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Abstract—Multi-core systems are now the norm, and recon-
figurable systems have shown substantial benefits over general
purpose ones. This paper presents a combination of the two:
a fully featured reconfigurable multi-core processor based on
the Leon3 processor. The platform has important features like
cache coherency, a fully running modern OS (GNU/Linux) and
each core has a tightly coupled reconfigurable coprocessor unit
attached. This allows the SPARC instruction set to be extended
for the running application. The multi-core reconfigurable
processor architecture, including the coprocessor interface, the
ICAP controller and the Linux kernel driver, is presented. The
experimental results show the characteristics of the platform
including: area costs, the memory contention, the reprogram-
ming cost... Speedups up to 100× are demonstrated on a
cryptography test.

I. INTRODUCTION

As per Moore’s law, the number of transistors fitting on

a single die keep increasing. To efficiently exploits those

transistors, processors are using more and more cores. This

present the user with more coarse grain parallelism that need

to be exploited. FPGAs uses those transistor to allow very

fine grain parallelism and to provide concurrency across the

whole chip.

Reconfigurable processors try to bring the best of both

world by combining a processor with some reconfigurable

logic. It brings the processor ease of use for the non-critical

part of the code and allows the exploitation of fine grain

parallelism by custom hardware for performance critical

portion of the code. Reconfigurable processor also have the

great advantage of being able to be reprogrammed in the

field to add new unforeseen features or corrections.

This paper presents a reconfigurable multi-core processor

platform based on the Leon3 processor which is fully

featured, including inter-core cache coherency, allowing it

to run a complete SMP Linux kernel. Leon3 is based on

SPARC v8 instruction set allowing it to run a great variety of

applications, it is synthesizable to FPGAs but also available

as ASICs. A fault tolerance version is also available for

space applications.

The proposed reconfigurable coprocessor core is tightly

coupled with the processor allowing it to be directly con-

trolled by custom instructions issued by the SPARC core.

Figure 1. Leon3 SMP with reconfigurable coprocessors

The paper is organized as follows; first an overview of

the related work is given in section II, next the system

architecture is described in section III, section IV presents

the experimental results, and section V concludes the paper.

II. RELATED WORK

There has been a lot of reconfigurable processor re-

search in the past, most notably: PRISC [1] is a RISC

based microprocessor that includes reprogrammable function

units, OneChip [2] is based on MIPS and integrates a

tightly coupled reconfigurable core. Chimaera [3] integrates

a superscalar processor with a reconfigurable function unit;

the Chimaera C compiler has the ability to automatically

map instructions to the reconfigurable unit. Recently, multi-

core reconfigurable base systems are studied for example,

Amalgam [4] which provide 4 cores and 4 reconfigurable

cores without SMP, exchanging data by registers. In [5] a

multi-core base system is simulated with Simics while the

coprocessors run on a Virtex 5 FPGA. In [6], an hetero-

geneous multi-core system on chip is presented, however

the system is based on Microblaze which is not suitable for

running a full SMP OS like Linux.

III. SYSTEM ARCHITECTURE

A. Design Requirements

The design choices were guided by the following require-

ments. In order to be a realistic platform for multi-core

coprocessor evaluation, processor cores supporting a full

operating system, virtual memory, physical shared memory

with cache coherency (to allow efficient data exchange and
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Figure 2. The Leon3 and the proposed coprocessor pipelines. Also
represented, the timing for the load and store operations between the two
units.

reuse between the processor cores) were needed. The pro-

cessor core also add to use a small area on the chip to allow

the placement of multiple cores on one FPGA. For those

reasons, the OpenSPARC open-source processors (1 and 2)

were not selected due to their important area usage per core.

The OpenRISC 1200 processor does support SMP but the

Linux port does not support this feature, yet. The Xilinx

Microblaze and the Altera NIOS soft-core processors do

not have support for cache coherency and modifications are

prevented by their proprietary licenses. Leon3 was meeting

all the design requirements (see Section III-B).

For the reconfigurable coprocessor, it was important for

the coprocessor to be tightly integrated as it is shown to be

one of the most versatile approach in its ability to provide

speedup on a great variety of applications [7], as the data

transfer cost between the processor and its coprocessor is

greatly reduced compared to a loosely coupled approach. A

tightly coupled approach also simplifies programming as one

program controls both the processor core and its coprocessor.

