power), the solution would be to add additional conflict
fields for each variable resource representing the maximum
possible usage of that resource for the task. An additional
check would then be developed to determine the available
system resources before running the task.

Priority Overrides

In the case where a high-priority task needs to run but
conflicts with currently running tasks, the lower-priority
tasks should be preempted (checkpointed or killed), and
potentially restarted afterwards depending upon the situation.
A common use case of this is recovery modes. If the system
is running out of memory or power, this functionality would
allow for the currently active tasks to be processed to analyze
resource usage and recover them appropriately. Another
example is if sudden maneuvering is necessary, all the
sensors and all processes using them can be disabled until the
maneuver is complete.

Malfunction Handling

Currently, the schedule manager functions can check
process-signal returns and detect processes running longer
than estimated, but the method to handle these cases
appropriately needs to be developed. Similar to the previous
example, tasks should likely be killed and potentially
restarted if anything abnormal is detected.

Schedule Analysis

When a schedule is created, due to the task structure
including time constraints and estimated duration, it is
possible to analyze if any tasks would be unable to run due to
conflicts. Problems with the schedule can be determined by
simulating the execution of the Schedule Manager on a faster
time scale. Instead of polling the system time, a simulated
time would be polled instead, and all commands would be
replaced with a sleep command (which would need to use the
same simulated time scale). Using this method, any issues
such as a task not being able to run before its end time, or two
routine tasks conflicting at regular intervals, would be
discovered by checking the resulting logs.

8. CONCLUSION
Adding autonomous capabilities to space systems provides
many benefits, such as decreased ground-crew workload,
increased efficiency, and more dependable systems. The

approach presented in this paper describes a relatively
simplistic framework that provides another option to onboard
autonomy aside from an onboard planner and scheduler.

This framework uses constraint and priority values associated
with every task to create a system that can robustly execute
tasks autonomously. Due to the conflicts between tasks being
clearly defined in this system, the transition between
sequential conflicting tasks can be handled instantly and
automatically without requiring large buffers between
conflicting tasks. By having tasks relate to all other tasks
based on constraints and priority, unexpected delays are
handled based on the design of the system without requiring
a separate phase of replanning and rescheduling.

Because of its integration with cFE and PLEXIL, the
SMAARTE framework can be used to add functionality to an
existing cFE or PLEXIL system while reusing the original
system’s design components. This construction of an
autonomous capable system with open-source components
has the potential to lead to increased collaboration between
members of the space community and reduce the need to
“reinvent the wheel” when it comes to development for new
space missions.

ACKNOWLEDGEMENTS
This research was funded by industry and government
members of the NSF SHREC Center, the National Science
Foundation (NSF) and its I/UCRC Program under Grant Nos.
IIP-1161022 and CNS-1738783, and NASA STTR contract
NNX16CG21P. The authors thank NASA Goddard and
NASA Ames for providing the open-source projects cFE and
PLEXIL, respectively. In addition, the authors thank John
McGreevy from Emergent Space Technologies for
discussions and interactions on several topics.

REFERENCES
[1] Achieving Science with CubeSats: Thinking Inside the

Box, Washington, D.C., USA: National Academy Press,
2000. [Online]. Available: https://www.nap.edu/catalog/
23503/achieving-science-with-cubesats-thinking-inside-
the-box

[2] J. Wilmot, “Implications of responsive space on the
flight software architecture.” Proc. of AIAA Responsive
Space Conference, 2006.

[3] S. Sabogal et al., “SSIVP: Spacecraft Supercomputing
Experiment for STP-H6,” 31st Annu. AIAA/USU Conf.
on Small Satellites, Logan, UT, August 5-10, 2017.

[4] PLEXIL Getting Started. [Online]. Available:
http://plexil.sourceforge.net/wiki/index.php/Main_Page

[5] T. Estlin et al., “Plan Execution Interchange Language
(PLEXIL),” Moffett Field, CA, Tech. Rep. NASA/TM-
2006-213483, Apr. 2006.

[6] S. Chien et al., "Using autonomy flight software to
improve science return on Earth Observing One", J.
Aerosp. Comput. Inf. Commun., vol. 2, no. 4, pp. 196-
216, Apr. 2005.

 8

[7] K. Center et al., "Improving Decision Support Systems
Through Development of a Modular Autonomy
Architecture", Proceedings of the 2012 I-SAIRAS
Conference, Turin, Italy, September 2012

[8] D. Rudolf et al., “CSP: A Multifaceted Hybrid System
for Space Computing,” Proc. of 28th Annual AIAA/USU
Conference on Small Satellites, Logan, UT, August 2-7,
2014

[9] Tkinter – Python Wiki. [Online]. Available:
https://wiki.python.org/moin/TkInter

BIOGRAPHY
Antony Gillette is a doctoral student in
ECE at the University of Pittsburgh. He
is a research assistant of the hybrid
space computing group in the NSF
SHREC Center at Pittsburgh. His
research interests include autonomy,
flight software, and image processing
for space systems.

Brendan O’Connor is the Chief
Software Engineer for Emergent Space
Technologies. He focuses on developing
high availability and autonomous
software systems for space applications.

Christopher Wilson is a doctoral
candidate in ECE at the University of
Florida. He is a research assistant and
team leader of the hybrid space
computing group at the University of
Pittsburgh in the NSF Center for Space,
High-performance, and Resilient
Computing (SHREC) which replaced
the NSF Center for High-performance

Reconfigurable Computing (CHREC). His research interests
include fault-tolerant techniques on hybrid architectures and
radiation effects on commercial devices.

 Alan D. George is Department Chair
and R&H Mickle Endowed Chair in
Electrical and Computer Engineering in
the Swanson School of Engineering at the
University of Pittsburgh. He founded and
directs the NSF Center for Space, High-
performance, and Resilient Computing
(SHREC), which replaced the NSF
Center for High-performance

Reconfigurable Computing (CHREC) in late 2017. Dr.
George's research interests are in advanced architectures,
apps, networks, services, systems, and missions for
reconfigurable, parallel, distributed, and dependable
computing. He is a Fellow of the IEEE.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