B. Leon3

The Leon processors are developed by Aeroflex Gaisler,

mainly for aero-spacial applications (they were originally

developed by the European Space Agency).

The Leon3 32 bit processor synthesizable VHDL sources

are released, under the GNU General Public License v2

(GPL), as part of the Gaisler IP library (GRLIB). The

open-source version is fully featured to the exception of

the radiation hardened Fault-Tolerance and the IEEE-754

Floating Point Unit (FPU). The open source nature of Leon3

makes it ideal for research [8].

Leon3 is compliant with the SPARC V8 specifications,

allowing it to run a great variety of software and operating

system, including GNU/Linux. Multi-processor is possible

either in a symmetric or an asymmetric configuration (for

example, see Fig. 1). Leon3 is based on a 7 stage pipeline,

see Fig. 2.

Table I
THE SPARC INSTRUCTIONS RESERVED FOR THE COPROCESSOR

Instruction op1 op3 Description
LDC 11 110000 Load Coprocessor
LDDC 11 110011 Load Double Coprocessor
LDCSR 11 110001 Load Coprocessor State Register
STC 11 110100 Store Coprocessor
STDC 11 110111 Store Double Coprocessor
STCSR 11 110101 Store Coprocessor State Register
STDCQ 11 110110 Store Double Coprocessor

deferred-trap Queue
CPOP1 10 110110 Coprocessor Operate 1
CPOP2 10 110111 Coprocessor Operate 2
CB... 00 N/A Branch on Coprocessor

Condition codes

Leon3 also supports a wide variety of development fea-

tures: it can be configured with a Debug Support Unit

allowing, in conjunction with the debug monitor (GRMON),

to fully debug the targeted system by reading/writing mem-

ory and registers, setting breakpoint and stepping through

the code, attaching the GNU debugger (gdb), monitoring

the transactions on the AMBA bus... Simulators are also

developed by Aeroflex Gaisler like TSIM2 and GRSIM.

C. Coprocessor Interface

The Leon2 processor was widely used for reconfigurable

processor research [9], [10] but unfortunately the simplified

coprocessor interface which was provided with Leon2 was

removed from the Leon3 source code release, making the

development of coprocessor much more difficult (to the best

knowledge of the authors, no publication describes a Leon3

processor connected to a coprocessor).

The Leon3 processor still exposes an interface for co-

processors. It is used to connect the GRLIB FPU unit.

It uses the rst, holdn, clk signals plus two structures

fpc_in_type and fpc_out_type. Those two struc-

tures basically expose all the signals from the main pipeline

to the coprocessor. This makes the interface particularly

complex to work with. In total there is 497 signals going

in and out from the coprocessor. Having all those signals

allow the coprocessor to reuse the registers used in the

main pipeline and gives more freedom to the synthesis

tools to optimize the coprocessor. However, this is not

appropriate for a reconfigurable coprocessor implementation

as all those signals would have to be preserved and routed

to the reconfigurable region. This issue has been solved by

designing a simplified interface for the coprocessor reducing

the number of signals from 497 to 162. The VHDL records

for the simplified interface are presented on Fig. 3.

The Leon3 core was also modified, as some signals from

the coprocessor were not taken into account (CPEN, holdn
and dbg.data). The implementation to store data from the

coprocessor to the memory was also missing.

During the reconfiguration of the coprocessor, it is also

important that the signals coming in from the coprocessor
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1 type f p c p i p e l i n e c o n t r o l t y p e i s record
pc : s t d l o g i c v e c t o r (31 downto 0 ) ;
i n s t : s t d l o g i c v e c t o r (31 downto 0 ) ;
c n t : s t d l o g i c v e c t o r (1 downto 0 ) ;
t r a p : s t d u l o g i c ; −− i n s t r . t r a p p e d

6 a n n u l : s t d u l o g i c ; −− c a n c e l n e x t i n s t .
pv : s t d u l o g i c ; −− v a l i d

end record ;

type c p o u t t y p e i s record
11 s t d a t a : s t d l o g i c v e c t o r (31 downto 0 ) ;

−− da ta t o memory
exc : s t d l o g i c ; −− e x c e p t
cc : s t d l o g i c v e c t o r (1 downto 0 ) ;
ccv : s t d u l o g i c ; −− branch code v a l i d

16 l d l o c k : s t d l o g i c ; −− l oad l o c k
ho ldn : s t d u l o g i c ; −− ho ld

end record ;

type c p p i p e l i n e c o n t r o l t y p e i s record
21 c n t : s t d l o g i c v e c t o r (1 downto 0 ) ;

t r a p : s t d u l o g i c ; −− t r a p
a n n u l : s t d u l o g i c ; −− c a n c e l n e x t i n s t .
pv : s t d u l o g i c ; −− v a l i d

end record ;
26

type c p i n t y p e i s record
ho ldn : s t d u l o g i c ; −− p r o c e s s o r ho ldn
f l u s h : s t d u l o g i c ; −− p i p e l i n e f l u s h
exack : s t d u l o g i c ; −− e x c e p t i o n acknowledge

31 d : f p c p i p e l i n e c o n t r o l t y p e ;
a : c p p i p e l i n e c o n t r o l t y p e ;
e : c p p i p e l i n e c o n t r o l t y p e ;
m : c p p i p e l i n e c o n t r o l t y p e ;
x : c p p i p e l i n e c o n t r o l t y p e ;

36 l d d a t a : s t d l o g i c v e c t o r (31 downto 0 ) ;
−− da ta from memory

end record ;

Figure 3. Reduced VHDL interface for the coprocessor

does not interfere with the processor pipeline. For this we

used the fact that, due to the SPARC specification [11],

the coprocessor has to be explicitly enabled before being

used. This is done by setting the bit 13 of the Processor

State Register (PSR) to 1. Trying to use the coprocessor

instructions without enabling the coprocessor generates a

cp_disabled processor trap. This is used to implement

some glue logic that masks out the signals from the copro-

cessor when the coprocessor is disabled. The reconfiguration

can now happens without interfering with the main processor

pipeline.

The SPARC v8 architecture manual [11] also defines

which instructions are available to control the coprocessor

(See Table I). The two first sets of instructions (LD and ST)

are used to transfer data to and from the coprocessor. De-

pending on the addressing mode, the load/store instructions

have the following format:

op1 (2) rd (5) op3 (6) rs1 (5) i (1) zero (8) rs2

Effective address = r[rs1]+r[rs2].
op1 (2) rd (5) op3 (6) rs1 (5) i (1) simm (13)

Effective address = current address + sign ext(simm).
In both those instructions, rd is the destination regis-

ter and its signification is dependent on the coprocessor

implementation. The rest of the load/store instructions is

interpreted by the host processor and cannot be changed by

reconfiguring the coprocessor. Timing information for the

coprocessor load/store operations are shown in Fig. 2.
The following instruction format is suggested for the

coprocessors:
op1 (2) rd (5) op3 (6) rs1 (5) opc (9) rs2 (5)

op1 and op3 fields are also decoded by the processor so

they cannot be changed. The other fields are implementa-

tion specific and can be re-purposed. With the two CPOP

instructions, there is actually 25 bits available to implement

the coprocessor instruction set.
The CB (Coprocessor Branch) instructions are interpreted

by the processor and are not customizable, they rely on the

condition codes (signal cc) returned by the coprocessor.

D. ICAP Controller
An Internal Configuration Access Port (ICAP) controller

was written and connected to the Advanced Microcontroller

Bus Architecture (AMBA). This module allows the recon-

figuration of the coprocessors by allowing the processors to

load new partial bitstreams. The controller behaves as an

Advanced High-performance Bus (AHB) slave and it allows

any processor core to reprogram any coprocessor.

E. Linux Kernel Driver
In order for the ICAP controller to be accessible by the

user space programs, a kernel driver is needed. The kernel

driver’s first task is to register itself as a driver (via the

of_register_platform_driver kernel function) for

the ICAP controller. Once this is done, a new character

device is created (/dev/icap) to allow the user space

applications to communicate with the driver. When the Linux

kernel probes the ICAP device, the driver maps the io device

memory to the kernel address space (with of_ioremap).

The following 4 IOCTL operations are provided to the

applications to configure and reprogram the coprocessor:

• IOCTL ICAP COPROCESSOR ENABLE: Modify

the psr register of the user process to allow the use

of the coprocessor instructions. This also configure the

glue logic to connect the signals of the coprocessor to

the main pipeline.

• IOCTL ICAP COPROCESSOR DISABLE: Disable

the coprocessor.

• IOCTL ICAP COPROCESSOR STATUS: Get the

current status of the coprocessor.

• IOCTL ICAP PROGRAM: Program the coprocessor

using the bitstream at the virtual address provided by

the user. The programming itself is protected by a

mutex, so that two different cores cannot access the

ICAP at the same time.

IV. EXPERIMENTAL RESULTS

A. Testbed
The Xilinx ML-509 board was used for the experiments.

The board is powered by a Virtex-5 XC5VLX110T FPGA. It
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Figure 4. Placement of a 4 core SMP Leon3 design with reconfigurable
coprocessors (the four squares represent the reconfigurable areas)

Table IV
MODIFIED STREAM BENCHMARK PERFORMANCE RESULT (MB/S)

# of cores Copy Scale Add Triad
1 46.8 8.4 40.0 11.1
2 64.0 16.6 60.0 21.7
3 66.2 24.9 62.6 31.6
4 68.6 33.7 64.0 41.7

provides 17, 280 slices, 148× 36Kb block rams (which can

also be used as two independent 18Kb block rams) and 64

DSP48E slices (providing a 25× 18 multiplier). The board

also includes a JTAG interface, a Gigabit Ethernet port and

256 MB of DDR2 ram.

The following softwares were used: Synopsys Synplify

Premier version E2011.03 to synthesize, Xilinx ISE version

13.1 to place and route the different designs, Leon3 from

GRLIB version 1.1.0 B4100, LinuxBuild 1.0.0 to build

the GNU/Linux environment with the Linux kernel version

2.6.36-4. All the designs target a clock speed of 70 Mhz.

B. Scalability/Performance

1) Area cost: The area cost for the Leon3 processor is

evaluated as follows. A minimal configuration of Leon3 is

chosen and extra features are added progressively. The in-

creased area usage in terms of LUTS and block-rams is used

to approximate the area cost of each features. Table II shows

the total cost of fully functional configurations. Table III

details the cost of individual features. Both tables can be

used to easily evaluate the area cost of a given configuration.

2) Memory contention on the AMBA Bus: The AMBA

Bus to access the memory is shared among all the cores; this

limits the scalability of the multi-core approach. In order to

evaluate this, a modified version of the OpenMP Stream

benchmark [12] was used. On this modified version, the
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Figure 5. Scalability of the modified Stream test, showing the contention
on the AMBA Bus

Table V
IMPLEMENTATION TIME FOR A 4 CORE SMP DESIGN

Implementation step Full design PR regions only
Synthesis 14m 55s 5s
Place and route 47m 24s 32m 28s
Total 62m 19s 32m 33s

floating point operations were replaced by integer operations

(double data types were replaced by long long), due to the

lack of floating point unit on our test platform. The results

can be seen on Table IV. Fig. 5 shows the scalability on our

platform. We can see that the scaling is very good for the

more compute intensive benchmarks, but scaling stops at 2

cores for memory intensive operations. Due to this limited

scaling, it is important that the caches are dimensioned

appropriately and used efficiently. Coprocessors can also

use block ram as buffer to reduce memory accesses to a

minimum. For more demanding applications, Leon4 can be

used. Leon4 has improved data paths with single cycle 64

bits load/store operations and a 128 bit wide AMBA 2.0

bus. Unfortunately, Leon4 is not yet available under an open

source license.

C. Reconfiguration

The reconfiguration for a 79, 964 bytes bitstream takes

4.58 ms, this correspond to a reconfiguration speed of

16.6 MB/s. Most of this time is spent transferring the

bitstream on the AHB bus and across the processor caches.

The reconfiguration time could be reduced by either having

a configuration cache in the ICAP controller or by making

the ICAP controller a bus master so that it can fetch the

bitstream directly from the DDR2 RAM.

D. Implementation time

Using a partial reconfiguration design flow has also the

advantage of reducing the turn-around time to test new

designs. Table V shows the implementation time for a
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Table II
AREA COST FOR DIFFERENT CONFIGURATIONS OF LEON3

Configuration Slice resources BRAM DSP48Es
Registers LUTs 18kB 36KB

Leon3 minimal configuration 2, 355 (3%) 3, 615 (5%) 6 2 (5%)
2 Leon3 cores (MMU, I1, D1, HW 2c., FPU full, debug, ICAP, DES) 16, 886 (24%) 36, 963 (53%) 50 20 (31%) 40
4 Leon3 cores (MMU, I1, D1, HW 2c., FPU full, debug, ICAP, DES) - 76, 431 (110%) - - -
4 Leon3 cores (MMU, I1, D1, HW 2c., debug, ICAP, DES) 17, 969 (25%) 32, 258 (46%) 88 36 (56%) 16
6 Leon3 cores (MMU, I1, D1, HW 2c., debug, ICAP, DES) 25, 493 (36%) 46, 508 (67%) 126 52 (79%) 24

Table III
AREA COST PER ADDITIONAL FEATURE TO THE CONFIGURATION OF LEON3

Feature Slice resources BRAM DSP48Es Per core
Registers LUTs 18kB 36KB

MMU (8 entries, combined, 4kB page size) 857 746 yes
I1 (8kB in 2 sets, 32 bytes/line, LRU) 77 250 4 2 yes
D1 (16kB in 4 sets, 32 bytes/line, LRU, AHB fast snooping) 700 2, 028 12 4 yes
HW multiplier (5 cycles latency) 144 565 2 yes
HW multiplier (2 cycles latency) 93 362 4 yes
GRFPU lite 1, 140 2, 872 yes
GRFPU full 3339 9, 423 22 8 16 yes
Coprocessor (DES core) 523 525 1 yes
Debug support (JTAG, Ethernet GRMon) 1, 813 3, 366 4 4 no
AHB ICAP controller 10 132 4 no
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Table VI
DES PERFORMANCE RESULT (KIB/S)

Hardware Software
Cores Encryption Decryption Encryption Decryption

1 6,826 6,826 87 87
2 12,423 12,800 108 116
3 14,184 13,626 108 117
4 14,045 13,948 108 120

4 core SMP design with reconfigurable coprocessors on

a recent machine (equipped with two Intel Xeon X5667

CPUs running at 3.07GHz with 96 GB of RAM). The

implementation time is reduced by 48%, allowing for much

faster iterative coprocessor design.
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Figure 7. Scalability of the DES test

E. Test Application: DES

To verify the functionality and the performance gains

of the reconfigurable platform, a DES cryptography co-

processor was used. Encryption is a common application

of partial reconfiguration as hardware implementations pro-

vides a good speedup for encryption algorithms. Also, the

cipher can be changed based on the distant peer and it

can also be updated [13]. For this work, two cores were

used, one for encryption and one for decryption. Those

cores are based on the Basic DES Block Cipher [14]. The

design is not pipelined and perform a DES encryption in

17 clock cycles, however loading the next block of data (64

bits) can be performed at the same time as an encryption.

The implementation is compared to the portable C DES
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functions [15] compiled with GCC and the -O3 level of

optimization. The correctness of the core and of the software

implementation was first verified using 250 commonly used

test vectors for DES (including the test vectors from [16]).

The results of the two implementations were also checked

against each others. Speedup for 1 core and for different data

sizes is shown on Fig. 6, an important improvment (100x)

is observed against the C code. A drop in performance can

be observed when the data do not fit in the cache anymore.

Result for a multi-core design is presented in Table VI and

in Fig. 7. In order to compare those results with the modified

stream benchmark, the cipher speed needs to be multiplied

by two (in order to account for both the loads and stores).

We obtain a maximum data transfer speed of 28.4 MiB/s

(versus 33.7 MiB/s for the scale benchmark). For both the

software and hardware approach, scalability is good for 2

cores, fair for 3 cores and stops at 4 cores, showing the

need for improvement to the interconnection between the

cores for data intensive applications.

V. CONCLUSIONS

In this paper, a complete multi-core reconfigurable plat-

form based on Leon3 was presented, including the co-

processor interface, the reconfiguration controller and the

kernel driver. The platform runs a full Linux SMP operating

system providing a rich environment and flexibility for

the application programmers. Experimental results show the

main platform characteristics like memory bandwidth and

reconfiguration time. The coprocessor design time is also

reduced thanks to the partial reconfiguration work flow,

facilitating future research. The reconfigurable coprocessor

also shows great speedup proving the value of this approach.
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